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> Introduction
» Key question

How can the properties of individual elements shape the collective
behaviors ("patterns") in a system?

New layer of predictability in self-organized patterns

» Excitable dynamics

B fundamental process: propagation of excitations through a system
M simple model of epidemic spread of infectuous diseases
B relevance to diverse biological processes
M relevance to a broad range of socio-economic processes
m opinion formation
B information spreading

m any sort of cascade or wave phenomena



> Introduction
» Three examples

(1) small case study on biological pattern formation
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(2) excitable dynamics on graphs

(3) an example of collective problem-solving




Spatiotemporal patterns
» The model system
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Dictyostelium discoideum: early-stage pattern Dictyostelium discoideum: later-stage pattern

B remarkable collective problem-solving capacity

B optimized for a particular size of the collective states



Spatiotemporal patterns
» The model system

‘problem solving’

Dictyostelium discoideum




Taken from: Sawai et al. (2005) Nature 433, 323

Spatiotemporal patterns
» The model system

‘'size optimization’
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Spatiotemporal patterns

» The model system

Dictyostelium discoideum:

S
=D

early-stage pattern Dictyostelium discoideum: later-stage pattern

B remarkable collective problem-solving capacity

B optimized for a particular size of the collective states

B How do patterns start?
M What is the role of cellular variability?

B How does the distribution of cell properties translate into
patterns?



SpatIOtemporal patterns refractory/quiescent cell: s = 0

» Role of biological variability firing cell: s =1

* (dynamic) threshold for ¢
decides over firing

* spontaneous firing of

simulation of spiral '‘pacemaker cells’

wave patterns for a
distribution of
pacemaker cells

cAMP
concentration 'state

| / /matrix'

Cij - = Fcij + I”FS--(I) +DLIJ(C)

1
Eij =n+ IBCij
_ / \ feedback
excitability strength
model from:

Levine et al. (1996)
PNAS 93, 6382

Geberth and Hiitt (2008) Phys.Rev. E 78, 031917



Spatiotemporal patterns
» Role of biological variability

simulation of spiral
wave patterns for a
distribution of
pacemaker cells

model from:
Levine et al. (1996)
PNAS 93, 6382

Geberth and Hiitt (2008) Phys.Rev. E 78, 031917



Spatiotemporal patterns
» Role of biological variability

different simulation runs with same cell properties

model from
Levine et al. (1996)
PNAS 93, 6382

Geberth and Hiitt (2008) Phys.Rev. E 78, 031917



Spatiotemporal patterns
» Role of biological variability

distribution of spiral waves across 1000 geometrical prediction
simulation runs

Geberth and Hiitt (2008) Phys.Rev. E 78, 031917



Spatiotemporal patterns
» Role of biological variability

_ model from: model from:
presc.:rlb?d pacemaker Levine et al. (1996) Lauzeral, Halloy, Goldbeter (1996)
distribution PNAS 93, 6382 PNAS 94, 9153

] 1 .. _l..l- LS _.I- PR g - . [ ] — 160
..?. n. B s _-"._-" T - -:_
"_:':T-'- ; ! - ) s %
o ':,_l'- | l .::: o _._' : 'l_ 60
SR - o
11 - e
:-'._' - _:_'_':-'_-'._ 20
» i
O MR T e el 0

M anticorrelation of pacemaker cells and spiral waves
B some features can be understood in a simple geometric model

B alternative model fails to reproduce this anticorrelation

Geberth and Hiitt (2008) Phys.Rev. E 78, 031917



Spatiotemporal patterns

P A detailed look at
the refined model

0.8

o o ©
o o N

intracellular production of signal
o
=N

0.3
model from: 0.2
Lauzeral, Halloy, Goldbeter (1996) 0.4
PNAS 94, 9153 '
0
£ 8 extr4aceIIuI5ar degreadatio_{\ of siganal 1
fraction of dpPT £ () (1 —
active receptors h (})pT_*-fZ(})(l pT)’ X ki+ky kiL1+kaLacy
hy)= T,.fz(?‘): [ e
intracellular ~ df _@( ) — (ki ko) +7 +cy
cAMP gy XV U o(A0+¢cY?) prYy
(D(pT,y,a) - Y =

external 0V _ . 2., CltateY2(14a)’ 14y
e == (kip/) (k) + D,V



Spatiotemporal patterns

P A detailed look at
the refined model

model from:
Lauzeral, Halloy, Goldbeter (1996)
PNAS 94, 9153
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Spatiotemporal patterns
P A detailed look at the refined model
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M previous definition of a pacemaker cell: all elements initially in the
oscillatory regime

B new, refined definition: all elements in the oscillatory regime, when the
last elements entered the excitable regime

Geberth and Hiitt (2009) PLoS Computational Biology 5, e1000422



Spatiotemporal patterns
» A detailed look at the refined model

Software package for pattern simulation
and spatiotemporal event reconstruction
Geberth, Hiitt (2010), Physica A 389, 249.
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l detected target wave events correlate with the refined 'pacemaker’
cells

Geberth and Hiitt (2009) PLoS Computational Biology 5, e1000422



Spatiotemporal patterns
» A detailed look at the refined model
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Excitable dynamics on graphs
» Motivation

10 25000
Taken from: Hufnagel et al. (2004) PNAS 101, 15124



> Excitable dynamics on graphs
» Motivation

B (at least) two distinct fields of research involved:

m neural information processing

M "pattern formation" aspects: heart cells, calcium dynamics, . . .
B abstract models help understand properties of such systems

B here we qualitatively link the "pattern” level with the "neural” level by
studying pattern formation of excitable dynamics on graphs

» Some previous findings

regular “backbone*

S ~\ “shortcut*

Watts and Strogatz (1998)
Nature 393, 410

)
4o WAL
®

’ <Z \\v;-k»\ Ry

(%

hierarchical graph concept taken from:
Ravasz et al. (2002) Science 297, 1551



> Excitable dynamics on graphs
» Motivation

B (at least) two distinct fields of research involved:

m neural information processing

M "pattern formation" aspects: heart cells, calcium dynamics, . . .
B abstract models help understand properties of such systems

B here we qualitatively link the "pattern” level with the "neural” level by
studying pattern formation of excitable dynamics on graphs

» Some previous findings

M percentage of shortcuts in small-world networks triggers a transition from
activity failure to persistant activation for excitable integrate-and-fire neurons

Roxin, Riecke, Solla (2004) Phys.Rev.Lett. 92 198101
B importance of hierarchical structures

M in neural information processing

Zhou et al. (2006) Phys.Rev.Lett. 97, 238103
Kaiser and Hilgetag (2007) Neurocomputing 70, 1829

B and synchronization
Arenas et al. (2006) Phys.Rev.Lett. 96, 114102
M functional similarity of noise and shortcuts

Graham and Matthai (2003) Phys.Rev.E 68, 036109
Marr and Hiitt (2006) Phys.Lett.A 349, 302



> Excitable dynamics on graphs
» A minimal model
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> Excitable dynamics on graphs
» A minimal model

A——R A: active
_ R: refractory
E— 20N oA E: excitable
R—ESE p: recovery rate
f f: rate of spontaneous excitations
E > A

M classical model of sustained excitable dynamics

M "forest-fire" model
Drossel and Schwabl (1992) Phys.Rev.Lett. 69, 1629

B has been studied previously on graphs

Graham and Matthai (2003) Phys.Rev.E 68, 036109
Carvunis et al. (2006) Physica A 367, 595

B similar to other three-state models (SIR etc.)



> Excitable dynamics on graphs
» A minimal model

A——R A: active

A in NB R: refractory
E T S A E: excitable
R—ESE p: recovery rate

f: rate of spontaneous excitations

E—1 >A

» Results
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Miiller-Linow et al., PLoS Comp. Biol. (2008) 4, e1000190



> Excitable dynamics on graphs
» Application to models of biological neural networks
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Excitable dynamics on graphs
» Application to two real networks

cortical systems network of the cat
55 cortical areas; 565 connections
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> Excitable dynamics on graphs ring waves around
1F d 3
» Results (cont'd) ]
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Graph coloring dynamics as a minimal model of
collective problem-solving
» Background

I REPORTS

An Experimental Study of the Coloring
Problem on Human Subject Networks

Michael Kearns,* Siddharth Suri, Nick Montfort

11 AUGUST 2006 VOL 313 SCIENCE www.sciencemag.org



Graph coloring dynamics as a minimal model of

collective problem-solving I

» Background el

An Experimental Study of the Coloring
Problem on Human Subject Networks

Michael Kearns,* Siddharth Suri, Nick Montfort

Taken from: Kearns et al. (2006) Science 313, 824



> Graph coloring dynamics as a minimal model of

collective problem-solving
» Background
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An Experimental Study of the Coloring
Problem on Human Subject Networks

Michael Kearns,* Siddharth Suri, Nick Montfort
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Fig. 1. Network topologies with sample colorings found by subjects. From left to right and top to

bottom: simple cycle, 5-chord cycle, 20-chord cycle, leader cycle, and preferential attachment with
two and three links initially added to each new vertex.

Taken from: Kearns et al. (2006) Science 313, 824



Graph coloring dynamics as a minimal model of
collective problem-solving
» Background

initial situation of jobs graph coloring approach machine allocation
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Windt and Hiitt (2010) CIRP Annals Manufacturing Technology 59, 461.



> Graph coloring dynamics as a minimal model of

collective problem-solving
» Background
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An Experimental Study of the Coloring
Problem on Human Subject Networks

Michael Kearns,* Siddharth Suri, Nick Montfort
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Fig. 1. Network topologies with sample colorings found by subjects. From left to right and top to

bottom: simple cycle, 5-chord cycle, 20-chord cycle, leader cycle, and preferential attachment with
two and three links initially added to each new vertex.

Taken from: Kearns et al. (2006) Science 313, 824



> Graph coloring dynamics as a minimal model of
collective problem-solving
» Background

1 conflict in your immediate neighborhood.
A thick line indicates a conflict that must be resolved.
A thin line is shown when color choices do not conflict,
Overall progress toward a solution:

Taken from: Kearns et al. (2006) Science 313, 824



Graph coloring dynamics as a minimal model of

collective problem-solving
REPORTS

» Background

Table 1. For each of the six experimental networks, the first six columns
provide statistics summarizing structural properties, including the
chromatic number (smallest number of colors required for solution), and
statistics on the distribution of the degree (number of links) of each vertex.
Network average distance is the average shortest-path distance, measured

Graph statistics

An Experimental Study of the Coloring
Problem on Human Subject Networks

Michael Kearns,* Siddharth Suri, Nick Montfort

in number of links traveled, over all pairs of vertices. Also displayed are the
average experiment duration for each network, along with the fraction of
trials on which it was solved within 300 s and the number of steps
(measured in color changes) for a natural distributed computer heuristic.
Pref. att., preferential attachment.

Avg. experiment

Distributed

C.olzer )l kA:]?N Yo g :A a(); Y : V?N ) t\;g d;slt'a nkce) duration (s) heuristic (No. of
required (No. inks (No. inks (No. inks (No. 0. of links and fraction solved coloF chaiges)
Simple cycle 2 2 2 2 0 9.76 5/6 378
5-chord cycle 2 2 4 2.26 0.60 5.63 117 687
20-chord cycle 2 2 7 3.05 1.01 3.34 6/6 8265
Leader cycle 2 3 19 3.84 3.62 231 117 8
Pref. att.,, v=2 3 2 13 3.84 244 2.63 2/6 1744
Pref. att., v=13 4 3 22 5.68 4.22 2.08 154.83 4/6 4703
experiment simulation

Taken from: Kearns et al. (2006) Science 313, 824



Graph coloring dynamics as a minimal model of
collective problem-solving
» Our model

M attention waves: a color change in the
neighborhood triggers an update of a node

B at each color change a node picks the color
minimizing the number of conflicts

B strategic waiting: whenever the node is already conflict minimizing color °
in its conflict-minimizing color, with high = l 5 "
probability it does not change its color A e ™Y

, 7~
/ 7/

no conflict minimizing @
color

Strategic waiting of A since B is better
placed to resolve the conflict

Hadzhiev et al. (2009) Advances in Complex Systems 12, 549.



Graph coloring dynamics as a minimal model of
collective problem-solving

» Results
heuristics from : : , . :
vy Kearns et al.
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Graph coloring dynamics as a minimal model of
collective problem-solving
» Results

cycle  5-chord 20—chord  leader  leader-u  pref-2  pref-3
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Kolling et al. (2011) EPJ B, submitted.



more strategic waiting

Graph coloring dynamics as a minimal model of
collective problem-solving

Kolling et al. (2011) EPJ B, submitted.

» Results
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Graph coloring dynamics as a minimal model of
collective problem-solving
» Results
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> Summary

» Three examples

(1) small case study on biological pattern formation
M individual properties of few elements can shape such patterns
B explicit pacemaker elements

B dynamically generated pacemakers

(2) excitable dynamics on graphs
B What are the network equivalents of spatiotemporal patterns?
M hubs as organizers of propagating waves

B synchronization of elements in the network, which are not
necessarily linked

(3) an example of collective problem-solving

B graph coloring dynamics as a minimal model of a collective
problem-solving task

B strategic waiting can help to resolve local deadlock situation

B exact placement of few shortcuts dramatically influences the
performance
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