Design Principles of a Bacterial Signalling Network Why chemotaxis is more complicated than needed

Jens Timmer

Center for Systems Biology Center for Data Analysis and Modeling Center for Applied Biosciences Bernstein Center for Computational Neuroscience Department of Mathematics and Physics University of Freiburg http://www.fdm.uni-freiburg.de/~jeti/

Outline

- Introduction
- Chemotaxis
- Barkai/Leibler Model
- Fluctuations, Cell-to-Cell Variability
- Design Principles of Robustness

Enlarging Physics, Math, Engineering

• Since Newton:

Mathematization of inanimate nature

• 21st century:

Additionally: Mathematization of animate nature

Man : A Dynamical System

Diseases caused or expressed by malfunction of dynamical processes

Systems Biology

Understanding biomedical systems by data-based mathematical modelling of their dynamical behavior

Based on but more than ...

• ... Mathematical Biology: Data-based

• ... Bioinformatics: Dynamics

• ... o.p./g. – o.p.: System

• ... another omics: Mathematics

Why Modelling in Cell Biology?

• Basic Research

- Genomes are sequenced, but ...
- ... function determined by regulation
- Regulation = Interaction & Dynamics
- Function: Property of dynamic network
- "Systems Biology"

• Application

- Drug development takes 10 years and 1 bn \$/€
- Reduce effort by understanding systems

Two Differences between Physics and Biology

- Fundamental laws of nature vs. principles
- In biology there is "function" due to evolution

Physics in biology:

Apply mathematics to understand function

Bacterial Chemotaxis – The Phenomenon

- Bacteria sense nutrient gradients over four orders of magnidute of absolute concentration
- Detect relative changes of 2 %
- Robust against pertubations

Chemotaxis: One of the best investigated biological systems

Bacterial Chemotaxis – The Strategy

- Bacteria too small to compare front to end
- Strategy:
 - Change direction from time to time (tumble)
 - If concentration increases: reduce tumbling frequency
 - If concentration decrease: increase tumbling frequency
- Sense spatial gradients by temporal changes

Chemotaxis – Tumble and Swim

Random walk vs. biased random walk

Chemotaxis in E. coli

Chemotaxis – Flagella

Movement by rotating corkscrew-flagella

- counter-clockwise: form bundle: swim by marine propeller
- clockwise: rotate radially: tumble

Chemotaxis – The Task

Tumbling/Swimming depends on phosphorylated CheY

Important: A small working range

Chemotaxis – Adaptation

- Motor has a small range of sensitivity
- Cell is chemotactic for a large range of concentrations
- ⇒ System has to be <u>adaptive</u>:
 Steady state of CheYp must be independent from absolute concentration of ligand

Chemotaxis – The Task

Input: Nutrient concentration Output: Tumbling frequency

System performs a kind of differentiation

The Players and their Roles

- T: Receptors
- CheR: Methyltransferase, adds CH₃
- CheB: Methylesterase, removes CH₃
- CheA: Kinase, adds PO₄
- CheZ: Phosphatase, removes PO₄
- CheY: Signaling protein

Phosporylation, Methylation = Chance of state

Barkai/Leibler Model – Graphical Version

Barkai/Leibler Model – Mathematical Version

Probability for activating methylated receptor by ligand *L*:

$$p = \left(1 - \frac{L}{K_L + L}\right)$$

Concentration of activated receptors T_a :

 $T_a = p T_m$

Methylation/demethylation dynamics of receptors:

$$\dot{T}_m = k_R R - k_B B \frac{T_a}{K_B + T_a}$$

Dynamics of *Ap*:

$$\dot{A}p = k_A(A_{tot} - Ap)T_a - k_Y Ap(Y_{tot} - Yp)$$

Dynamics of *Yp*:

$$\dot{Y}p = k_Y A p(Y_{tot} - Yp) - \gamma_Y Y_p$$

Perfect Adaptation

Steady state of T_a from

$$\dot{T}_m = k_R R - k_B B \frac{T_a}{K_B + T_a} = 0$$

yields

$$T_a^{ss} = K_B \frac{k_R R}{k_B B - k_R R}$$

- Independent from ligand concentration L
- Steady state is stable
- The same holds for Yp

Barkai & Leibler, Nature 387:913, 1997

The Mechanism: $T_a = p(L) T_m(T_a)$

- Increasing L leads to fast decrease of T_a
- Ap & Yp are fastly dephosphorylated
- T_m is slowly increased
- Turns T_a and Ap & Yp back to steady state
- Integral negative feedback control

In words:

Degree of methylation compensates/remembers absolute concentration of ligand

But ...

... this model is not realised by nature

Nature's E. Coli

Sources of Variability

- Intrinsic noise
 - Differences between identical reporters within one cell
 - Stochasticity of reactions
- Extrinsic noise

Differences between identical reporters in different cells

- Expression level of signaling proteins
- Number of ribosomes

Cell-to-cell variability

Quantification of Variability

Colman-Lerner et al. Nature 437:699, 2005

Results

E. coli and yeast:

• Extrinsic noise is larger than intrinsic noise

• Protein concentrations fluctuate in a correlated manner

Fluctuations and Chemotaxis

• Cell-to-cell fluctuations up to factor of ten

• Correlated fluctuations are dominant

A Robustness Principle

The functionality of a pathway must be robust against fluctuations of protein levels.

For chemotaxis:

- Steady state level Yp in [2.2 μ M, 4.3 μ M]
- For correlated fluctuation:

Steady state invariant under transformation: $X_i \rightarrow \lambda X_i$

Important quantities may only depend on ratios of concentrations

• For uncorrelated fluctuations:

Use feedback-loops to attenuate noise

Application to Barkai/Leibler Model

Robustness of Barkai/Leibler Model

Steady states (with some approximations):

$$T_{a}^{ss} = K_{B} \frac{k_{R}R}{k_{B}B - k_{R}R}$$
 o.k.

$$Ap^{ss} \approx \frac{k_{A}T_{a}^{ss}}{k_{Y}} \frac{A_{tot}}{Y_{tot}}$$
 o.k.

$$Yp^{ss} = \frac{k_{y}Ap^{ss}}{k_{Y}Ap^{ss} + \gamma_{Y}}Y_{tot}$$
 not o.k

Cure: Yp must have a phosphatase (CheZ)

$$Yp^{ss} = \frac{k_y Ap^{ss}}{k_Z} \frac{Y_{tot}}{Z_{tot}}$$
 o.k.

Extension of the Model

Robustness Against Correlated Fluctuations

- *Yp* must have a phosphatase (*CheZ*)
- Methyltransferase CheR has to work at saturation
- The pathway must be weakly activated, $Xp \ll X_{tot}$

Robustness Against Uncorrelated Fluctuations

Diminish uncorrelated noise by a classical feedback

- Methylesterase B can be phoshorylated by Ap
- Only Bp can demethylate receptors

$$\Delta Y p = -\frac{\frac{\partial f}{\partial T_a} \frac{\partial T_a}{\partial R}}{\alpha + \beta \frac{\partial B_p}{\partial A_p}} \Delta R$$

- Robustness against correlated fluctuations:
 - $\implies Bp \text{ must } \underline{not} \text{ have a phosphatase}$

Final Model

And this is how E. coli looks like

In silico Biology

- Choose different pathway topologies
- Parameters known experimentally
- Protein concentrations from experimental distributions

Compare chemotactic behaviour of *in silico* **mutants to E. coli for different expression levels of proteins**

Cartoons of Perfect Adaptive Pathways

Results: in vivo vs. in silico

red: Barkai/Leibler, black: final model, cyan: without feedback blue: CheR not in saturation, green: CheBp with phosphatase

Impossible Experiments

wild type: 0.4 wild type: 0.2

red: BL, black: fm, blue: w/out fb, green: mcm

Conclusions

- E. coli has to be adaptive and robust
- E. coli seems to be optimised to deal with fluctuations:
 - Uncorrelated noise: Feedback control
 - Correlated noise: Phosphatase here, saturation there
- E. coli is as complex as necessary but as simple as possible

Work done by

Physics Institute University of Freiburg Centre for Molecular Biology University of Heidelberg

Markus Kollmann

Victor Sourjik

Kilian Bartholomé

Linda Lovdok

M. Kollmann, L. Lovdok, K. Bartholomé, J. Timmer, V. Sourjik. Design principles of a bacterial signalling network, Nature 438:504, 2005

Open Positions

- **BMBF Systems Biology of Hepatocytes** *HepatoSys*
- DFG Graduate College 1305: Plant Signaling Systems
- **BMBF Research Unit Systems Biology** *FRISYS*

jeti@fdm.uni-freiburg.de