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Quantum computers can do anything...

...but what can they do better ?

Problems suitable for a quantum computer:

many possible states must be handled (→ quantum parallelism) but

only few results are needed.

• Search in unstructured data basis → Grover’s search algorithm

• Global property of a function (“Is f(2l + 1) > 0 ?”) → Shor’s factoring algorithm
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What about quantum lines to transmit information?



Long-range cryptographic information transfer à la BB84

Information is encoded in the polarisation states (↑,→,↗,↖) of single photons.

IBM 1989 (Bennett et al.) : 30 cm, air.

University of Geneva 1997 (Gisin et al.): 23 km, telecom fiber optic cable.

Los Alamos National Lab 2002 (Hughes et al.): 10 km, air during daytime (New Mexico!):
from Pajarito Mountain (3000 m) to TA 53 (2200 m).

LMU München 2002 (Kurtsiefer et al.): 23,4 km, air, at night:
from Zugspitze (3000 m) to Westliche Karwendelspitze (2200 m).
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(SCF/CS/CNTM/CONT/4 Final, 3 July 2002)
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Quantum cryptography

A step towards global
key distribution

L
arge random bit-strings known as
‘keys’ are used to encode and decode
sensitive data, and the secure distribu-

tion of these keys is essential to secure com-
munications across the globe1. Absolutely
secure key exchange2 between two sites has
now been demonstrated over fibre3 and
free-space4–6 optical links. Here we describe
the secure exchange of keys over a free-
space path of 23.4 kilometres between two
mountains. This marks a step towards
accomplishing key exchange with a near-
Earth orbiting satellite and hence a global
key-distribution system.

The security of our key-exchange system
is guaranteed by encoding single photons
using two sets of orthogonal polarizations.
Our transmitter module (Alice; Fig. 1)
incorporates a miniature source of polariza-
tion-coded faint pulses (approximating 
single photons; C.K., P.Z., M.H. and H.W.,
unpublished results), where 0° or 45° polar-
ization encode binary zero, and 90° or 135°
code binary one. These light pulses are
expanded and collimated in a simple 
telescope to a beam of about 50 mm and
then accurately aligned on the receiver
(Bob; Fig. 1), a 25-cm-diameter commercial
telescope. Light is collected and focused
onto a compact four-detector photon-
counting module (Fig. 1). A detection in
any one detector then has an associated bit
value, measurement basis (0° or 45°) and
detection time. The bit values then form a
raw key string. Valid bits are measured in
the same basis as that in which they were
encoded.

Alice and Bob use a standard communi-
cations channel, such as a mobile telephone,
to ascertain which bits arrived (many are
lost) and which measurement basis was used,
then they both discard the invalid bits —
which leaves them with nearly identical 
random bit-strings, the sifted key. Eaves-
dropping measurements on the single 
photons disturb the encoding and introduce
errors of up to 25%, so Alice and Bob test for
errors in a short section of sifted key to 

verify the security of the channel. Low error
rates due to background light detection and
polarization settings are securely eliminated
by using classical error-correcting codes sent
over the mobile-telephone link.

In the long-range experiment, Alice was
located at a small experimental facility on
the summit of Zugspitze in southern 
Germany, and Bob was on the neighbour-
ing mountain of Karwendelspitze, 23.4 km
away. At this distance, the transmitted
beam was 1–2 m in diameter and was 
only weakly broadened by air-turbulence
effects at this altitude. Lumped optical loss-
es of about 18–20 decibels were measured
and, using faint pulses containing 0.1 
photons per bit, the detected bit rate at 
Bob was 1.5–2 kilobits per second (receiver
efficiency of 15%).

Operating at night with filters of 10-nm
bandwidth reduced the background
counts, and errors appeared in less than
5% of key bits. After sifting and error 
correction, net key exchange rates were
hundreds of bits per second. In a series of
experiments, several hundreds of kilobits
of identical key string were generated at
Alice and Bob.

In associated experiments in poorer visi-
bility, we showed that key exchange could
be carried out when transmission losses
were up to 27 decibels, but improvements
in receiver efficiency and background
counts should take us beyond 33 decibels.
With this performance, key exchange to
near-Earth orbit (500–1,000 km range)
should become possible.

Until now, the principal method of
high-security key exchange has been the

‘trusted courier’ carrying a long random
bit-string, the key, from one location to the
other. Our experiment paves the way for
the development of a secure global key-
distribution network based on optical links
to low-Earth-orbit satellites. We note that a
10-kilometre key-exchange experiment has
recently been announced7.
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erratum

Cognitive change and the APOE ;4 allele

I. J. Deary, M. C. Whiteman, A. Pattie, J. M. Starr, 

C. Hayward, A. F. Wright, A. Carothers, L. J. Whalley

Nature 418, 932 (2002)

In the second sentence of the seventh paragraph of this

communication, the MMSE scores are incorrectly speci-

fied as less than or equal to 28; these should read as

greater than or equal to 28.

brief communications

450 NATURE | VOL 419 | 3 OCTOBER 2002 | www.nature.com/nature

Figure 1 Overview of the experiment against a relief map of the trial site. In the Alice module, four separate lasers (LDs) encode the four

polarizations based on a random bit-string fed from the Alice computer. They are combined in a spatial filter (A,A) using a conical mirror

(M) and a lens (L). The beam expands to 50 mm and is collimated in an output lens (L8). In the Bob module, a telescope (T) collects the

light, which is filtered (F) and then spilt in a polarization-insensitive beam-splitter (BS), passing on to polarizing beam-splitters (PBS) and

four photon-counting detectors (D). One polarizing beam-splitter is preceded by a 45° polarization rotator (R). A click in one of the photon-

counting detectors D(u, B ) sets the bit value B and the measurement basis u.
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Transfer of multi-qubit states?

Single photons carry no entanglement, but quantum algorithms must handle entangled states.

What is entanglement, actually?

Product states |ψ〉A ⊗ |φ〉B are not entangled.

Many definitions and measures of entanglement: two / more subsystems, pure / mixed states,...

Some examples:

• The Bell states

1√
2

[
| ↑〉A ⊗ | ↑〉B ± | ↓〉A ⊗ | ↓〉B

]
1√
2

[
| ↑〉A ⊗ | ↓〉B ± | ↓〉A ⊗ | ↑〉B

]
In each Bell state measurement of any single-qubit observable leads to completely random
results → the Bell states cannot be distinguished by any single-qubit measurement.
However, they induce Einstein’s famous spukhafte Fernwirkungen.



• Homogeneous n-qubit superposition state (0 ≡↑, 1 ≡↓):
|0〉 = |000...000〉, |1〉 = |000...001〉, ... , |2n − 1〉 = |111...111〉 are the computational
basis states of an n-qubit register; their equal-weight, equal-phase superposition

1√
2n

2n−1∑
x=0

|x〉

is important in the Grover and Deutsch-Jozsa algorithms.

• The Greenberger-Horne-Zeilinger state (for ≥ 3 spins)

|GHZ〉 =
1√
2

(| ↑↑↑〉+ | ↓↓↓〉)

collapses to a product state if Sz of one of the qubits is measured (but not so for Sx).

• The n-qubit W state

|W 〉 =
1√
n

(|000...001〉+ |000...010〉+ ...+ |010...000〉+ |100...000〉)

is a more robust multipartite entangled state. Multiplication of the kth term with a phase
factor exp iqk → twisted W state, a.k.a single spin-wave state.



• Why quantum computing ?

• Why quantum information transfer ?

• Entangled states

• Spin chain dynamics

• Putting things together: Spin Chains as Perfect Quantum State Mirrors

(Peter Karbach, JS, quant-ph/0501007)



The spin-12 Heisenberg-XXZ chain

Heisenberg exchange interaction between two s = 1
2 spins

HHeisenberg = −J ~S1 · ~S2

chain of N spins with nearest-neighbor interactions, anisotropic in spin space:

HXXZ = −J
N−1∑
i=1

[
(Sx

i S
x
i+1 + Sy

i S
y
i+1) + ∆Sz

i S
z
i+1

]
− h

N∑
i=1

Sz
i

= −J
N−1∑
i=1

[
1
2
(S+

i S
−
i+1 + S−i S

+
i+1) + ∆Sz

i S
z
i+1

]
− h

N∑
i=1

Sz
i

Jordan-Wigner mapping B

Spins
S+, S−

Sz

J(Sx
i S

x
i+1 + Sy

i S
y
i+1)

∆J Sz
i S

z
i+1

h Sz
i

←→
←→
←→
←→
←→
←→

Fermions
±a†,±a
a†a− 1/2

t (a†iai+1 + h.c.) hopping
V nini+1 interaction
µ ni chemical potential



The spin-12 Heisenberg-XXZ chain: Eigenstates

The ferromagnetic ground state: | ↑↑↑ ... ↑↑↑〉 = |000...000〉.

A single spin-flip state S−2 | ↑↑↑ ... ↑↑↑〉 = | ↑↓↑ ... ↑↑↑〉 = |010...000〉 is no eigenstate of HXXZ:
(S+

i S
−
i+1 + S−i S

+
i+1) moves the inverted spin left or right.

How about coherent transport ?

A single spin-wave state

|q〉 =
1√
n

n∑
r=1

eiqrS−r | ↑↑↑ ... ↑↑↑〉 =: S−(q)| ↑↑↑ ... ↑↑↑〉

is an eigenstate of HXXZ with energy ~ω(q) = −J cos q. In the Jordan-Wigner picture this
corresponds to a single fermion in a Bloch state in a tight-binding chain model.

However, a two spin-wave state

S(q1)−S(q2)−| ↑↑↑ ... ↑↑↑〉

is not an eigenstate of HXXZ: the Jordan-Wigner fermions interact due to the Sz
i S

z
i+1 term.

Undistorted transfer of states with two or more flipped spins is probably difficult.



Spin wave packets

S. Bose: Quantum communication through an unmodulated spin chain. PRL 91, 207901 (2003)

Prepare the first spin of a Heisenberg chain as desired.

(α| ↑〉+ β| ↓〉)⊗ | ↑↑↑ ... ↑↑↑〉

is a superposition of the ground state and of single spin-wave states: a spin wave packet which
may be received with reasonable fidelity at the other end of the chain after a certain time.

T.J. Osborne and N. Linden: Propagation of quantum information through a spin system. PRA 69, 052315 (2004)

Instead of states localized at a single site,
transfer Gaussian spin wave packets which
occupy only the least dispersive part of the
dispersion relation, and which are narrow in
wavevector space rather than in real space.

Note:
Least dispersive ≈ linear ω(k)
≈ equidistant energy values

→ fairly good transfer of wave packets. k

ω



How about perfect transfer ?

Harmonic oscillator: Any wavepacket initially
localized on the right develops into its perfect
mirror image localized on the left.
Equidistant spectrum, but continuous degrees
of freedom. Difficult to define qubits.

t=0t=t0

Angular momentum J : |Jz = +J〉 can develop
into |Jz = −J〉 by rotation in a transverse
field.
Equidistant spectrum, but zero-dimensional.
No transport in space.

y

x

z

S

B0
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M. Christandl et al.: PRL 92, 187902 (2004); C. Albanese et al.: PRL 93, 230502 (2004).

Single particle on a (2J + 1)-site chain ⇐⇒ Angular momentum J
State |n〉 localized at lattice site n = 1, ..., 2J + 1 ⇐⇒ Jz eigenstate |m〉
Transition amplitude (hopping matrix element) ⇐⇒ (Jx or Jy) matrix element between
between two sites |m〉 and |m± 1〉.

2Jx|m〉 = (J+ + J−)|m〉 =
√

(J +m+ 1)(J −m)|m+ 1〉+
√

(J +m)(J −m+ 1)|m− 1〉

Find a lattice Hamiltonian H such that

H|n〉 =
√
n(N − n)|n+ 1〉+

√
(n− 1)(N − n+ 1)|n− 1〉.

Solution

H =
N−1∑
n=1

√
n(N − n)

[
1
2

(
a†n+1an + hc

)
+ ∆

(
a†nan −

1
2

) (
a†n+1an+1 −

1
2

)]
JW=

N−1∑
n=1

√
n(N − n)

[
(Sx

nS
x
n+1 + Sy

nS
y
n+1) + ∆Sz

nS
z
n+1

]
Inhomogeneous XXZ chain; ∆ is inactive as long as only one particle is present.



A state |x〉 = α| ↑〉+ β| ↓〉 of spin 1 is transferred to spin N by H after a time τ :

x↑↑↑↑↑↑↑↑↑↑↑↑ −→ ↑↑↑↑↑↑↑↑↑↑↑↑x

This is still just single-qubit transport; however, after the same time τ

↑x↑↑↑↑↑↑↑↑↑↑↑ −→ ↑↑↑↑↑↑↑↑↑↑↑x↑

and also
↑↑x↑↑↑↑↑↑↑↑↑↑ −→ ↑↑↑↑↑↑↑↑↑↑x↑↑

.... and so on.

Every state xyz ↑↑↑↑↑↑↑ of the spin chain is mapped to its mirror image ↑↑↑↑↑↑↑zyx after τ ,
but only for ∆ = 0, so that “particles” (reversed spins) do not interact with each other,
→ inhomogeneous XX chain.

The mirror property of this spin-12 chain is due to
- the equidistant energy spectrum
- symmetry properties of the corresponding eigenvectors.

There is another spin-12 chain which acts as a perfect mirror for states
(inhomogeneous XX with additional field in z direction).



Some simple questions

• Is that all or is there more?

• Can we engineer chains with perfect transfer/mirroring properties, plus other desirable
features?

• How about mixed (T > 0) states?

• What is really needed to achieve perfect transfer ?



The model

General inhomogeneous open-ended (N + 1)-site S = 1
2 XX chain:

H = 2
N∑

i=1

Ji(Sx
i S

x
i−1 + Sy

i S
y
i−1) +

N∑
i=0

hi

(
Sz

i +
1
2

)
.

Equivalent Hamiltonian of noninteracting spinless lattice fermions:

H =
N∑

i=1

Ji(c
†
i−1ci + c†ici−1) +

N∑
i=0

hic
†
ici

can be diagonalized,

H =
N∑

ν=0

ενc
†
νcν.

c†ν creates a fermion in a single-particle eigenstate |ν〉 of energy εν;

c†i creates a fermion at lattice site i.

The εν and |ν〉 determine the dynamics completely: every eigenstate of H is uniquely
characterized by the fermion occupation numbers nν = c†νcν.



Single-particle properties of a mirror Hamiltonian

εν (ν = 0, ..., N) and |ν〉 are eigenvalues and eigen-

vectors of the one-particle Hamiltonian matrix H1.

Mirror symmetry: hi = hN−i and Ji = JN+1−i

⇒ the eigenvectors of H1, have definite parity: either

〈i|ν〉 = +〈N − i|ν〉 or 〈i|ν〉 = −〈N − i|ν〉.
Parity alternates as εν grows.

H1 =


h0 J1

J1 h1 J2

J2 h2 J3

J3
. . .

. . . JN

JN hN



(Discrete version of the “Knotensatz”: For a real symmetric tridiagonal matrix with only positive subdiagonal

elements (i) all eigenvalues are real and nondegenerate, and (ii) the sequence of the components of the jth

eigenvector ,in ascending order of the eigenvalues, j = 0, 1, ... shows exactly j sign changes.)

The eigenvectors of H1, the single-particle eigenstates of H, are alternately even and odd.

Wanted: Operation M which maps an arbitrary many-particle state to its spatial mirror image.

Sufficient: M maps every single-particle state |ν〉 to its mirror image: M = Π(−1)ν (Π: parity).

Implement the extra sign for the odd states as a dynamical phase factor exp[iπ(2n+ 1)]
by designing the εν appropriately.



Designing the spectrum

Evolution of the single-particle state |i〉 localized at site i: e−iHt|i〉 =
∑N

ν=0 e
−iενt|ν〉〈ν|i〉.

Alternating parity ⇒ 〈N − i|ν〉 = (−1)ν〈i|ν〉 ⇒

|N − i〉 =
∑

ν

|ν〉〈ν|N − i〉 =
∑

ν

(−1)ν|ν〉〈ν|i〉.

Perfect quantum state mirroring at time τ occurs if

e−iHτ |i〉 = eiφ0|N − i〉,

for all i, for example if e−iεντ = e−i(πν+φ0), or equivalently

εντ = (2n(ν) + ν)π + φ0,

where n(ν) is an arbitrary integer function.

Every system with such single-particle energies generates perfect mirror images
of arbitrary input states!



Designing the Hamiltonian ?

The function n(ν) in εντ = (2n(ν) + ν)π + φ0 is completely arbitrary ⇒ infinitely many
single-particle spectra suitable for quantum state mirroring.
n(ν) ≡ 0 and n(ν) = qν(ν+1)

2 + pν are the systems of Albanese et al.
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Designing the Hamiltonian ?

The function n(ν) in εντ = (2n(ν) + ν)π + φ0 is completely arbitrary ⇒ infinitely many
single-particle spectra suitable for quantum state mirroring.
n(ν) ≡ 0 and n(ν) = qν(ν+1)

2 + pν are the systems of Albanese et al.

Which Hamiltonian (if any) yields a given / desired spectrum εν ?

Hald 1976: For a given nondegenerate single-particle spectrum there exists a unique symmetric
tridiagonal Hamiltonian matrix with nonnegative subdiagonal elements and with the additional
spatial symmetry properties discussed above.

How to find that matrix ?

• Direct method; algorithm by Hochstadt (1974).

• Simulated annealing: optimizing the set of eigenvalues.



What do we have ?

Many proposals for quantum information transfer in spin chains are restricted: a single spin
state is transported through the completely polarized (ground) state.

Here, states involving arbitrarily many sites are perfectly mirrored across the system.
No restriction to the ground state nor even to the set of pure states.
(All single-fermion eigenstates of the Hamiltonian and thus arbitrary many-fermion density operators are mirrored

perfectly at the same instant of time τ .)

Mirroring twice reproduces the initial state.
⇒ Time evolution of the system is periodic with period 2τ .

Proof: Time autocorrelation function of an arbitrary observable A = A†:

〈A(t)A〉 = Z−1
∑

n

〈n|e−βHeiHtAe−iHtA|n〉 = Z−1
∑
n,m

e−βEnei(En−Em)t|〈n|A|m〉|2

(Z =
∑

n e
−βEn ; β = (kBT )−1 ; H|n〉 = En|n〉)

(En − Em) are all multiples of some energy, ⇒ 〈A(t)A〉 is a periodic function of t.



Quantum spin chain engineering

Homogeneous XX chain:
simple, but no perfect transport (dispersion).
Inhomogeneous chain:
Perfect transport, but awkward couplings.

Compromise ?

0 20 40 60 80 100

n
0
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40

50

J n

k

ω
Idea:
Bring the old spin-wave dispersion relation into the right
shape (all energy differences are suitable multiples of some-
thing) by a little tweaking.



Results for a 31-spin chain:
- cosine-like dispersion
- almost constant (±3.3% variation) couplings
- perfect transfer

(For 50 sites the coupling varies only by ±1%.)
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Safe transfer at any temperature
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t
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Real part of 〈Sz
0S

z
30(t)〉 in a 31-spin chain at T = 0 and T = 1000, near t = π. The maximum

possible value 1/4 of the correlation at t = π demonstrates perfect state transfer.
Inset: same correlation for T = 0 over an extended time range shows somewhat irregular
behavior.



Perfect long-time periodicity
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t 
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0.2
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>
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initial decay
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Autocorrelation of the x spin component at site 19 in a 41-site chain,
at times t (solid) and t+ 0.25− 48π (dashed), at T = 0 and T = 104.

Jordan-Wigner → many-fermion correlation involving lattice sites 0 through 19.

Note the rapid decay and the absence of oscillations at high T . (→ Gaussian).



Conclusions

• There is an infinitely large class of inhomogeneously coupled spin chain systems capable of
perfect quantum information transfer.

• The freedom of choice within that class allows for some spin chain engineering.

• Perfect state transfer over fairly long distances in a chain with almost homogeneous
exchange coupling and without external magnetic field.

• In contrast to many previous proposals, there is no restriction to the transfer of single-spin
states at zero temperature. The systems discussed here can transfer genuinely entangled
states involving several qubits, at arbitrary temperature.

• Sensitivity to perturbations like noise and imperfections will be the subject of further
research.



Jordan-Wigner: The ugly details

Single-spin operators −→ many-fermion operators
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