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How can the properties of individual elements shape the collective  
behaviors ("patterns") in a system? 

New layer of predictability in self-organized patterns 

fundamental process: propagation of excitations through a system 

simple model of epidemic spread of infectuous diseases 

relevance to diverse biological processes 

relevance to a broad range of socio-economic processes 

   opinion formation 

   information spreading  

   any sort of cascade or wave phenomena 

Excitable dynamics 

Introduction 
Key question 



(1) small case study on biological pattern formation 

(2) excitable dynamics on graphs 

(3) an example of collective problem-solving 

Introduction 
Three examples 



Dictyostelium discoideum: early-stage pattern Dictyostelium discoideum: later-stage pattern 

remarkable collective problem-solving capacity 

optimized for a particular size of the collective states 

The model system 
Spatiotemporal patterns 



Dictyostelium discoideum 

The model system 
Spatiotemporal patterns 

'problem solving' 



The model system 
Spatiotemporal patterns 

'size optimization' 
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Dictyostelium discoideum: early-stage pattern Dictyostelium discoideum: later-stage pattern 

remarkable collective problem-solving capacity 

optimized for a particular size of the collective states 

How do patterns start?  

What is the role of cellular variability? 

How does the distribution of cell properties translate into 
patterns? 

The model system 
Spatiotemporal patterns 



Geberth and Hütt (2008) Phys.Rev. E 78, 031917 

simulation of spiral  
wave patterns for a  
distribution of  
pacemaker cells 

model from: 
Levine et al. (1996)  
PNAS 93, 6382  

Spatiotemporal patterns 

cAMP  
concentration 'state  

matrix' 

excitability 
feedback  
strength 

refractory/quiescent cell: s = 0 
firing cell: s = 1 

• (dynamic) threshold for c 
decides over firing 
• spontaneous firing of 
'pacemaker cells' 

Role of biological variability 



Geberth and Hütt (2008) Phys.Rev. E 78, 031917 

simulation of spiral  
wave patterns for a  
distribution of  
pacemaker cells 

model from: 
Levine et al. (1996)  
PNAS 93, 6382  

Spatiotemporal patterns 
Role of biological variability 



different simulation runs with same cell properties 
model from 
Levine et al. (1996)  
PNAS 93, 6382  

Spatiotemporal patterns 

Geberth and Hütt (2008) Phys.Rev. E 78, 031917 

Role of biological variability 



geometrical prediction distribution of spiral waves across 1000 
simulation runs 

Spatiotemporal patterns 

Geberth and Hütt (2008) Phys.Rev. E 78, 031917 

Role of biological variability 



anticorrelation of pacemaker cells and spiral waves 

some features can be understood in a simple geometric model 

alternative model fails to reproduce this anticorrelation 

prescribed pacemaker 
distribution 

model from: 
Levine et al. (1996)  
PNAS 93, 6382  

model from: 
Lauzeral, Halloy, Goldbeter (1996)  
PNAS 94, 9153 

Geberth and Hütt (2008) Phys.Rev. E 78, 031917 

Spatiotemporal patterns 
Role of biological variability 



extracellular degradation of signal 
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external  
cAMP 

intracellular  
cAMP 

fraction of  
active receptors 

model from: 
Lauzeral, Halloy, Goldbeter (1996)  
PNAS 94, 9153 

Spatiotemporal patterns 
A detailed look at 
the refined model 



extracellular degradation of signal 
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A detailed look at 
the refined model 

model from: 
Lauzeral, Halloy, Goldbeter (1996)  
PNAS 94, 9153 



previous definition of a pacemaker cell: all elements initially in the 
oscillatory regime 

new, refined definition: all elements in the oscillatory regime, when the 
last elements entered the excitable regime 

extracellular degradation of signal 
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Geberth and Hütt (2009) PLoS Computational Biology 5, e1000422 

Spatiotemporal patterns 
A detailed look at the refined model 



Spatiotemporal patterns 
A detailed look at the refined model 

detected target wave events correlate with the refined 'pacemaker' 
cells 

Geberth and Hütt (2009) PLoS Computational Biology 5, e1000422 

Software package for pattern simulation 
and spatiotemporal event reconstruction 
Geberth, Hütt (2010), Physica A 389, 249. 



Spatiotemporal patterns 
A detailed look at the refined model 

Geberth and Hütt (2009) PLoS Computational Biology 5, e1000422 



Taken from: Hufnagel et al. (2004) PNAS 101, 15124 

Motivation 
Excitable dynamics on graphs 



(at least) two distinct fields of research involved:  

  neural information processing 

  "pattern formation" aspects: heart cells, calcium dynamics, . . .  

abstract models help understand properties of such systems 

here we qualitatively link the "pattern" level with the "neural" level by 
studying pattern formation of excitable dynamics on graphs 

hierarchical graph concept taken from:  
Ravasz et al. (2002) Science 297, 1551 

regular “backbone“ 

“shortcut“ 
Watts and Strogatz (1998)  
Nature 393, 410 

Motivation 
Excitable dynamics on graphs 

Some previous findings 



percentage of shortcuts in small-world networks triggers a transition from 
activity failure to persistant activation for excitable integrate-and-fire neurons 

  Roxin, Riecke, Solla (2004) Phys.Rev.Lett. 92 198101 

importance of hierarchical structures  

  in neural information processing  
  Zhou et al. (2006) Phys.Rev.Lett. 97, 238103 
  Kaiser and Hilgetag (2007) Neurocomputing 70, 1829 

  and synchronization 
  Arenas et al. (2006) Phys.Rev.Lett. 96, 114102 

functional similarity of noise and shortcuts 
  Graham and Matthai (2003) Phys.Rev.E 68, 036109 
  Marr and Hütt (2006) Phys.Lett.A 349, 302 

(at least) two distinct fields of research involved:  

  neural information processing 

  "pattern formation" aspects: heart cells, calcium dynamics, . . .  

abstract models help understand properties of such systems 

here we qualitatively link the "pattern" level with the "neural" level by 
studying pattern formation of excitable dynamics on graphs 

Motivation 
Excitable dynamics on graphs 

Some previous findings 



excitable  
cells 

wave front 
(excited cells) 

refractory  
cells 

Excitable dynamics on graphs 

Scheme!

! !excitable      excited       refractory       refractory       excitable        . . . !

excitation in the !
neighborhood!

refractory time!

A minimal model 



A: active 
R: refractory 
E: excitable 

p: recovery rate 
f: rate of spontaneous excitations 

p 

A minimal model 
Excitable dynamics on graphs 

classical model of sustained excitable dynamics 

"forest-fire" model 
 Drossel and Schwabl (1992) Phys.Rev.Lett. 69, 1629 

has been studied previously on graphs 
 Graham and Matthai (2003) Phys.Rev.E 68, 036109 
 Carvunis et al. (2006) Physica A 367, 595 

similar to other three-state models (SIR etc.) 

f 



Müller-Linow et al., PLoS Comp. Biol. (2008) 4, e1000190 

A: active 
R: refractory 
E: excitable 

p: recovery rate 
f: rate of spontaneous excitations 

p 

f 

Results 

A minimal model 
Excitable dynamics on graphs 



hierarchical graph taken from:  
Kaiser and Hilgetag (2007) Neurocomputing 70, 1829 

"fractal" graph taken from:  
Sporns (2006) BioSystems 85, 55 

central-
node based 
reference 

topological module 
reference 

central-
node based 
reference 

topological module 
reference 

Application to models of biological neural networks 
Excitable dynamics on graphs 



cortical systems network of the cat 
55 cortical areas; 565 connections 

cellular neuronal network of C. elegans 
277 neurons; 1918 connections 

central-
node based 
reference 

topological module 
reference 

central-
node based 
reference 

topological module 
reference 

Application to two real networks 
Excitable dynamics on graphs 



ring waves around 
a central node 

synchronous activity 
within modules 

Hütt and Lesne (2009) Frontiers in Neuroinformatics 3, 28. 

hierarchical graph concept taken from:  
Ravasz et al. (2002) Science 297, 1551 

ring waves around 
a central node 

synchronous activity 
within modules 

Results (cont'd) 
Excitable dynamics on graphs 



Graph coloring dynamics as a minimal model of  
collective problem-solving 

Background 



Taken from: Kearns et al. (2006) Science 313, 824 

Graph coloring dynamics as a minimal model of  
collective problem-solving 

Background 



Taken from: Kearns et al. (2006) Science 313, 824 

Graph coloring dynamics as a minimal model of  
collective problem-solving 

Background 



Graph coloring dynamics as a minimal model of  
collective problem-solving 

Background 

Windt and Hütt (2010) CIRP Annals Manufacturing Technology 59, 461.  



Taken from: Kearns et al. (2006) Science 313, 824 

Graph coloring dynamics as a minimal model of  
collective problem-solving 

Background 



Taken from: Kearns et al. (2006) Science 313, 824 

Graph coloring dynamics as a minimal model of  
collective problem-solving 

Background 



Taken from: Kearns et al. (2006) Science 313, 824 

simulation	  experiment	  

Graph coloring dynamics as a minimal model of  
collective problem-solving 

Background 



conflict minimizing color 

no conflict minimizing 
color 

A
B

Strategic waiting of A since B is better 
placed to resolve the conflict 

attention waves: a color change in the 
neighborhood triggers an update of a node 

at each color change a node picks the color  
minimizing the number of conflicts 

strategic waiting: whenever the node is already  
in its conflict-minimizing color, with high  
probability it does not change its color 

Hadzhiev et al. (2009) Advances in Complex Systems 12, 549. 

Graph coloring dynamics as a minimal model of  
collective problem-solving 

Our model 



strategic 
waiting [W] 

conflict- 
minimizing  
color [M] 

attention  
waves [C] 

upper boundary 
for color changes 

heuristics from  
Kearns et al. 

Hadzhiev et al. (2009) Advances in Complex Systems 12, 549. 

Graph coloring dynamics as a minimal model of  
collective problem-solving 

Results 



Kölling et al. (2011) EPJ B, submitted. 

Graph coloring dynamics as a minimal model of  
collective problem-solving 

Results 



Kölling et al. (2011) EPJ B, submitted. 

Graph coloring dynamics as a minimal model of  
collective problem-solving 

Results 
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increasing graph complexity increasing graph complexity 



Hadzhiev et al. (2009) unpublished 

strong 
local hubs 

strong 
modularity 

Graph coloring dynamics as a minimal model of  
collective problem-solving 

Results 



(1) small case study on biological pattern formation 

individual properties of few elements can shape such patterns  

explicit pacemaker elements 

dynamically generated pacemakers  

(2) excitable dynamics on graphs 

What are the network equivalents of spatiotemporal patterns?  

hubs as organizers of propagating waves 

synchronization of elements in the network, which are not  
necessarily linked  

(3) an example of collective problem-solving 

graph coloring dynamics as a minimal model of a collective   
problem-solving task  

strategic waiting can help to resolve local deadlock situation 

exact placement of few shortcuts dramatically influences the  
performance 

Summary 
Three examples 
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