

Support Vector Decoder for Constraint-Handling

in Distributed Real Power Planning - Jörg Bremer

efzr

Clausthal

About me

- Home
 - Department for Computing Science, Environmental Informatics
- Research interest
 - Computational Intelligence
 - Agent-based systems
 - Smart Grid
- Current Project
 - Smart Nord
 - TP1: Decentralized co-ordination of active power provision

Background

The idea of a Smart Grid

The idea of a Smart Grid

- Connect the electricity grid and ICT, to . . .
 - ... build an intelligent energy network with interacting intelligent generators, storages, loads and transportation equipment
 - ... integrate new distributed resources ad hoc into control flow
- Enable self-x properties by agent-based control
 - Self-organization of small units to jointly gain enough power
 - Role of power plants
 - Adopts flexibly to new developments
 - Scales well with the expected huge number of controllable energy entities

Lots of interesting computational problems, but. . .

Motivation

Introduction

Distributed Real Power Planning Basic Solution Idea

Solution

Constraints SVDD Decoder Optimization

Evaluation

Conclusion

Use case

- Starting point: We already have a coalition with controllable energy resources
- A coalition of energy units wants to jointly operate a given active power schedule!
 - Question: How can we coordinate the group to achive this?

Timeline

Setting

So, what do we have?

- Product from some energy market
 - Defines time frame and schedule
 - . . .
- A set of distributed energy resources
 - μ-CHP, photovoltaics, batteries, controllable consumer, . . .
 - Individually owned and operated
 - Individually configured
 - Setting mostly private
 - Each may offer a set of operable schedules

-> < □ > < ⊡ > < 0

Distributed Real Power Planning

- We want: Exactly one schedule for each unit in the coalition
- Combinatorial problem: Sum of these schedules should resemble a wanted joint schedule
- Scheduling algorithm must know for each unit, which schedules are operable and which are not

Basic idea

Question

How can we model these restricted search spaces s.t. search algorithms can work on it independently of underlying unit?

Basic idea

Question

How can we model these restricted search spaces s.t. search algorithms can work on it independently of underlying unit?

Solution

Learn topographic traits of the solution (sub-) space and derive a decoder for constraint-free problem formulation!

Basic idea

Question

How can we model these restricted search spaces s.t. search algorithms can work on it independently of underlying unit?

Solution

Learn topographic traits of the solution (sub-) space and derive a decoder for constraint-free problem formulation!

Let's start with the constraints!

Geometric Constraint Interpretation

- What kind of constraints do we have to deal with?
- Operability of schedules (for given time frame) . . .
 - ... is restricted by technical constraints (min/max power output, buffer charging, etc.)
 - ... may depend on economical or ecological limiting factors (start-up cost, primary energy cost, user profiles, etc.)
 - ... depends on current operational state
 - ... let's have a look at a single unit first. . .

- < □ > < ⊡ > < 0 < 0

p1: Power in period 1 (% max.)

Illustrative example

 Each point in plane is schedule for 2 time periods

> X-axis: Mean active power during period 1 Y-axis: Mean active power during period 2

- Output always between 0 and 100%
- Without further constraints: each schedule operable

*p*₁: Power in period 1 (% max.)

Constraint C₁: Modulation

- Only within given range
- OFF is additional option (exaggerated depiction)
- ⇒ Red area drops off the solution space

Constraint C₂: Inertia

- No instantaneous changes
- \Rightarrow Additional areas drop off

Constraint C₃: Buffer capacity

- Use or store concurrently produced thermal energy
- But: Buffer store has limited capacity

p1: Power in period 1 (% max.)

> < □ > < □ > < □ > < ○</p>

Superposition of all constraints

- Remaining region is solution space
- Only take schedules from this region
- Dimension: *96 and more* not unusual!

111

How can we describe the solution space?

Basic Idea of Description

- Solution space is a region in \mathbb{R}^d
 - Elements are active power schedules $\pmb{\rho} = (\pmb{\rho}_1, \dots, \pmb{\rho}_d) \in \mathbb{R}^d$
 - with mean active power during period 0 $\leq i \leq d$
- Structure is abstraction for
 - The unit (or rather its future control capabilities)
 - The set of constraints

A support vector approach works very well here. . .

- Given: sample $\mathcal{X} \in \mathbb{R}^d$
- Here: set of schedules
- Wanted: enclosing surface
 - not necessarily connected

> < □ > < □ > < □ > < ○</p>

13

- Step 1: Map to some Hilbert space *H^k* with *k* >> *d*
- Let Φ be a mapping that can do it
 - Φ is unknown
 - And many Φ would do

- ∃ a hyper-sphere S, that contains all images of Φ(X)
- Different Φ imply different spheres of different size
- But then, there is a smallest one, so. . .

- Step 2: Find smallest sphere
- Minimize:

 $\|\Phi(x_i) - \boldsymbol{a}\|^2 \le \boldsymbol{R}^2 + \xi_i \quad \forall i$

- Use: Mercer's theorem and substitute dot-products in *H* with kernel in ℝ^d
- Result:
 - Set of support vectors
 - Mapped directly onto the surface of the sphere
 - Here: subset of example schedules
 - Distance-function

- Result:
 - Set of support vectors
 - Mapped directly onto the surface of the sphere
 - Here: subset of example schedules
 - Distance-function
 - All calculations can be done in data space
 - $(\Phi(x) \cdot \Phi(y) = k(x, y))$
 - We only need support vectors (non-zero weights)

ゆ > うくい

Distance to center: $R^{2}(x) = \|\Phi(x) - a\|^{2} = k(x, x) - 2\sum_{i} \beta_{i}k(x_{i}, x) + \sum_{i,j} \beta_{i}\beta_{j}k(x_{i}, x_{j})$

- Step 3: Determine pre-image of sphere
- Set of points {x|R²(x) ≤ R²(s)} defines solution space
- Decision boundary separates feasible and in-feasible solutions

Distance to center: $R^{2}(x) = \|\Phi(x) - \mathbf{a}\|^{2} = k(x, x) - 2\sum_{i} \beta_{i} k(x_{i}, x) + \sum_{i,j} \beta_{i} \beta_{j} k(x_{i}, x_{j})$

日マシクへで

Modeling the Solution Space

- Model consists of:
 - Set of support vectors $SV = \{x_i \in \mathcal{X} \mid \beta_i \neq 0\}$
 - Associated weights: $w = (\beta_1, \dots, \beta_n) \quad \forall \beta \neq 0$
 - Some additional unit parameters: e.g. max. power, . . .
- Model is a black-box
 - Decision function: $R^2(x) = 1 2 \sum_i w_i k_{\mathcal{G}}(s_i, x) + \sum_{i,j} w_i w_j k_{\mathcal{G}}(s_i, s_j)$
 - Solution space: $\{x|R(x) \leq R_S\}$
 - Decision: feasible or not
 - ... and ordering according to proximity to feasibility

⇒ ◀ □ ▶ ◀ ♬ ▶ ∽) � (ᅆ

But, where does the sample come from?

Sampling

- We need a set of example schedules
 - As a stencil for the region that they reside in
 - We have: simulation model of the respective unit that
 - ... can check feasibility of given schedule
 - ... and thus may serve as a characteristic function
 - Naïve approach: Generate random schedule and check with simulation model
- But:
 - Example: if 1/3 is infeasible in each time period
 - Then for a whole day, a fraction of $(rac{2}{3})^{96} pprox 1.25 imes 10^{-17}$ is feasible
 - ightarrow Correct guessing very unlikely

Successive Sampling

- Solution: Successively build schedules for the sample
- In co-operation with simulation model:
 - Guessing a 1-dimensional schedule correctly
 - ... quite likely
 - ... even more with more than one try
 - Simulation model determines follow-up state
 - Repeat until schedule complete
 - Probability: $P_{(n)}^d = \left(\sum_{i=1}^n B(i|P,n)\right)^d$, current example: 0.314
- Advantage: Interface only comprises evaluation of given schedule
- For correct density: e.g. kernel density estimation

How can we use this model for optimization?

Optimization Problem

- Each unit delivers a search space model
- Search is defined on this set of models

Integration Problems

Problem

Integration of model into optimization showed up to be not so easy!

- Use as blackbox model still implies a need for constraint handling for each non-linear distance-function
- Using distance as external penalty mostly got stuck in infeasible solutions
 - ... too many penalties!

So, we went for another idea. . .

Decoder: Concept

Idea: Build a decoder based on the SVDD-model!

- In general: A decoder gives hints on how to construct feasible solutions
- Here: Build a mapping that
 - ... makes an arbitrary solution feasible (solution repair)
 - ... maps space of *all* schedules to feasible region for constraint free problem formulation
 - ... that can be automatically derived from model
Decoder: Idea

Construct: Mapping $\gamma = \Phi_{\ell}^{-1} \circ \Gamma_a \circ \widehat{\Phi}_{\ell}$ Step by step:

- 1. Empirical mapping into sub-space of ${\mathcal H}$
- 2. Adjustment towards sphere center
- 3. Find pre-image of adjusted image

• Let x be an arbitrary (infeasible) Solution candidate

Empirical kernel map $\hat{\Phi}_{\ell}(x): \mathbb{R}^{d} \to \mathcal{H}^{(\ell)}$ $\binom{k(\mathfrak{s}_{1}, x)}{\ell}$

 $x \mapsto K^{-rac{1}{2}} egin{pmatrix} k(s_1, x) \ \ldots \ k(s_\ell, x) \end{pmatrix}$

> < □ > < 🗗 > ∽) < (∿

- Step 1: Map to kernel space
 - spanned by support vectors
- Infeasible solution \Rightarrow Image outside of sphere

Image, center and distance of image are known

Adjustment in ${\mathcal H}$

$$\begin{aligned} \hat{\Psi}_{a}(\hat{\Psi}_{x}): \quad \mathcal{H}^{(\ell)} \to \mathcal{H}^{(\ell)} \\ \hat{\Psi}_{x} \mapsto a + \frac{(\hat{\Psi}_{x} - a) \cdot R_{\mathcal{S}}}{R_{x}} \end{aligned}$$

Step 2: Move image towards feasibility

- Step 3: Find pre-image
- Resulting in a point at outskirts of feasible region

Sought mapping

$$\gamma = \Phi_{\ell}^{\tilde{}1} \circ \Gamma_{a} \circ \hat{\Phi}_{\ell}$$

- Concatenation yields the mapping
- But: so far only surface is used

Actually, we do not have really arbitrary points (Box-Constraint)

• Points are from $[0, 1]^d$

- ∃ a larger sphere that contains all images
- Might be rescaled to the smaller one

Improvement

$$\hat{\Psi}_x = a + rac{R_S}{R_{max}} \cdot (\hat{\Psi}_x - a)$$

But: Rmax unknown!

- Enables constraint free formulation
- ... by mapping to different search space

Now we can integrate model and optimization!

- Involved: n distributed energy units ightarrow
 - n search space models and
 - thus *n* decoder mappings $\gamma_1 \dots \gamma_n$
- Also given by market \rightarrow target schedule ζ
- Configuration: $\sigma = (x_1, \ldots, x_n)$, with $x_i \in [0, 1]^d$
- Error: $\mathcal{H} = \|\zeta \sum P_i^{max} \cdot \gamma_i(x_i)\|$
- Configuration may evolve in ([0, 1]^d)ⁿ
- Let $\tau = (\tau_1, \dots, \tau_n)$ be configuration with smallest found error ${\mathcal H}$
- Then, $(P_1^{max} \cdot \gamma_1(\tau_1), \dots, P_n^{max} \cdot \gamma_n(\tau_n))$ is solution

- Involved: n distributed energy units ightarrow
 - *n* search space models and
 - thus *n* decoder mappings $\gamma_1 \dots \gamma_n$
- Also given by market \rightarrow target schedule ζ
- Configuration: $\sigma = (x_1, \ldots, x_n)$, with $x_i \in [0, 1]^d$
- Error: $\mathcal{H} = \|\zeta \sum P_i^{max} \cdot \gamma_i(x_i)\|$
- Configuration may evolve in $([0, 1]^d)^n$
- Let $\tau = (\tau_1, \dots, \tau_n)$ be configuration with smallest found error ${\mathcal H}$
- Then, $(P_1^{max} \cdot \gamma_1(\tau_1), \dots, P_n^{max} \cdot \gamma_n(\tau_n))$ is solution

- Involved: n distributed energy units ightarrow
 - *n* search space models and
 - thus *n* decoder mappings $\gamma_1 \dots \gamma_n$
- Also given by market \rightarrow target schedule ζ
- Configuration: $\sigma = (x_1, \ldots, x_n)$, with $x_i \in [0, 1]^d$
- Error: $\mathcal{H} = \|\zeta \sum P_i^{max} \cdot \gamma_i(x_i)\|$
- Configuration may evolve in ([0, 1]^d)ⁿ
- Let $\tau = (\tau_1, \dots, \tau_n)$ be configuration with smallest found error ${\mathcal H}$
- Then, $(P_1^{max} \cdot \gamma_1(\tau_1), \dots, P_n^{max} \cdot \gamma_n(\tau_n))$ is solution

- Configuration: $\sigma = (x_1, \dots, x_n)$
- Erfor: $\mathcal{H} = \|\zeta \sum P_i^{max} \cdot \gamma_i(x_i)\|$
- Configuration may evolve in ([0, 1]^d)ⁿ
- Let $\tau = (\tau_1, \dots, \tau_n)$ be configuration with smallest found error ${\mathcal H}$
- Then, $(P_1^{max} \cdot \gamma_1(\tau_1), \dots, P_n^{max} \cdot \gamma_n(\tau_n))$ is solution

Advantages of the Decoder

- Using standard methods for optimization
- Algorithm does not need to know anything about unit, model or constraints
- Equal treatment of different types of unit
- Integrate new, so far unknown units

... and distributed algorithms?

Distributed Greedy

- Use case: Distributed approach with multi-agent system
- Blackboard approach
 - ∃ commonly known joint solution
- Basic idea: every one does repeatedly his best for solution improvement
 - Difference between joint solution and own solution part: what the others do
 - Difference between target and 'what the others do': the missing part
 - ... if this schedule is realizable: done!

- < □ > < 🗗 > ∽ < ભ

Algorithm

Greedy Ansatz

Greedy Ansatz

27

Results for Distributed Greedy

Results for Distributed Greedy

- target and achieved schedule for 100 CHP / kW
- Error / kW
- individual schedules CHP / kW

- buffer temperature / °C
- grey areas: respective feasible region

Zwischenstopp

What about evaluation criteria?

Extended model

Integrating individual performance indicators:

- We do have a many-objective problem
- Indicators must be assigned to individual schedules

Idea:

- Assumption: ∃ a (not necessarily known) relation between schedule and indicator value
- Indicators are concatenated to schedule
- Model and decoder can be used without changes
- SVDD concurrently learns relationship
- Decoder reconstructs indicator values

Indicator results

Error: Difference between original and reconstructed indicator value

d	Rosenbrock	therm. Puffer
16	7.940e-5±2.104e-4	1.652e-4±6.948e-5
32	8.756e-5±1.894e-4	1.517e-4±7.549e-5
48	1.368e-4±2.393e-4	1.513e-4±7.188e-5
64	1.300e-4±2.383e-4	1.441e-4±7.260e-5
80	1.051e-4±2.448e-4	1.461e-4±7.433e-5
96	1.019e-4±1.988e-4	1.500e-4±7.721e-5

Example indicators

- Cost
- Preserving degrees of freedom
- Final state (for re-scheduling)

Conclusion

- Support Vector Decoder
 - .. flexible Model
 - ... allows for easy integration into optimization
 - ... supports many use cases
 - Coaltion formation
 - Re-scheduling
 - Profit distribution
- Working prototype has been realized in Smart Nord
- Use case not restricted to power planning

Literature

Bremer, J., & Sonnenschein, M. (2013).

Constraint-Handling for Optimization with Support Vector Surrogate Models: A Noval Decoder Approach. In Proceedings of the 5th International Conference on Agents and Artificial Intelligence (ICAART 2013) Barcelona, Spain

Bremer, J., & Sonnenschein, M. (2012).

A Distributed Greedy Algorithm for Constraint-based Scheduling of Energy Resources. In 1st International Workshop on Smart Energy Networks & Multi-Agent Systems (SEN-MAS 2012) Wroclaw, Poland.

Bremer, J., Rapp, B., & Sonnenschein, M. (2011a).

Encoding distributed search spaces for virtual power plants. In IEEE Symposium Series in Computational Intelligence 2011 (SSCI 2011) Paris, France.

Bremer, J., Rapp, B., & Sonnenschein, M. (2011b).

Including Environmental Performance Indicators into Kernel based Search Space Representations. In Information Technologies in Environmental Engineering (ITEE 2011).

Bremer, J., Rapp, B., & Sonnenschein, M. (2010).

Support vector based encoding of distributed energy resources' feasible load spaces. In IEEE PES Conference on Innovative Smart Grid Technologies Europe Chalmers Lindholmen, Gothenburg, Sweden.

Vielen Dank für Ihre Aufmerksamkeit!

Basisliteratur

Tax, David M. J. & Duin, R. P. W. (2004).

Support Vector Data Description. In Journal of Machine Learning Kluwer Academic Publishers, Hingham, USA

B. Schölkopf and S. Mika and C. Burges and P. Knirsch and K.-R. Müller and G. Rätsch and A. Smola (1999). Input space vs. feature space in kernel-based methods.

In IEEE Transactions on Neural Networks

Park, J., Kang, D., Kim, J., Kwok, J. T., Tsang,& Ivor W. (2007).

SVDD-Based Pattern Denoising.

In Journal of Neural Computing MIT Press, Cambridge, USA

Kwok, J. T. Y. & Tsang, I. W. H. (2004).

The pre-image problem in kernel methods. In IEEE Transactions on Neural Networks

Squire, W. (1975).

Computer implementation of the Schwarz-Christoffel transformation. In *Journal of the Franklin Institute* Elsevier

Ben-Hur, A., Siegelmann, H.T., Horn, D., & Vapnik, V. (2001).

Support Vector Clustering.

In Journal of Machine Learning Research IEEE Computer Society, Los Alamitos, USA

Platt, J.C. (1998).

Fast training of support vector machines using sequential minimal optimization. In Advances in Kernel Methods MIT Press

Kerndichteschätzer (Beispiel)

< □ > < □ > < □ > < □ >

Kerndichteschätzer (Beispiel)

Kerndichteschätzer (Beispiel)

· < ロ > < 団 > く Q < ()

Klassifikationsprinzip

Klassifikation

Abstandsbestimmung

Vergleich

Supportvektoren

Eingabelastgang

Hypersphäre

Zustand

Anzahl

(ロ)(日)(日)(0)(0) 333

Optimierung

- Beteiligt: n dezentrale Anlagen ightarrow
 - n Suchraummodelle und
 - somit *n* Dekoderabbildungen γ₁...γ_n
- Ferner: Markt \rightarrow Ziellastgang ζ
- Lösungskonfiguration: $\sigma = (x_1, \ldots, x_n)$, wobei $x_i \in [0, 1]^d$
- Zu minimierender Fehler: $\mathcal{H} = \|\zeta \sum P_i^{max} \cdot \gamma_i(x_i)\|$
- Variation der Lösungskonfiguration kann in $([0, 1]^d)^n$ erfolgen
- Sei τ = (τ₁,...,τ_n) die Konfiguration mit dem kleinsten gefundenen Fehler H
- Dann ist $(P_1^{max} \cdot \gamma_1(\tau_1), \dots, P_n^{max} \cdot \gamma_n(\tau_n))$ die Lösung

Klassische Ansätze

Constraintbasierte Optimierung

 $f(x_1, x_2, \dots, x_n) \rightarrow \min$, s.t. $R_i(x_i) \le R_{S_i}, \ 0 \le i \le n$

• Problem: Nicht-lineare Nebenbedingungen; so noch keine Constraintbehandlung

Kombinatorisch (Multiple Choice Subset Sum)

 $f(x_1, x_2, \dots, x_n) \to \min, \text{ s.t. } x_i \in \mathcal{X}_2 \subset \mathcal{F}_i, \ 0 \le i \le n$

Problem: Erzeugen von Lösungskandidaten schwierig

Optimierung mit Penalty

 $f(x_1, x_2, \ldots, x_n) + p(R_1(x_1), R_2(x_2), \ldots, R_i(x_i)) \to \min$

 Problem: Ungültige Lösungen möglich und mit wachsender Problemgröße immer wahrscheinlicher

< □ > < □ > < □ > < ○