
Graph Alignment and Biological Networks

Johannes Berg

http://www.uni-koeln.de/˜berg

Institute for Theoretical Physics

University of Cologne

Germany

– p.1/12



Networks in molecular biology

New large-scale experimental data in the form of networks:

transcription networks

protein interaction networks

co-regulation networks

signal transduction networks, metabolic networks, etc.
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Networks in molecular biology

New large-scale experimental data in the form of networks:

transcription networks
transcription factors bind to regulatory DNA

polymerase molecule begins transcription of the gene

sea urchin
Bolouri &Davidson (2001)
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New large-scale experimental data in the form of networks:

protein interaction networks
proteins interact to form larger units
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Networks in molecular biology

New large-scale experimental data in the form of networks:

protein interaction networks
proteins interact to form larger units

protein aggregates may catalyze reactions etc.

protein interactions in yeast
Uetz et al. (2000)
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Sequence alignment in molecular biology

more than 100 organisms are fully sequenced

genome sizes range from 3 × 107 to 7 × 1011 basepairs
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Sequence alignment in molecular biology

more than 100 organisms are fully sequenced

genome sizes range from 3 × 107 to 7 × 1011 basepairs

Global alignment: search for related sequences across species

evolutionary relationships

hints at common functionality
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Sequence alignment in molecular biology

more than 100 organisms are fully sequenced

genome sizes range from 3 × 107 to 7 × 1011 basepairs

Motif search: search for short repeated subsequences

binding sites in transcription control
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Sequence alignment in molecular biology

more than 100 organisms are fully sequenced

genome sizes range from 3 × 107 to 7 × 1011 basepairs

Tools

statistical models are used infer non-random correlations against a
background

build score function from statistical models

design efficient algorithms to maximize score

evaluate statistical significance of a given score
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Sequence alignment in molecular biology

more than 100 organisms are fully sequenced

genome sizes range from 3 × 107 to 7 × 1011 basepairs

Tools

statistical models are used infer non-random correlations against a
background

build score function from statistical models

design efficient algorithms to maximize score

evaluate statistical significance of a given score

organism number of genes

worm C. elegans 19 000
fruit fly drosophila 17 000

human homo sapiens . 25 000
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Graph alignment

What can be learned from network data?
Can we distinguish functional patterns from a random background?

1. Search for network motifs [Alon lab]

patterns occurring repeatedly within a given network

2. Alignment of networks across species

identify conserved regions

pinpoint functional innovations
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Graph alignment

What can be learned from network data?
Can we distinguish functional patterns from a random background?

1. Search for network motifs [Alon lab]

patterns occurring repeatedly within a given network

2. Alignment of networks across species

identify conserved regions

pinpoint functional innovations

Tools

scoring function based on statistical models

heuristic algorithms: algorithmic complexity
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Graph alignment I: The search for network motifs

patterns occurring repeatedly in the network

building blocks of information processing [Alon lab]
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Graph alignment I: The search for network motifs

patterns occurring repeatedly in the network

building blocks of information processing [Alon lab]

counting of identical patterns: Subgraph census

alignment of topologically similar regions of a network

allow for mismatches

construct a scoring function comparing the aligned subgraphs to a
background model
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Graph alignment I: The search for network motifs

patterns occurring repeatedly in the network

building blocks of information processing [Alon lab]

counting of identical patterns: Subgraph census

alignment of topologically similar regions of a network

allow for mismatches

construct a scoring function comparing the aligned subgraphs to a
background model

α=1

Alignment

α=3

α=2
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Statistical properties of alignments

consensus motif c  =    cij

Alignment

α=3

α=2

α=1

i=1               i=2

Σ α
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Statistical properties of alignments

consensus motif c  =    cij

Alignment

α=3

α=2

α=1

i=1               i=2

Σ α

α
ij

consensus motif c = 1

p

∑p

α=1
c

α

number of internal links

average correlation between two subgraphs fuzziness of motif
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Statistics of network motifs

null model:

ensemble of uncorrelated networks with the same connectivities as
the data
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Statistics of network motifs

null model:

ensemble of uncorrelated networks with the same connectivities as
the data

model describing network motifs

ensemble with enhanced number of links

enhanced correlation of subgraphs divergent vs convergent evolution?

Log likelihood score

S(c1, . . . , cp) = log

(

Q(c1, . . . , cp)
∏p

α=1
Pσ(cα)

)

= (σ − σ0)

p
∑

α=1

L(cα) −
µ

2p

p
∑

α,β=1

M(cα, cβ) − log Z
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Statistics of network motifs

null model:

ensemble of uncorrelated networks with the same connectivities as
the data

model describing network motifs

ensemble with enhanced number of links

enhanced correlation of subgraphs divergent vs convergent evolution?

Log likelihood score

S(c1, . . . , cp) = log

(

Q(c1, . . . , cp)
∏p

α=1
Pσ(cα)

)

= (σ − σ0)

p
∑

α=1

L(cα) −
µ

2p

p
∑

α,β=1

M(cα, cβ) − log Z

Algorithm: Mapping onto a model from statistical mechanics (Potts model)
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Consensus motif of the E. coli transcription network

µ = µ
∗

= 2.25 µ = 5 µ = 12
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Consensus motif of the E. coli transcription network

µ = µ
∗

= 2.25 µ = 5 µ = 12
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Graph alignment II: Comparing networks across species
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Graph alignment II: Comparing networks across species

Alignment: Pairwise association of nodes across species
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Graph alignment II: Comparing networks across species

Last common ancestor

– p.9/12



Graph alignment II: Comparing networks across species

Evolutionary dynamics: Link attachment and deletion
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Graph alignment II: Comparing networks across species

Evolutionary dynamics: Link attachment and deletion
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Graph alignment II: Comparing networks across species

Representation of the alignment in a single network. Conserved links are
shown in green.

– p.9/12



Scoring graph alignments across species

null model P :

ensemble of uncorrelated networks with the same connectivities as
the data

Q-model

correlated networks (due to functional constraints or common ancestry)

statistical assessment of orthologs: interplay between sequence similarity
and network topology

Scoring alignments

log-likelihood score S = log(Q/P ) is used to search for conserved
parts of the networks
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Application to Co-Expression networks

alignment of H. sapiens and M. musculus
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Application to Co-Expression networks

ribosomal proteins

mitochondrial precursors
myelin proteolipid protein

skeletal muscle proteins

alignment of H. sapiens and M. musculus
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Genomic systems biology and network analysis

New concept and tools are needed to fully utilize high-throughput data

functional design versus noise: statistical analysis

evolutionary conservation indicates function

Topological conservation versus sequence conservation

genes may change functional role in network with small
corresponding change in sequence

the role of a gene in one species may be taken on by an entirely
unrelated gene in another species
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