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It wouldn't operate on anything
so mundane as physical laws. It
would employ quantum
mechanics, which quickly gets
into things such as teleportation
and alternate universes and is,
by all accounts, the weirdest
stuftf known to man.
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Quantum computers can do anything...

...but what can they do better ?

Problems suitable for a quantum computer:
many possible states must be handled (— quantum parallelism) but

only few results are needed.

e Search in unstructured data basis — Grover's search algorithm

e Global property of a function (“Is f(2l 4+ 1) > 0 ?") — Shor's factoring algorithm



Quantum hardware

Quantum bits store information. Superpositions [¢)) = «| T) + (8| |) — quantum parallelism.
Classical bit Quantum bit = qubit Spin 1/2
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Quantum hardware

Quantum bits store information. Superpositions [¢)) = «| T) + (8| |) — quantum parallelism.
Classical bit Quantum bit = qubit Spin 1/2
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Quantum gates manipulate quantum bits

Single-qubit gate Two-qubit gate
J H j ¢
k k
Uj — eiﬁz(X#Zj) Ujk = el0(ZHZ-ZZ,)

What about quantum lines to transmit information?



Long-range cryptographic information transfer a la BB84

Information is encoded in the polarisation states (T, —, ,\) of single photons.
IBM 1989 (BENNETT et al.) : 30 cm, air.
University of Geneva 1997 (GISIN et al.): 23 km, telecom fiber optic cable.

Los Alamos National Lab 2002 (HUGHES et al.): 10 km, air during daytime (
from Pajarito Mountain (3000 m) to TA 53 (2200 m).

LMU Miinchen 2002 (KURTSIEFER et al.): 23,4 km, air, at night:
from Zugspitze (3000 m) to Westliche Karwendelspitze (2200 m).

Alice
Zugspitze
(2,950 m)

Bob
Westliche
karwendespitze
(2,244 m)



Transfer of multi-qubit states?

Single photons carry no entanglement, but quantum algorithms must handle entangled states.

What /s entanglement, actually?
Product states |¢) , ® |¢) 5 are not entangled.

Many definitions and measures of entanglement: two / more subsystems, pure / mixed states,...

Some examples:
e [he Bell states

1 1
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In each Bell state measurement of any single-qubit observable leads to completely random

results — the Bell states cannot be distinguished by any single-qubit measurement.
However, they induce Einstein's famous spukhafte Fernwirkungen.



e Homogeneous n-qubit superposition state (0 =1, 1 =]):
|0) = [000...000), |1) =]000...001), ... ,|2" —1)=|111...111) are the computational
basis states of an n-qubit register; their equal-weight, equal-phase superposition

1
T 2 I

=0
is important in the Grover and Deutsch-Jozsa algorithms.

e The Greenberger-Horne-Zeilinger state (for > 3 spins)

1

V2

collapses to a product state if S* of one of the qubits is measured (but not so for S%).

IGHZ) = —=(I1T1) + 1 1L1))

e The n-qubit W state

1
W) = 7 (1000...001) + |000...010) + ... 4 |010...000) -+ |100...000))

is a more robust multipartite entangled state. Multiplication of the kth term with a phase
factor exp igk — twisted W state, a.k.a single spin-wave state.
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The spin-; Heisenberg-XXZ chain

Heisenberg exchange interaction between two s = % spins
HHeisenberg — _Jsl ' SQ

chain of N spins with nearest-neighbor interactions, anisotropic in spin space:

N—-1 N
Hxxz = —J Y [(SfSF ., +SYSY)+ASFSi ] —h) S
1=1 =
N—-1 N
1=1 )=

Jordan-Wigner mapping [>]

Spins — Fermions
St,8~ — +al, +a
S* — ala —1/2
J(S7 S Sysfjﬂ) “— t (alai4+1 + h.c.) hopping
AJ S7S7 —— V n;n;y1 interaction

h SZ < u n; chemical potential



The spin-; Heisenberg-XXZ chain: Eigenstates

The ferromagnetic ground state: | 717 ... T1T) = |000...000).

A single spin-flip state S5 | 11T ... TIT) = | T/7T ... TT1) = |010...000) is no eigenstate of Hxxz:
(S84 +S755) the inverted spin left or right.

How about coherent transport 7

A single spin-wave state

1 - QT O — . —
q) = %;e TS T =0 ST ()] 11T 111D

is an eigenstate of Hxxz with energy hw(q) = —J cosq. In the Jordan-Wigner picture this
corresponds to a single fermion in a Bloch state in a tight-binding chain model.

However, a two spin-wave state

S(q1)"S(q2)" | 11T - 117)

is not an eigenstate of Hxxyz: the Jordan-Wigner fermions interact due to the 5757 ;| term.

Undistorted transfer of states with two or more flipped spins is probably difficult.



Spin wave packets

S. Bose: Quantum communication through an unmodulated spin chain. PRL 91, 207901 (2003)
Prepare the first spin of a Heisenberg chain as desired.

(af ) +B[ 1)@ 11T ... T11)

is a superposition of the ground state and of single spin-wave states: a spin wave packet which
may be received with reasonable fidelity at the other end of the chain after a certain time.

T.J. Osborne and N. Linden: Propagation of quantum information through a spin system. PRA 69, 052315 (2004)

Instead of states localized at a ...o. ..°°.
transfer Gaussian spin wave packets WhICh ® o o
occupy only the least dispersive part of the °. .'
dispersion relation, and which are narrow in o o
wavevector space rather than in real space. °. .°

o o
Note: O O
Least dispersive ~ linear w(k) ° e
~ equidistant energy values * K

.....

— fairly good transfer of wave packets. I



How about

Harmonic oscillator: Any wavepacket initially
localized on the right develops into its perfect
mirror image localized on the left.

Equidistant spectrum, but continuous degrees
of freedom. Difficult to define qubits.

Angular momentum J: |J, = +J) can develop
into |J, = —J) by rotation in a transverse
field.

Equidistant spectrum, but zero-dimensional.
No transport in space.

transfer ?

I

0
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M. Christandl et al.: PRL 92, 187902 (2004); C. Albanese et al.: PRL 93, 230502 (2004).

Single particle on a (2J + 1)-site chain Angular momentum J

State |n) localized at lattice site n =1,...,2J + 1 J, eigenstate |m)

Transition amplitude (hopping matrix element) (J, or J,) matrix element between
between two sites im) and |m +1).

2J,Im) = (Jp + J)|m) = /(T +m+1D(J —m)im+1) +/(J+m)(J—m+1)|m—1)

Find a lattice Hamiltonian H such that

H|n) =+/n(N —n)n+1)++/(n—1)(N —n+1)n—1).

Solution
N-— 1 , 1 ; 1
H = Z\/ 5( +1an—|—hc>—|—A an_§ a’n—l—la’n‘l‘l_§
n=1
N—1
B A ] (555 + SHSL ) + S

Inhomogeneous XXZ chain; A is inactive as long as only one particle is present.



A state |r) = «| T) + ] |) of spin 1 is transferred to spin N by H after a time 7

eI — T T

This is still just single-qubit transport; however, after the same time 7

T T — T T2 1

and also
TT21T11 11T — 111111 T2 17

... and so on.

Every state zyz TTTTTTT of the spin chain is mapped to its mirror image TTTTT17T zyx after T,
but only for A = 0, so that “particles” (reversed spins) do not interact with each other,
— inhomogeneous XX chain.

The mirror property of this spin—% chain is due to
- the equidistant energy spectrum
- symmetry properties of the corresponding eigenvectors.

There is another spin—% chain which acts as a perfect mirror for states
(inhomogeneous XX with additional field in z direction).



Some simple questions

Is that all or is there more?

Can we engineer chains with perfect transfer/mirroring properties, plus other desirable
features?

How about mixed (7" > 0) states?

What is really needed to achieve perfect transfer ?



The model

General inhomogeneous open-ended (N + 1)-site S = 1 XX chain:

N

H=2) Ji(S{sy  +SYsY +Zh (SZ )
i=1
Equivalent Hamiltonian of noninteracting spinless lattice fermions:
N N
H = Z J,,;(Cl-L_lci -+ Cl—LCi_l) + Z h,,;Cl-LCi
1=1 1=0

can be diagonalized,

N
H = g syclc,,.
vr=0

cl creates a fermion in a single-particle eigenstate |/) of energy ¢,;

cl.L creates a fermion at lattice site ¢.

The €, and |v) determine the dynamics completely: every eigenstate of H is uniquely
characterized by the fermion occupation numbers n, = C,Jf/c,,.



Single-particle properties of a mirror Hamiltonian

e, (v=0,...,N) and |v) are eigenvalues and eigen-
vectors of the one-particle Hamiltonian matrix Hj.
Mirror symmetry: h; = hy_; and J; = Jni1-;

= the eigenvectors of H1, have definite parity: either
(ilv) = +(N —ilv) or (ilv) = —(N —i|v).

Parity alternates as €, grows.

(1o \

Ji h1 Jo
Jo ho J3
Js -,
. Jn
\ Iv hy )

(Discrete version of the “Knotensatz": For a real symmetric tridiagonal matrix with only positive subdiagonal

elements (i) all eigenvalues are real and nondegenerate, and (ii) the sequence of the components of the jth

eigenvector ,in ascending order of the eigenvalues, 3 = 0,1, ...

shows exactly j sign changes.)

The eigenvectors of Hq, the single-particle eigenstates of H, are alternately even and odd.

Wanted: Operation M which maps an arbitrary many-particle state to its spatial mirror image.

Sufficient: M maps every single-particle state |v) to its mirror image: M = II(—1)" (II: parity).

Implement the extra sign for the odd states as a dynamical phase factor explim(2n + 1)]

by designing the £, appropriately.



Designing the spectrum

Evolution of the single-particle state |i) localized at site i: e~ t|s) = S20 et L) (1i).

Alternating parity = (N —ilv) = (—-1)"(ilv) =

Perfect quantum state mirroring at time 7 occurs if
e”HTli) = e'|N — i),
for all i, for example if e~ *+™ = ¢~ i(m¥+¢0) or equivalently
e, T = (2n(v) + v)T + ¢,

where n(v) is an arbitrary integer function.

Every system with such single-particle energies generates perfect mirror images
of arbitrary input states!



Designing the Hamiltonian ?

The function n(v) in e,7 = (2n(v) 4+ v)m + ¢¢ is completely arbitrary = infinitely many

single-particle spectra suitable for quantum state mirroring.

n(v) =0 and n(v) = q@ + pv are the systems of Albanese et al.
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Designing the Hamiltonian ?

The function n(v) in e,7 = (2n(v) 4+ v)m + ¢¢ is completely arbitrary = infinitely many

single-particle spectra suitable for quantum state mirroring.

n(v) =0 and n(v) = q@ + pv are the systems of Albanese et al.

Which Hamiltonian (if any) yields a given / desired spectrum ¢, 7

Hald 1976: For a given nondegenerate single-particle spectrum there exists a unique symmetric
tridiagonal Hamiltonian matrix with nonnegative subdiagonal elements and with the additional
spatial symmetry properties discussed above.

How to find that matrix ?

e Direct method; algorithm by Hochstadt (1974).

e Simulated annealing: optimizing the set of eigenvalues.



What do we have ?

Many proposals for quantum information transfer in spin chains are restricted: a single spin
state is transported through the completely polarized (ground) state.

Here, states involving arbitrarily many sites are perfectly mirrored across the system.

No restriction to the ground state nor even to the set of pure states.

(All single-fermion eigenstates of the Hamiltonian and thus arbitrary many-fermion density operators are mirrored
perfectly at the same instant of time 7.)

Mirroring twice reproduces the initial state.
= Time evolution of the system is periodic with period 27.

Proof: Time autocorrelation function of an arbitrary observable A = AT:

(A()A) = Z~1 Z(n!e_ﬁHethAe_thmm =71 Z e_ﬁEnei(En_Em)ﬂ<n|A\m>\2

n,m

(Z=3 e B=(ksT)™" ; Hln)= En|n))
(Ey — E,,) are all multiples of some energy, = (A(t)A) is a periodic function of t.



Homogeneous XX chain:

simple, but no perfect transport (dispersion).

Inhomogeneous chain:

Perfect transport, but awkward couplings.

Compromise ?

Quantum spin chain engineering

1 1 1 1
0 20 40 60 80 100

Bring the old spin-wave dispersion relation into the right
shape (all energy differences are suitable multiples of some-
thing) by a little tweaking.



Results for a 31-spin chain: 300
- cosine-like dispersion

- almost constant (+3.3% variation) couplings
- perfect transfer 100

200

w
S~

o 0
—

(For 50 sites the coupling varies only by +£1%.)

-100

-200

e coupling constants

e single-particle energies|
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Safe transfer at any temperature

02F

e
—_—
I

oS 3O(t)>

Re <S§°

3.05

Real part of (S§S3,(t)) in a 31-spin chain at 7'=0 and 7" = 1000, near t = 7. The maximum
possible value 1/4 of the correlation at t = m demonstrates perfect state transfer.

Inset: same correlation for 7' = 0 over an extended time range shows somewhat irregular
behavior.



Perfect long-time periodicity

24th revival

\"

—

Autocorrelation of the = spin component at site 19 in a 41-site chain,
at times ¢ (solid) and ¢ + 0.25 — 487 (dashed), at T'= 0 and 7' = 10*.

Jordan-Wigner — many-fermion correlation involving lattice sites 0 through 19.

Note the rapid decay and the absence of oscillations at high T". (— Gaussian).



Conclusions
There is an infinitely large class of inhomogeneously coupled spin chain systems capable of
perfect quantum information transfer.
The freedom of choice within that class allows for some spin chain engineering.

Perfect state transfer over fairly long distances in a chain with almost homogeneous
exchange coupling and without external magnetic field.

In contrast to many previous proposals, there is no restriction to the transfer of single-spin
states at zero temperature. The systems discussed here can transfer genuinely entangled
states involving several qubits, at arbitrary temperature.

Sensitivity to perturbations like noise and imperfections will be the subject of further
research.



Jordan-Wigner: The ugly details

Single-spin operators — many-fermion operators



