Graph Alignment and Biological Networks

Johannes Berg

http://www.uni-koeln.de/~berg

Institute for Theoretical Physics University of Cologne Germany

New large-scale experimental data in the form of networks:

- transcription networks
- protein interaction networks
- co-regulation networks
- signal transduction networks, metabolic networks, etc.

New large-scale experimental data in the form of networks:

/ transcription networks

- transcription factors bind to regulatory DNA
- Polymerase molecule begins transcription of the gene

New large-scale experimental data in the form of networks:

- / transcription networks
 - transcription factors bind to regulatory DNA
 - Polymerase molecule begins transcription of the gene

New large-scale experimental data in the form of networks:

/ transcription networks

- transcription factors bind to regulatory DNA
- Polymerase molecule begins transcription of the gene

sea urchin Bolouri &Davidson (2001)

New large-scale experimental data in the form of networks:

protein interaction networks

- proteins interact to form larger units
- **V** protein aggregates may catalyze reactions *etc.*

New large-scale experimental data in the form of networks:

- protein interaction networks
 - proteins interact to form larger units
 - **V** protein aggregates may catalyze reactions *etc.*

protein interactions in yeast Uetz *et al.* (2000)

- I more than 100 organisms are fully sequenced
- **I** genome sizes range from 3×10^7 to 7×10^{11} basepairs

- I more than 100 organisms are fully sequenced
- **I** genome sizes range from 3×10^7 to 7×10^{11} basepairs

Global alignment: search for related sequences across species

- volutionary relationships
- I hints at common functionality

	10	i 3	20	30	40	50	60	70	
SEQ1	VHWTAEEKQI	ITGLWGKVB	WAECGAE.	ALARLLIVYP	WTORFFASFG	NLSSPTAILC	INPHVRAHGE	RVLTSFGDAV	
SEQ2	11 11.11 VHLTADEKAJ	VSGLWGKVN	1 1 1.1 NDEVGGE	II.III.III ALGRLLVVYP	WTORFFTSFG	DLSNAAAVMO	I I.III	KVLNSPGEGL	
	10) 2	20	30	40	50	60	70	
	80	90	100	110	120	130	140	Second	
SEQ1	KNLDNIKNTFSQLSELHCDKLSVDPENFRLLGDILIIVLAAHPSKDFTPECQAAWQKLVRVVAHALARKYH								
-004.5 040.7	(1.11.1.1.1)		1111111			111. 1.1.1	11 1 1	11.11	
SEQ2	KNVDNLKGTH	ASLSELRCO	KLHVDPE	NFRLLGNVLV	IVLARHFGKE	PTPQVQGAPC	KLALGVATA	LAHKYH	
35353-66653	80	90	100	110	120	130	140		

I more than 100 organisms are fully sequenced

I genome sizes range from 3×10^7 to 7×10^{11} basepairs

Motif search: search for short repeated subsequences

binding sites in transcription control

More than 100 organisms are fully sequenced

F genome sizes range from 3×10^7 to 7×10^{11} basepairs

Tools

- I statistical models are used infer non-random correlations against a background
- build score function from statistical models
- I design efficient algorithms to maximize score
- valuate statistical significance of a given score

- More than 100 organisms are fully sequenced
- **F** genome sizes range from 3×10^7 to 7×10^{11} basepairs

Tools

- I statistical models are used infer non-random correlations against a background
- build score function from statistical models
- I design efficient algorithms to maximize score
- valuate statistical significance of a given score

organism	number of genes
worm C. elegans	19 000
fruit fly drosophila	17 000
human homo sapiens	\lesssim 25 000

Graph alignment

What can be learned from network data? Can we distinguish functional patterns from a random background?

- 1. Search for network motifs [Alon lab]
 - patterns occurring repeatedly within a given network
- 2. Alignment of networks across species
 - I identify conserved regions
 - pinpoint functional innovations

Graph alignment

What can be learned from network data? Can we distinguish functional patterns from a random background?

- 1. Search for network motifs [Alon lab]
 - patterns occurring repeatedly within a given network
- 2. Alignment of networks across species
 - Identify conserved regions
 - pinpoint functional innovations

Tools

- scoring function based on statistical models
- I heuristic algorithms: algorithmic complexity

- Patterns occurring repeatedly in the network
- I building blocks of information processing [Alon lab]

- Patterns occurring repeatedly in the network
- I building blocks of information processing [Alon lab]
- Counting of identical patterns: Subgraph census
- I alignment of topologically similar regions of a network
- I allow for mismatches
- Construct a scoring function comparing the aligned subgraphs to a background model

- Patterns occurring repeatedly in the network
- I building blocks of information processing [Alon lab]
- Counting of identical patterns: Subgraph census
- I alignment of topologically similar regions of a network
- I allow for mismatches
- Construct a scoring function comparing the aligned subgraphs to a background model

- Patterns occurring repeatedly in the network
- I building blocks of information processing [Alon lab]
- Counting of identical patterns: Subgraph census
- I alignment of topologically similar regions of a network
- I allow for mismatches
- Construct a scoring function comparing the aligned subgraphs to a background model

Statistical properties of alignments

Statistical properties of alignments

/ consensus motif $\overline{\mathbf{c}} = rac{1}{p} \sum_{lpha=1}^{p} \mathbf{c}^{lpha}$

- I number of internal links
- I average correlation between two subgraphs fuzziness of motif

null model:

I ensemble of uncorrelated networks with the same connectivities as the data

null model:

- I ensemble of uncorrelated networks with the same connectivities as the data
- model describing network motifs
 - I ensemble with enhanced number of links
 - I enhanced correlation of subgraphs divergent vs convergent evolution?

null model:

I ensemble of uncorrelated networks with the same connectivities as the data

model describing network motifs

- I ensemble with enhanced number of links
- enhanced correlation of subgraphs divergent vs convergent evolution?
 enhanced correlation of subgraphs divergent evolution evolution evolution evolution evolution evolution?
 •

Log likelihood score

$$S(\mathbf{c}^{1}, \dots, \mathbf{c}^{p}) = \log \left(\frac{Q(\mathbf{c}^{1}, \dots, \mathbf{c}^{p})}{\prod_{\alpha=1}^{p} P_{\sigma}(\mathbf{c}^{\alpha})} \right)$$
$$= (\sigma - \sigma_{0}) \sum_{\alpha=1}^{p} L(\mathbf{c}^{\alpha}) - \frac{\mu}{2p} \sum_{\alpha, \beta=1}^{p} M(\mathbf{c}^{\alpha}, \mathbf{c}^{\beta}) - \log Z$$

null model:

I ensemble of uncorrelated networks with the same connectivities as the data

model describing network motifs

- I ensemble with enhanced number of links
- I enhanced correlation of subgraphs divergent vs convergent evolution?

Log likelihood score

$$S(\mathbf{c}^{1}, \dots, \mathbf{c}^{p}) = \log \left(\frac{Q(\mathbf{c}^{1}, \dots, \mathbf{c}^{p})}{\prod_{\alpha=1}^{p} P_{\sigma}(\mathbf{c}^{\alpha})} \right)$$
$$= (\sigma - \sigma_{0}) \sum_{\alpha=1}^{p} L(\mathbf{c}^{\alpha}) - \frac{\mu}{2p} \sum_{\alpha, \beta=1}^{p} M(\mathbf{c}^{\alpha}, \mathbf{c}^{\beta}) - \log Z$$

Algorithm: Mapping onto a model from statistical mechanics (Potts model)

Consensus motif of the E. coli transcription network

 $\mu=\mu^*=2.25$

 $\mu = 5$

 $\mu = 12$

Consensus motif of the E. coli transcription network

 $\mu = \mu^* = 2.25$

 $\mu = 5$

 $\mu = 12$

Alignment: Pairwise association of nodes across species

Last common ancestor

Evolutionary dynamics: Link attachment and deletion

Evolutionary dynamics: Link attachment and deletion

Representation of the alignment in a single network. Conserved links are shown in green.

Scoring graph alignments across species

null model P:

I ensemble of uncorrelated networks with the same connectivities as the data

 $Q\text{-}\mathsf{model}$

- **Correlated networks** (due to functional constraints or common ancestry)
- statistical assessment of orthologs: interplay between sequence similarity and network topology

Scoring alignments

 ${\rm I}$ log-likelihood score $S=\log(Q/P)$ is used to search for conserved parts of the networks

Application to Co-Expression networks

alignment of H. sapiens and M. musculus

Application to Co-Expression networks

alignment of H. sapiens and M. musculus

Genomic systems biology and network analysis

New concept and tools are needed to fully utilize high-throughput data

- I functional design versus noise: statistical analysis
- volutionary conservation indicates function

Topological conservation versus sequence conservation

- I genes may change functional role in network with small corresponding change in sequence
- If the role of a gene in one species may be taken on by an entirely unrelated gene in another species

References:

- J. Berg and M. Lässig, "Local graph alignment and motif search in biological networks", *Proc. Natl. Acad. Sci. USA*, **101** (41) 14689-14694 (2004)
- J. Berg, M. Lässig, and A. Wagner, "Structure and Evolution of Protein Interaction Networks: A Statistical Model for Link Dynamics and Gene Duplications", *BMC Evolutionary Biology* 4:51 (2004)
- J. Berg, S. Willmann und M. Lässig, "Adaptive evolution of transcription factor binding sites", *BMC Evolutionary Biology* **4**(1):42 (2004)
- J. Berg and M. Lässig, "Correlated random networks", *Phys. Rev. Lett.* **89**(22), 228701 (2002)

– p.12/12