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Historical remarks

Letter of WoLFcaNG PauLl tO H. B. G. CASIMIR:

Princeton, 11. Oktober 1945

" ... A few weeks will be sufficient for you and others to learn everything of
scientific interest which happened during these ‘lost years'.

| am sending you today a package with reprints, please divide

them among persons who are interested.

There is a paper of Onsager included (...) of which | think

that it is a masterpiece of mathematical analysis.

It contains the rigorous solution of the Kramers - Wannier order-disorder problem
for the two dimensional model (unfortunately the method cannot be generalized
for three dimensional crystals). ... "



Ising Model: Phase transition, scaling behaviour

Zero field 1siné model:

H = — Z JijSiSj S, =1V —1

— J;; > 0 between nearest neighbours of a lattice; J;; = 0 else

— Ground state is trivial

— Phase transition: (ferromagnetic) order - disorder



CRYSTAL STATISTICS 117
a rough value of the current amplitude 2t resonance. We find for the current at resonance
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The current is in phase with the impressed electromotive force in the two extreme thirds of the
antenna, but out of phase in the middle third. As the cumrent amplitude at the center of the antenna
12 only some 4 percent of that at first resonance, the secord and higher onler resonances are evidently

of little importance as compared with the first resonance,

FHYSICAL REVIEW VOLUME o3,

NUMBERSE 3 AND 4

FERRUARY | AND 15, 1944

Crystal Statistics. I. A Two-Dimensgional Model with an Order-Disorder Transition

Lams Oxsicen
Sterlisg Chemistry Laborsiory, Fale Usiversily, New Haven, Conmecticut
{Received October 4, 1943)

The parition function of a two.dimensional *ferro-
maguetic’ with scalar "spins” (Ining model} s computed
rigocously for the case of vaaishing field, The dgenwert
problem imvolved in the correponding computation for a
long strip erystal of hnite widih (» ators), joined straight
1o isell amund a cylinder, & solved by direct produce
decomposition; in the speciil case mm = an integral
roplaces & mim. The choice of different interaction enecgies
(£F, £J77) ia 1he (01) and (10} diuechons does not
complicate the problem. The two-way infinite orystal has
an order-divorder transition at a temperature 7= T, given
by the condition

sinh(2J/kT,) sina (20 /AT ) = 1.

INTROUDUCTION

HE statistical theory of phase changes in
solids and liquids involves formidable
mathematical problems.

In dealing with transizions of the first order,
romputation of the partition functions of both
phases by successive approximation may be
adequate. In such cases i is to be expected that
both functions will be asalytic functions of the
temperature, capable of extension beyond the
transition point, so that good methods of ap-
proximating the functions may be expected to
vield goodl results for their derivatives as well,
and the beat of transition can be obtained from
the difference of the latter. In this case, allowing
the contiwuation of at least one phase into its
metastabe range, the heat of transitom, the
most upjropriate measure of the discontinuity,

The evergy is a coutinuous function of T'; tut the specific
beat brovuies lufinie ws —lug ([ I'=T7, . For strips of
finite width, the maximum of the specific heat [ncreases
linearly wich log m. The order-comverting dual transfor-
mation invenced by Kramers and Wannier elects a simple
autoeephism of the basis of the quaternion algebra which
is patural to the problem (n hand, In addition to the
thermodynamic propecties of rhe massive rrpsral, rhe lree
energy of a {0 1) boundary between areas of opposite order
i computed; on this basis the mean ordered length of a
strip aystal i
{exp (2S/AT) tanh (2T k1))

may be considered to exist over a range of
temperatures,

It is quite otherwise with the more subtle
transtions which take place without the release
of latent heat. These transitions are usually
marksd by the vanishing of a physical variable,
often an asymmetry, which ceases 10 cxist
beyond the transition point. By defnition, the
strongest possible discontinuity involves the
specific heat. Experimentally, several types are
known. In the a—# quartz transition,! the
specific heat becomes infinite as (7. —T)t; this
may be the rule for a great many structural
transiormations in crystals, On the other hand,
supraconductors exhibit a clear-cut finite discon-
tinuity of the specific heat, and the normal state
can be continued at will below th: transition

' H. Moser, Physik, Zets, 37, 737 (1936).



Ernst Ising 1925

S. Kobe, Goettingen/Leipzig 2004 — p.6/?"



Peoria 1996




Ising Spin Glass Models

Zero field 1siné model:

— J;; arbitrary

— Ground state is not known!!!

S, =1V —1



Spin Glass Models (Lattice vs. Mean-Field Models)

Lattice models:
Jij = 41 or Gij;

l.e. the couplings between spins beeing nearest neighbours in a (cubic) lattice are
randomly distributed

Mean-field models:
€.g SHERRINGTON-KIRKPATRICK (SK) model:

Jij = ~

G;; — independent identically distributed Gaussian random numbers
with zero means and variance one.



A Related Mean-Field Model

SK model with non-symmetric distribution of Gauss couplings:

|Gij
V' N

P(J@'j) = ZIZ(S(J@']' + ‘Gw‘ ) + (1 — :E)(S(J@-j —

\/N )

l.e. the sign of interactions are inversed according the probability x

limiting cases:

x=20 — ferromagnetic system
x=0.5 — SK model

x=1 — antiferromagnetic system

No shift of the Gauss distribution !!!



How much states ?

N 2N notes

1 2

2 4

3 8

4 16

5 32

10 1024

20 1048576 ~ (Maximal-)number of ancestors in 20th generation (14th century)
24 16 777 216 ~ combinations in German Lotto

47 ~ 1.4 x10M" ~ age of mankind in seconds (4 Mio. a)

58 ~ 3 x 1017 ~ time since "big bang" in seconds (13 Mrd. a)
64 ~ 2 x 1019 "chessboard"-bet: fields vs. grains

90 ~ 2 x 10?7 ~ time since "big bang" in ns

1019 unimaginable!



Exact Ground States: Optimization

Complexity: NP-complete

Method: "branch-and-bound":
exact nonlinear discrete optimization
S. K., A. HARTWIG, Comp. Phys. Commun. 16 (1978) 1

example: N =8
(0—5 -2 -5 -6 -1 0

0O —-10 -4 o -2 -1
0 0 0 -3 0

0 —4 =5
0 0
0
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Branch-and-Bound Tree

Energy of the branching level E; (with E;— n = Estates):

-1
Ey=E1+2 Z | Tk
k(1)

by > B4

example: N =8; b1 = E;q = =77



Branch-and-Bound Tree: Part
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Branch-and-Bound Tree
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Branch-and-Bound Tree
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Branch-and-Bound Tree
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Misfit parameter: A measure for frustration

Misfit parameter — a useful rescaling of the ground-state energy per spin
Definition:  po = 2 (1 —eo/el?)

with egd — reference energy of a related non-frustrated system:

Ji; = |Ji;| (lattice model)

Jij = |$%| — el = (N —1)/(2rN)'/2 (SK and related models)

Properties:

— o Is the fraction of each bond of the system, which is on average not
satisfied.

— Example: Antiferromagnetic triangular lattice — g = %

because one of three bonds of equal strength cannot be satisfied.

— Maximum value: po = = for highly frustrated systems
(e.g. high-dimensional hypercubic and fcc fully frustrated 4J systems).

— SK and related models belongs also to the class of systems with maximum
occurring frustration.



Results |

Lattice Models



Misfit parameter: Lattice models (=.J spin glass)

lattice type D | uo eg from

honeycomb 2 0.09 W. LEBRECHT, E.E. VOGEL (1994)

square 2 0.1495 | I.A. CAMPBELL, A.K. HARTMANN, H.G. KATZGRABER (2004)
triangular 2 | 0.22 W. LEBRECHT, E.E. VOGEL (1994)

simple cubic | 3 | 0.202 various authors

hypercubic 4 | 0.24 S. BOTTCHER, A. G. PERCUS (2001)

hypercubic 5 | 0.26 S. BOTTCHER, private communication

(S. KoBE, J. KRAwCZYK IN: Computational Complexity and Statistical Physics, in press)




Ground state clusters: Configuration vs. real space

two (fixed) spin clusters in the real space: "red" and spin domains
Reversal of one spin domain = another cluster in the configuration space

"free" spins between the spin domains = degeneracy of ground state clusters



Exact Landscape

54 clusters, 224 clusters,
2185 states 8922 states

Es (0]

[ 420 clusters,13628 states altogether

1503690
stats

E,+ =2 e

Eo +

12 states

System 4 x 4 x 4 the first excitation O - 50 states, the second excitation - - 300 states

¢ 1.635.796 states up to Es,

18 states

@ clusters of states form valleys (#1, #2),

¢ valleys are connected via

clusters

configuration space



Landscape: Inner profile of the saddle cluster
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® Restriction of "transition" between clusters via saddle cluster
® Hamming distance of all pairs of states in the saddle cluster (right)

¢ "Bottleneck" has to be passed: "entropic barrier"



L = 12: Landscape and dynamics

1

qac)

0.1 10

¢ More complex saddle cluster structure (left)

Il
10000 100000

¢ Dynamics: g vs. WTM time for 20 runs at T' = 0.37 starting from one ground state
(right) g,; = 0.915 4+ 0.02 = hy = 73 + 2 = "width of the valley"

Ground states from A.K. HaArRTMANN: Genetic Cluster-Exact Approximation
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Mean — Field Models



Energy exponents (zero temperature)

Notation of
J.-P. BOUCHAUD, F. KRzZAKLA, O.C. MARTIN, Phys. Rev. B 68 (2003) 224404

L attice models; N = L4

Ej(L) =eoL® + e L® +... .

e;(L)=FE;(L)/LY =eg+e1L7% +....

Scaling of the energy fluctuations:

2

[E2(L) — E; (L) 1"? = 0gL®F +... .

Scaling exponents:

shift exponent ®; — w = d — O
fluctuation exponent © ¢



Energy exponents ctd.

L — NU/d

eJ(N):eo—l—elN_”/—l—... .

2

o7(N)=[e2(N) —e;(N) V2 =0oN"" +....

with



System sizes and numbers of realizations

# of samples
N | 2=05(SK) | z=1.0
19 257909 438242
25 229086 207149
32 123220
39 74827 16519
42 50797 13828
49 7933 1486
50 1724 1181
56 6274 282
59 2082 136
64 1779
70 634
75 236
81 126
85 112
90 42




Results: Ground-state energy (SK model)

0.76

0.74

0.70

0.68

0.66

0.00 0.05 0.10 0.15 0.20

N -1/2



Results: Ground-state energy (x = 1: AFM model)

No analytical solution known!

0475 —

&(N),

0.465—

0.460 —




Results: Fluctuation exponent

0.06 — _

&

0.02 —

A R I I RN
0.0
8.00 0.02 0.04 0.06 0.08 0.10
-0.75
N

upper curve: z = 0.5 (SK); lower curve: z = 1 (afm)



Results: Misfit parameter

0.5

0.45

(N)
<>

04

0.35

0.3

0.05 0.1 0.15 0.2 0.25

upper curve: z = 1 (afm); lower curve: x = 0.5 (SK)

blue stars: M. PaLAssINI, cond-mat/0307713: hybrid genetic algorithm



Results of fitting procedures

# x = 0.5 (SK) x=1.0
2 w’ Jo 2h w’ 1o
eo(N) 3-p -0.7615(25) | 0.698(23) -0.4755(5) | 1.66(9)
item 2-p *) 0.684(2) - -
po(N—1/2)3-p | -0.7655(38) | 0.652(31) -0.4756(4) | 1.63(8)
item 2-p *) 0.671(3) - -
oj(N) 2-p 0.710(5) 0.736(9)

*) The analytical value eS8 = —
(M. A. CRISANTI, T. RossI, Phys. Rev. E 65, 046137 (2002))

0.76321(3) is used for the 2-parameter fit



Phase transition

Ho
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Summary

Optimization algorithms — exact results for finite spin glass models
Semi-quantitative understanding of dynamics (relaxation) in lattice models

For mean-field models: SK ground states for small NV are consistent with RSB
solution and other numerical results.

Related models are introduced: AFM model is "higher” frustrated for finite N.

Ground-state energy e Is estimated.

0,afm
Predictions from energy scaling:

— SKand AFM model have the same fluctuation exponent: © ¢ /d ~ 1/4.

— The shift exponent is different: ©,/d ~ 1/3 (SK) and -2/3 (AFM).

Outlook:

— Phase transition between ferromagnetic and spin-glass ground state near
x=1/2?

— Another related model: A fully connected +.J model
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