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• Clear evidence that most virus introductions spread little 
and few cases amplify considerably.
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variability in exhaled bioaerosol

social network structure
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• Clear evidence that most virus introductions spread little 
and few cases amplify considerably. 

• Many mechanisms underlying superspreading! 

• From a statistical perspective super-spreading can be 
considered a `rare` event.
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Individual ‘reproductive number’  with mean  

Secondary cases stochastic  

- Branching Process: 
 then   

- Homogeneous transmission and recovery rate: 
 then   

- More general: 
 then  

ν ∼ P(R0) R0

Z ∼ Poisson(ν)

P(R0) = δ(ν − R0) Z ∼ Poisson(R0)

P(R0) = Exp(R0) Z ∼ Geometric(R0)

P(R0) = Gamma(R0, k) Z ∼ Neg . Binomial(R0, k)

S I R

Overdispersion: σ2
Z = R0 + R2

0 /k
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Overdispersion: σ2
Z = R0 + R2

0 /k
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Strong effect on statistics 
of epidemic outbreaks: 

Overdispersion: σ2
Z = R0 + R2

0 /k
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• Clear evidence that most virus introductions spread little 
and few cases amplify considerably. 

• Many mechanisms underlying superspreading! 

• From a statistical perspective super-spreading can be 
considered a `rare` event.

Chen et al. Lancet Infect. Dis. (2021)
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Chen et al. Lancet Infect. Dis. (2021)

How much do human contact patterns 
contribute to overdispersion?
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Contact patterns and epidemic outbreaks

Statistical analysis of disease spread 
from human contact patterns

Epidemic phase transition in a toy model 
of spatiotemporal contacts
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Copenhagen Networks Study

• 1000 participants from DTU with smartphones as 
social sensors 

• Face-to-face interactions, telecommunication, social 
networks, location, and background information

Sapiezynski et int Lehmann, Sci. Data (2019)

Sekara Stopczynski, Lehmann, PNAS (2016).

Stopczynski et int. Lehmann, PLOS ONE (2014)
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Encounter train
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Dispersion from human contact patterns
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Dispersion from human contact patterns

k = ∞

k = 3.3
     k = 1.3
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cf. Chen et al. Lancet Infect. Dis. (2021)

We used a very simple disease model, yet 
dispersion from contact patterns is in the 
right regime

Lloyd-Smith et al., Nature (2005)

Dispersion from human contact patterns

Our perspective:  
Contact patterns form baseline; 

Physiological disease details are higher order
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Modulation from human contact patterns
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Modulation from human contact patterns
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Modulation from human contact patterns

Memory effects in contact patterns can 
modulate the disease spread ( )R0
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Contact patterns and epidemic outbreaks

Statistical analysis of disease spread 
from human contact patterns

Epidemic phase transition in a toy model 
of spatiotemporal contacts

Contact patterns affect the dispersion  
and disease spread 

k
R0
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Overdamped Langevin dynamics:

During day: Diffusive motion 
During night: reset to individual home location

·ri = − F(t)∇V (ri − r0
i ) + 2Dηi

Non-Markovian Infection dynamics: 
Upon infection agent is exposed for  and 
infectious for  , where they infect only 
upon close contact.

τlat
τinf

Barone et al. (in preparation)
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Mean-field model 2D lattice

·ri = − F(t)∇V (ri − r0
i ) + 2Dηi

Barone et al. (in preparation)

Cycloactive walkers interpolate between mean-field 
and spatial dynamics with super-quadratic growth

α =
d log I
d log t

=
t
I

dI
dt

α(t) = kt → I(t) ∝ ekt

α(t) = k → I(t) ∝ tk

Instantaneous log slope:



Random walkers with stochastic resetting - scaling
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Lloyd-Smith et al., Nature (2005)

Barone et al. (in preparation)

1 − pext = psurv ∼ (pinf − pc)β′ 

β′ MF = 1

Expected scaling of the  
survival probability:

β′ DP,2D = 0.5834(30)Henkel et al., Non-equilibrium Phase Transitions (2008)

Focus on SEIR and distinguish which runs survive

Total number infected
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Lloyd-Smith et al., Nature (2005)

Barone et al. (in preparation)

Random walkers with stochastic resetting - scaling
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Contact patterns and epidemic outbreaks

Statistical analysis of disease spread 
from human contact patterns

Epidemic phase transition in a toy model 
of spatiotemporal contacts

Contact patterns affect the dispersion  
and disease spread .

k
R0

Toy model interpolates between mean-
field and spatial dynamics with non-trivial 
critical exponents.



Outlook: Hierarchical Mobility
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Outlook: Hierarchical Mobility
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My Future: Cycloactive agents with individual, hierarchical, discrete interaction sites inspired by data  
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Summary

Statistical analysis of disease spread 
from human contact patterns

Epidemic phase transition in a toy model 
of spatiotemporal contacts

Contact patterns affect the dispersion  
and disease spread .

k
R0

Toy model interpolates between mean-
field and spatial dynamics with non-trivial 
critical exponents.


