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Spin Glasses

ferro

Mn

antiferro

Disordered magnetic system 
with random interactions:
ex. : Cu1-xMnx with x ~ 1%

Interactions RKKY: J(r) ∼
cos kr

r3

• Disorder + frustration                              
=> spin glass phase (Tc~15°K)

• Spins are frozen without apparent order

• Complex structure (many pure states ?)

• Rich dynamics (aging, memory)

Frustration:

?



Edwards-Anderson Model

HJ(S) = −
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Spins: Si = ±1

Random interactions:

〈J〉 = 0 〈J2〉 = 1and

J = ±1

P (J) ∼ exp(−J2/2)

typically

or



Overlaps
Overlap (=distance) between 2 configs α and β:

Link overlap:
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Droplet theory (d>2)
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Only 2 pure states in the spin glass phase

Elementary excitations (droplets): compact with E ~ Lθ

No spin glass phase in a magnetic field

P(q) is trivial



Mean field theory (d=∞)
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Many pure states in the spin glass phase

Elementary excitations: system wide with E ~ 1

Spin glass phase under the A-T line in a magnetic field

P(q) is non - trivial



2-d Spin Glasses

• We can do it ! Ground states, Monte Carlo.

• Critical temperature Tc = 0 ? (Yes)

• Universality ?

• Is d = 2 the lower critical dimension ?

• Behavior of c, ξ, χ, P(q)... critical exponents ?

• Does the droplet theory apply in 2 d ?

• Nature of the low energy excitations (energy vs. size, fractal 
surface, scaling laws...).

• Does it say something for the 3-d case ?
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Standard Monte Carlo

Metropolis: choose a spin at random and flip it with probability

p = min
(
1, e

−β∆E
)

Problem : very slow dynamics



Parallel tempering

Simulate n temperatures in parallel with standard Monte Carlo

Exchange 2 configurations at different temperatures with probability

p = min
(
1, e

∆β∆E
)

T

time

Allow system to pass energy 
barriers



Cluster moves

Local overlap between 2 configurations α and β: qi = Sα
i S

β
i

Cluster: connected domain with constant qi

Simulate 2 configurations in parallel

Choose a spin i at random, find 
associated cluster and flip it in both 
configs (no rejection)

qi, q
αβ and E = Eα + Eβ unchanged



Problems with cluster moves

When d > 2, qi defines only 2 clusters (percolation threshold<1/2)

Even at d = 2, it does not equilibrate q and E !

To equilibrate q: simulate more than 2 configs in parallel

To equilibrate E:  also use standard Monte Carlo and parallel 
tempering

Flipping a cluster between α and β does not change 
qαβ, but does  change qαγ and qβγ

Flipping one cluster  =  Exchanging the configs



Overview of the cluster algorithm
Simulate in parallel m configs for n temperatures with 3 moves:

Standard Monte Carlo for all m x n configs

Parallel tempering between the n temperatures

Cluster moves between m configs for each temperature

cluster moves

configs

T

paralle temp.



Efficiency
Orders of magnitude faster (here β =10, L = 100)
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What we measure
Interactions ±J

Questions: Tc = 0 ? Correlation length ξ behavior ? Critical exponents

We measure: χ = N〈q2〉

g =
1

2

(
3 −

〈q4〉

〈q2〉

)
spin glass susceptibility

binder cumulant

g is 0 is the paramagnetic phase and 1 in the spin glass phase

g is independent of L at T = Tc  => the g curves intersect at T = Tc
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ξ ∼ (T − Tc)
−ν

χ ∼ L2−ηχ̃(TL1/ν) g ∼ g̃(TL1/ν)

? No !
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? Yes !

g ∼ g̃(2β − lnL)χ ∼ L2−ηχ̃(2β − lnL)

ξ ∼ e2β
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Finding low energy excitations
We can compute the ground state

We have low temperature equilibrated configurations

Let’s compare them !

thermalized stateground state

Each connected cluster boundary defines an elementary excitation



Using excitations as MC moves

During equilibration, build the list of all excitations under a given energy

Choose an excitation at random in the list and flip it with Metropolis 
probability

Used with the cluster algorithm it allows to go to extremely low 
temperatures: β = 50 for L = 100

Efficiency increases as the temperature decreases !

Does not work with  ±J interactions: too many 0 energy excitations
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Conclusions and outlook
• Algorithms

• A cluster algorithm for 2-d spin glasses

• Use of ground state to find excitations

• Use of excitations as Monte Carlo moves

• Results for ±J model

• Tc = 0

• ξ ~ e2β

• Work in progress on the Gaussian model with A. Hartmann

• Critical exponents

• Low energy excitations



The End


