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® Introduction to spin glasses (disordered magnets)
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® Equilibrium properties of spin glasses -
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® Nonequilibrium properties of spin glasses in a field




Introduction to spin glasses




Prototype model for a magnet:

H=—> Ji;S:5;

(4,5)
Order parameter

Disorder plays an

® Properties of materials change.

® But often neglected. .
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integral role in nature:
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® Phase transition into a glassy phase with no spatial order

e Complex energy landscape E
® Slow dynamics +‘ ‘ ~
® Unexpected effects: aging,

el :

memory, hysteresis configuration space
® Problem: Only mean-field model solvable. Solution: Simulations.
® Numerically complex optimization problem, generally NP hard
® Many applications to other fields and problems:

® Physics: vortex glasses, disordered magnetic media, error
correcting codes, structural glasses, ...

e Computer science and related fields: pattern recognition,
combinatorial optimization, economics, ...



® [970: Canella & Mydosh see a cusp in XSG of Fe/Au alloys.The

material has RKKY interactions \C

7 COS(ZkFRij) /\
g ™ 3

1

>

T

Ax

} o

T T

which introduces disorder and frustration, necessary in a spin glass.

® [975:Introduction of the Edwards-Anderson Ising spin glass model:

H=—Y Ji;S:S;

(i7)

® |975:The mean-field Sherrington-Kirkpatrick model is introduced.

® [979: Parisi solution (RSB) of the mean-field model.

® |986: Fisher & Huse suggest the droplet picture (DP) to describe

short-range spin glasses.
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Equilibrium properties in a field



® [wo contradicting predictions:

® Replica Symmetry Breaking: Existence of an instability line [de
Almeida & Thouless (78)] for mean-field glasses.

® Droplet Picture: there is no spin-glass state in a field.
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Which of the above pictures is correct?



® Theory: de Almeida & Thouless (78) predict an instability line for
the SK model.
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Algorithm
Tool




PRL 93,207203 (2004)

® Edwards-Anderson Ising spin-glass model with random fields:

(27) 2
® Properties:

® Sum over nearest neighbors in 3D with Gaussian random bonds.

® The random fields are Gaussian distributed with zero mean and
[hf];\//Q = HRr .This corresponds to a uniform field Hg.

® For zero field 1. ~ 0.99.
® Why do we choose random fields?
® Equilibration test for the Monte Carlo method

® Parallel tempering performs slightly better than in a uniform
field.



Simulate M copies of the system at different temperatures

with T > 1.

Allow swapping of neighboring temperatures: easy crossing

barriers!

E ﬂ A P(E)
v/ /Y\
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configuration space T4 To E

Fast equilibration with rough energy landscapes.

The method obeys detailed balance
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® Ballesteros et al. (00) reintroduce the use of the finite-size
correlation length to study phase transitions in spin glasses.
Calculation of &1.:

® Wave-vector-dependent connected spin-glass susceptibility:

xsa (k) = %Z [((&-S})T — <S7L>T<Sj>T) 2] etk (Ri—Ry;)

® Ornstein-Zernicke approximation:
xsa(k)/xsc(0)] " = 1 +&Lk% + O[(¢ck)"]

e Compensate for PBC and finite-size effects and solve for {1,

£ B 1 [ XSG(O) - 1] 1/2
L 2 Sin(kmin/2) XSG(kmin)

® Finite-size scaling: % — X (Ll/”[T — TC(HI‘)])



® The data cross at
T. ~0.95in
agreement with
previous results.

® Evidence of a spin-
glass state for

T < 0.95. g
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® Using parallel
tempering we can

scanh down to
T = 0.23.

® We perform slices
at different fields.

® Krzakala predlcts\§
Har ~ 0.65.
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® Using parallel
tempering we can

scanh down to
T = 0.23.

® We perform slices
at different fields.
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® Using parallel
tempering we can

scanh down to
T = 0.23.

® We perform slices

at different fields.
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Problem:
small
systems.

Maybe AT
line for d > 6!

Does the

method pick up
the AT line!?

What
about higher

dimensions?




PRB 72, 184416 (2005)
d d =20 o.(d)

H=—> Ji;SiSi—> hiS;
ij i
® The sum ranges over all spins.

® Gaussian random fields and

power-law modulated random
bonds (SK model foro = 0):

[h3]ae” = H,

12 1 2 o
The model allows for a large range of sizes.

Interesting regime: 1/2 <o < 1



® The data span a 3?
large range of sizes E
® Transition in zero —é.
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® The data span a
large range of sizes

® T[ransition in zero
field for o < 1.0
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° The data Span 3 | | | | | | | | | | | | | |
large range of sizes . |
T o = O.85|
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® The data span a
large range of sizes

® Mean-field behavior

for 0 <2/3
o 1.~ 0.92
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® The data span a
large range of sizes

® Mean-field behavior
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® The data span a
large range of sizes

® Mean-field behavior 10
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® The data span a
large range of sizes

® Mean-field behavior
for 0 <2/3
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® The AT line vanishes when not in the mean-field regime.

® For short-range spin glasses below the upper critical dimension:

® Related work:

Proposal by M.A. Moore (cond-mat/0508087) how RSB might be
stable for d < 6 (Temesvari: RSB for d > 8).

Proposal by de Dominicis (cond-mat/0509096) of a possible field
theory for DP for d < 6.

See also: http://jc-cond-mat.bell-labs.com/jc-cond-mat/



Nonequilibrium properties in a field




® Due to the randomness the system has a rough energy landscape.

® The rough energy landscape has many metastable states responsible
for the hysteresis.

H = Hcrit




cond-mat/0509515 (2005)

M

® Definitions:

® Complementary point memory: P
Correlations between configurations

at +H"* and —H™ e ¥ w

® Return point memory: ‘\" >
Configurations at a given H "are —/[.CPI\/I H

similar after n loop cycles.

® Example: Barkhausen noise.

® Recent experiments [Pierce et al. (05)] and numerical work
[Deutsch & Mai (05), Jagla (05)] suggest the following:

® RPM and CPM — 0 for decreasing disorder.
e CPM < RPM < | for systems with high disorder.



® Experiments by Pierce et al. (05): ':sa‘r’ 026 '
P ( | ) gggi r' “
0§03
RPM and CPM g2 02 CPM < RPM
become better for £ o

increasing disorder

ncreasing disorder
Measure the effects of disorder on Co/Pt multilayer films using X-ray

speckle metrology.
e Simulations by Deutsch & Mai (05) [Jagla (05)] using LLG dynamics:

:—JZS S Z S ILL — wZ— S ez])(s e’LJ SZSJ] N stf

(1,9) i#] "

® Results of theory and simulation agree.



® Edwards-Anderson Ising spin glass (EASG):
H = _ZJijSiSj —H(t)ZSZ SZ - {:l:l}
(i7) i
Gaussian-distributed bonds: |J;;]ay = 0 and [ij];f =07

Nearest neighbor interactions in two dimensions.

From spin reversal symmetry expect: RPM = CPM = | for T = 0.

® Random-field Ising model (RFIM):

H=—JY SiS;—» hSi—H(t)) 5
(i) i i

Gaussian-distributed random fields [h;].y = 0 and [h?]l/2

av — Oh

Nearest neighbor interactions in two dimensions.
No spin reversal symmetry: CPM < |

Due to the no passing property we expect RPM = | for T = 0.



e T=0
® Change the external field in small steps. Compute the local fields:

hi =Y JijS;+ H(t)

]
of each spin 5; .A spin is unstable if £;5; < 0.Dynamics:

® Flip a randomly chosen unstable spin.
e Update the local fields of the neighbors.

® |terate until all spins are stable.

o >0

® Change the external field in small steps. Average over

® For each field step perform a finite-T M@oYy We Tre) te (12
® [terate until the magnetization is indepgier ey I > Vite) s 13



Intermediate disorder:
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Red pixels denote differences

between configurations.
RPM and CPM are not perfect

due to frustration.
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® |dea:

e Study correlations between
configurations.

e Start the loop at positive saturation.

® Definition of overlaps: @ measures
the degree of memory configurations,

q’ the uniqueness.

e CPM:

AM
I <
RPM,
.\,/\ I
>
\J‘ H
CPM




q(H™)

N
1 3k >k
% > Si(H{)Si(—Hiy)
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® Data show strong

correlations
between
configurations.

Memory not

perfect even at
T=0.

Memory

decreases with T.
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® Correlations
unique.

® Memory not

perfect even at
T=0.

® Memory

decreases with T.

e RPM = CPM.
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Data for T = 0.2.

Memory better
for increasing
disorder.

Variable o;

Qualitative
agreement with
the experiments.

M
A I <
\‘\ 11
— >
\.\ H
CPM



A4 K

A Yorn= > Si(HD)SI—HE)  a(H e = > Si(HD)S: (H7)
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® Experiments of Pierce et al.:
o CPM<RPM< | forall T
® No error bars: CPM

RPM

CPM

o Z\-PM jnd CPIgRrPa perfect agreement. TRV EET
Isoraer. Roughness (nm)

® Edwards-Ang
® Model has

Can we construct a minimal
model which reproduces the

® RPM=CP experiments?
e RPM and CPMin

® Random-field Ising model:
® No frustration and no spin reversal symmetry.

e RPM>CPMforallT,RPM =1 forT =0,CPM ~ 0 forall T.

® RPM increases for increasing disorder.
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5% random fields
with op =1

variable o5

CPM <RPM < |

Memory increases
with increasing
disorder

The random fields
break spin-
reversal symmetry

Deutsch: break
time-reversal
symmetry.



® Why does the memory increase with increasing disorder?



® Equilibrium properties:

e Simulations on the one-dimensional Ising chain suggest that short-
range spin glasses can have an AT line for d > 6.

® Nonequilibrium Properties:

® The random-field Ising model and the EA spin glass show memory
effects.

® The SG+RF model is a minimal model which shows the same
behavior as the experiments of Pierce et al.



Thank you.



