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Networks in molecular biology

New large-scale experimental data in the form of networks:
F transcription networks
F protein interaction networks
¥ co-regulation networks
F signal transduction networks, metabolic networks, etc.
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New large-scale experimental data in the form of networks:

F transcription networks
F transcription factors bind to regulatory DNA
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Networks in molecular biology

New large-scale experimental data in the form of networks:

F transcription networks
F transcription factors bind to regulatory DNA
F polymerase molecule begins transcription of the gene
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Networks in molecular biology

New large-scale experimental data in the form of networks:

F proteins interact to form larger units

F protein interaction networks

F protein aggregates may catalyze reactions etc.
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Networks in molecular biology

New large-scale experimental data in the form of networks:

F protein interaction networks
F proteins interact to form larger units

F protein aggregates may catalyze reactions etc.

protein interactions in yeast
Uetz et al. (2000)
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Sequence alignment in molecular biology

¥ more than 100 organisms are fully sequenced

F genome sizes range from 3 x 107 to 7 x 10'! basepairs
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Sequence alignment in molecular biology

¥ more than 100 organisms are fully sequenced

F genome sizes range from 3 x 107 to 7 x 10'! basepairs

Global alignment: search for related sequences across species
F evolutionary relationships
¥ hints at common functionality
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Sequence alignment in molecular biology

¥ more than 100 organisms are fully sequenced

F genome sizes range from 3 x 107 to 7 x 10'! basepairs

Motif search: search for short repeated subsequences
¥ binding sites in transcription control
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Sequence alignment in molecular biology

¥ more than 100 organisms are fully sequenced

F genome sizes range from 3 x 107 to 7 x 10'! basepairs

Tools

F statistical models are used infer non-random correlations against a
background

¥ build score function from statistical models
F design efficient algorithms to maximize score

V evaluate statistical significance of a given score
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Sequence alignment in molecular biology

¥ more than 100 organisms are fully sequenced

F genome sizes range from 3 x 107 to 7 x 10'! basepairs

Tools

F statistical models are used infer non-random correlations against a
background

¥ build score function from statistical models
F design efficient algorithms to maximize score

V evaluate statistical significance of a given score

organism | number of genes

worm C. elegans | 19 000
fruit fly drosophila | 17 000
human homo sapiens | < 25 000
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Graph alignment

What can be learned from network data?
Can we distinguish functional patterns from a random background?

1. Search for network motifs [Alon lab]

F patterns occurring repeatedly within a given network
2. Alignment of networks across species

F identify conserved regions

V' pinpoint functional innovations
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Graph alignment

What can be learned from network data?
Can we distinguish functional patterns from a random background?

1. Search for network motifs [Alon lab]

F patterns occurring repeatedly within a given network
2. Alignment of networks across species

F identify conserved regions

V' pinpoint functional innovations

Tools
¥ scoring function based on statistical models

¥ heuristic algorithms: algorithmic complexity
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Graph alignment I. The search for network motifs

F patterns occurring repeatedly in the network
¥ building blocks of information processing [Alon lab]
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Graph alignment I. The search for network motifs

F patterns occurring repeatedly in the network
¥ building blocks of information processing [Alon lab]

¥ counting of identical patterns: Subgraph census
F alignment of topologically similar regions of a network

¥V allow for mismatches

¥ construct a scoring function comparing the aligned subgraphs to a
background model
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Graph alignment I. The search for network motifs

F patterns occurring repeatedly in the network
¥ building blocks of information processing [Alon lab]

¥ counting of identical patterns: Subgraph census
F alignment of topologically similar regions of a network

¥V allow for mismatches

¥ construct a scoring function comparing the aligned subgraphs to a
background model

Alignment
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Statistical properties of alignments

consensus motif Eij =2 cﬁ @
a

Alignment
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Statistical properties of alignments

Alignment
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F consensus motif€= 3", c®

¥ number of internal links
V average correlation between two subgraphs fuzziness of motif
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Statistics of network motifs

null model:

¥ ensemble of uncorrelated networks with the same connectivities as
the data
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Statistics of network motifs

null model:

¥ ensemble of uncorrelated networks with the same connectivities as
the data

model describing network motifs

F ensemble with enhanced number of links
¥ enhanced correlation of subgraphs divergent vs convergent evolution?
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Statistics of network motifs

null model:

¥ ensemble of uncorrelated networks with the same connectivities as

the data

model describing network motifs

F ensemble with enhanced number of links
¥ enhanced correlation of subgraphs divergent vs convergent evolution?

Log likelihood score

S(ct,...,cP) =

o8 (= 5r0es))
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Statistics of network motifs

null model:

¥ ensemble of uncorrelated networks with the same connectivities as
the data

model describing network motifs

F ensemble with enhanced number of links

¥ enhanced correlation of subgraphs divergent vs convergent evolution?
Log likelihood score

S(c,...,cP) = 10g(Q§?C17f;E§Z§>

a=1

p p
= (o —09p) ZL(CO‘) — % Z M(c*,cP) —log Z
a=1 a,Bf=1

Algorithm: Mapping onto a model from statistical mechanics (Potts model)
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Consensus motif of the E. coli transcription network

AL AA

- p.8/12



Consensus motif of the E. coli transcription network
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Graph alignment Il: Comparing networks across species
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Graph alignment Il: Comparing networks across species

Alignment: Pairwise association of nodes across species
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Graph alignment Il: Comparing networks across species

Last common ancestor
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Graph alignment Il: Comparing networks across species

Evolutionary dynamics: Link attachment and deletion
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Graph alignment Il: Comparing networks across species

Evolutionary dynamics: Link attachment and deletion
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Graph alignment Il: Comparing networks across species

N

Representation of the alignment in a single network. Conserved links are
shown in green.
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Scoring graph alignments across species

null model P:

¥ ensemble of uncorrelated networks with the same connectivities as
the data

()-model
F correlated networks (due to functional constraints or common ancestry)

F statistical assessment of orthologs: interplay between sequence similarity
and network topology

Scoring alignments

F log-likelihood score S = log(Q/P) is used to search for conserved
parts of the networks
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Application to Co-Expression networks
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Application to Co-Expression networks
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Genomic systems biology and network analysis

New concept and tools are needed to fully utilize high-throughput data
F functional design versus noise: statistical analysis
¥ evolutionary conservation indicates function

Topological conservation versus sequence conservation

F genes may change functional role in network with small
corresponding change in sequence

F the role of a gene in one species may be taken on by an entirely
unrelated gene in another species
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