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Spin Glasses

Disordered magnetic system

with random interactions:

ex.:Cu, Mn withx~ 1%
|-x' X

cos kr

Interactions RKKY: J(r) ~

r3

Frustration.

o
\ //// \/

antiferro

Disorder + frustration
=> spin glass phase (Tc~15°K)

Spins are frozen without apparent order
Complex structure (many pure states ?)

Rich dynamics (aging, memory)



Edwards-Anderson Model
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or P(J)~ exp(—J?/2)




Overlaps

1
Overlap (=distance) between 2 configs a and {3: qaﬁ — N Z S?Siﬁ

Link overlap: ¢’ = dLN Z S?S?S?Sf
(2,9)

VolumeV, surface S

g=1 N # different spins
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q; = 1 # different bonds
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Droplet theory (d>2)

Only 2 pure states in the spin glass phase

Elementary excitations (droplets): compact with E ~ Le
No spin glass phase in a magnetic field
P(q) is trivial
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Mean field theory (d=«)

Many pure states in the spin glass phase
Elementary excitations: system wide with E ~ |

Spin glass phase under the A-T line in 2 magnetic field

P(q) is non - trivial
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2-d Spin Glasses

We can do it ! Ground states, Monte Carlo.
Critical temperature Tc = 0 ? (Yes)
Universality ?

Is d = 2 the lower critical dimension ?
Behavior of ¢, €, X, P(Q)... critical exponents ?
Does the droplet theory apply in2d?

Nature of the low energy excitations (energy vs. size, fractal
surface, scaling laws...).

Does it say something for the 3-d case !
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Standard Monte Carlo

Metropolis: choose a spin at random and flip it with probability

p = min (1, (fﬁAE)

Problem : very slow dynamics



Parallel tempering

Simulate n temperatures in parallel with standard Monte Carlo

Exchange 2 configurations at different temperatures with probability

p = min (1, eAﬁAE)

Allow system to pass energy
barriers

time



Cluster moves

Local overlap between 2 configurations a.and p:  q; = S S?

Cluster: connected domain with constant q.

Simulate 2 configurations in parallel

Choose a spin i at random, find
associated cluster and flip it in both
configs (no rejection)

qs» qocﬁ and E = E* + EP unchanged




Problems with cluster moves

When d > 2, gi defines only 2 clusters (percolation threshold<1|/2)

Flipping one cluster = Exchanging the configs
Even at d = 2, it does not equilibrate q and E !

To equilibrate g: simulate more than 2 configs in parallel

Flipping a cluster between o and 5 does not change
qaﬁ, but does change q*V and qﬁY

To equilibrate E: also use standard Monte Carlo and parallel
tempering



Overview of the cluster algorithm

Simulate in parallel m configs for n temperatures with 3 moves:
Standard Monte Carlo for all m x n configs
Parallel tempering between the n temperatures

Cluster moves between m configs for each temperature

> paralle temp.

cluster moves

Ty 7\

—

configs
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Efficiency

Orders of magnitude faster (here B =10,L = 100)
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What we measure

Interactions +J

Questions:Tc = 0 ? Correlation length € behavior ? Critical exponents

We measure:  spin glass susceptibility ~ y = N(¢?)

binder cumulant g =

DO | =
RN
o
|
TN |
!Q‘Q
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~— | >~
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g is 0 is the paramagnetic phase and | in the spin glass phase

g is independent of L at T =Tc => the g curves intersectatT =Tc



Tc=0
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X/LI.S

¢ ~e*” ?Yes !

T T | T | T |
15 dggxz?é‘ o‘:' o TES “ o o7
B g i
B o L=12 |
i oL=25 |
R oo L =50 .
A A L =100
01 £ _
- # | | | .
- & 0.1 e
- § P _
B A/G% . i
i 50 54 _
é &foﬂ (@)
0.01- N —
0.01 = % A%/g E
E % -\ | . -
. O 1.5 -1 05
! ! | ! | | ! |
-2 2 4 6 8

B - In(L)/2

0.8

0.2~

3
Rt o T ©
O 0 0 O o
©o L=12
oL=25
oo L =50
A L=100
T | T |
I 6
i £
0.2 o
- w0
o wwhico°
1.5 -1 0.5
| ] | | | |
2 4 6
B-In(L) /2




Overview

® Gaussian model, low energy excitations

® Conclusion and outlook



Finding low energy excitations

We can compute the ground state

We have low temperature equilibrated configurations

b
i

ground state thermalized state

Let’s compare them !

Each connected cluster boundary defines an elementary excitation



Using excitations as MC moves

During equilibration, build the list of all excitations under a given energy

Choose an excitation at random in the list and flip it with Metropolis
probability

Efficiency increases as the temperature decreases !

Used with the cluster algorithm it allows to go to extremely low
temperatures: § = 50 for L = 100

Does not work with +J interactions: too many 0 energy excitations
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Conclusions and outlook

® Algorithms
® A cluster algorithm for 2-d spin glasses
® Use of ground state to find excitations
® Use of excitations as Monte Carlo moves
® Results for £J model
® Tc=0
° ¥ . EZB
® Work in progress on the Gaussian model with A. Hartmann

® Critical exponents

® [ow energy excitations



The End



