Geometry of Domain Walls in disordered 2d systems

C. Schwarz¹, A. Karrenbauer², G. Schehr³, H. Rieger¹

¹ Saarland University
 ² Ecole Polytechnique Lausanne
 ³ Université Paris-Sud

Applications of POLYNOMIAL combinatorial optimization methods in Stat-Phys. (T=0)

- o Flux lines with hard core interactions
- o Vortex glass with strong screening
- o Interfaces, elastic manifolds, periodic media
- o Disordered Solid-on-Solid model
- o Wetting phenomena in random systems
- o Random field Ising systems (any dim.)
- o Spin glasses (2d polynomial, d>2 NP complete)
- o Random bond Potts model at T_c in the limit $q{\rightarrow}\infty$
- 0 ...

c.f.: A. K. Hartmann, H.R.,

Optimization Algorithms in Physics (Wiley-VCH, 2001); New optimization algorithms in Physics (Wiley-VCH, 2004)

Paradigmatic example of a domain wall: Interfaces in random bond Ising ferromagnets

$$H = -\sum_{i} J_{ij} S_i S_j \quad J_{ij} \ge 0, \quad S_i = \pm 1$$

Find for given random bonds J_{ij} the ground state configuration {S_i} with fixed +/- boundary conditions

⇔ Find interface (cut) with minimum energy

The SOS model on a random substrate

Ground state (T=0): In 1d: h_i - h_{i+r} performs random walk $C(r) = [(h_i - h_{i+r})^2] \sim r$ In 2d: Ground state superrough, $C(r) \sim \log^2(r)$ Stays superrough at temperatures $0 < T < T_{\alpha}$

Mapping on a minimum-cost flow problem

{x}, the height differences, is an integer flow in the dual lattice $x_{ij} = n_i - n_j$ $d_{ij} = d_i - d_j$

Height profile ↔ Flow configuration

Minimize
$$H = \sum_{(ij)} (x_{ij} - d_{ij})^2$$

with the constraint $(\nabla \cdot \mathbf{n})_i = 0$

(mass balance on each node of the dual lattice)

 \rightarrow Minimum cost flow problem

Domain walls in the disordered SOS model

DW scaling in the disordered SOS model

Energy scaling of excitations

Droplets – for instance in spin glasses (ground state $\{S_i^0\}$):

Connected regions C of lateral size ℓ^d with $S_i = -S_i^0$ for $i \in C$ with OPTIMAL excess energy over GS energy E^0 .

Droplets of ARBITRARY size in 2d spin glasses [N. Kawashima, 2000]

For SOS model c.f. Middleton 2001.

Droplets of FIXED size in the SOS model

Droplets: Connected regions C of lateral size L/4 < l < 3L/4 with $h_i=h_i^0+1$ for $i \in C$ with OPTIMAL energy (= excess energy over E^0).

Efficient computation: Mapping on a minimum s-t-cut.

Example configurations (excluded white square enforces size)

Results: Scaling of droplet energy

Average energy of droplets of lateral size ~L/2 saturates at FINITE value for $L\rightarrow\infty$

Probability distribution of excitations energies: L-independent for $L \rightarrow \infty$.

n.b.: Droplet boundaries have fractal dimension d_f=1.25, too!

Geometry of DWs in disordered 2d models

DWs are **fractal curves** in the plane for spin glasses, disordered SOS model, etc (not for random ferromagnets)

Do they follow Schramm-Loewner-Evolution (SLE)? Yes for spin glasses (Amoruso, Hartmann, Hastings, Moore, Middleton, Bernard, LeDoussal)

Schramm-Loewner Evolution (1)

The random curve γ can be grown through a continuous exploration process Paramterize this growth process by "time" t:

When the tip τ_t moves, a_t moves on the real axis

At any t the domain D/ γ can be mapped onto the standard domain H, such that the image of γ_t lies entirely on the real axis

Loewners equation:

$$\frac{dg_t(z)}{dt} = \frac{2}{g_t(z) - a_t}$$

Schramm-Loewner evolution:

If Proposition 1 and 2 hold (see next slide) than a_t is a Brownian motion: $a_t = \sqrt{\kappa}B_t$ κ determines different universality classes!

Schramm-Loewner Evolution (2)

Define measure μ on random curves γ in domain D from point r₁ to r₂

Property 1: Markovian

$$\mu(\gamma_2|\gamma_1; D, r_1, r_2) = \mu(\gamma_2; D/\gamma_1, \tau, r_2)$$

Property 2: Conformal invariance

$$\phi \star \mu(\gamma; D, r_1, r_2) = \mu(\phi(\gamma); D', r'_1, r'_2)$$

Examples for SLE_{κ}

- $\kappa = 2$: Loop erased random walks
- $\kappa = 8/3$: Self-avoiding walks
- $\kappa = 3$: cluster boundaries in the Ising model
- $\kappa = 4$: BCSOS model of roughening transition, 4-state Potts model, double dimer models, level lines in gaussian random field, etc.
- $\kappa = 6$: cluster boundaries in percolation
- $\kappa = 8$: boundaries of uniform spanning trees

Properties of SLE_k

1) Fractal dimension of γ : $d_f = 1 + \kappa/8$ for $\kappa \le 8$, $d_f = 2$ for $\kappa > 8$

2) Left passage probability: (prob. that z in D is to the left of γ)

Schramm's formula:

$$P_{\kappa,D,a,b}(z) = P(g(z)) = \frac{1}{2} + \frac{\Gamma\left(\frac{4}{\kappa}\right)}{\sqrt{\pi}\Gamma\left(\frac{8-\kappa}{2\kappa}\right)} \cdot {}_2F_1\left(\frac{1}{2},\frac{4}{\kappa};\frac{3}{2};-\left(\frac{\operatorname{Re}(g(z))}{\operatorname{Im}(g(z))}\right)^2\right) \frac{\operatorname{Re}(g(z))}{\operatorname{Im}(g(z))}$$

DW in the disordered SOS model: SLE κ ?

 $h_{R}=1$

 $h_{R}=0$

Let D be a **circle**, a=(0,0), b=(0,L) Fix boundaries as shown

Cumulative deviation of left passage probability from Schramm's formula f. κ

Minimum at $\kappa = 4!$

Local deviation of left passage probability from $P_{\kappa=4}$

Other domains (\rightarrow conformal inv.):

DWs in the disordered SOS model are not described by chordal SLE

Remember: $d_f = 1.25 \pm 0.01$

Schramm's formula with $\kappa=4$ fits well left passage prob. IF the DWs are described by $SLE_{\kappa=4}$: $d_f = 1+\kappa/8 \implies d_f = 1.5$

But: Indication for conformal invariance!

Conclusions / Open Problems

- Droplets for ℓ→∞ have finite average energy, and ℓ-independent energy distribution
- Domain walls have fractal dimension d_f=1.25
- Left passage probability obeys Schramm's formula with $\kappa=4$ [$\neq 8(d_f-1)$]
- ... in different geometries → conformal invariance?
- DWs not described by (chordal) SLE why (not Markovian?)
- Contour lines have $d_f=1.5$ Middleton et al.): Do they obey $SLE_{\kappa=4}$?
- What about SLE and other disordered 2d systems?

Disorder chaos (T=0) in the 2d Ising spin glass

$$C_{\delta}(r) = \left[\frac{1}{N} \sum_{i=1}^{N} S_i S_{i+r} S'_i(\delta) S'_{i+r}(\delta)\right]_{\mathrm{av}}.$$

$$Q_L(\delta) = N^{-1} |\sum_{i=1}^N S_i S'_i(\delta)|$$

$$\begin{array}{c}
1 \\
0.8 \\
\textcircled{O} \\
\hline
0.6 \\
0.6 \\
0.4 \\
0.01 \\
0.1 \\
1 \\
0.1 \\
0.1 \\
0.1 \\
1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.$$

$$C_{\delta}(r) \sim \tilde{c}(r\delta^{1/\zeta})$$

HR et al, JPA 29, 3939 (1996)

Disorder chaos in the SOS model – 2d

Scaling of $C_{ab}(r) = [(h_i^{a} - h_{i+r}^{a}) (h_i^{b} - h_{i+r}^{b})]:$

 $C_{ab}(r) = \log^2(r) f(r/L_{\delta})$ with $L_{\delta} \sim \delta^{-1/\zeta}$ "Overlap Length"

 $q^2 \cdot C_{12}(q) \sim \log(1/q) \qquad \Rightarrow C_{12}(r) \sim \log^2(r)$

Analytical predictions for asymptotics $r \rightarrow \infty$:

Hwa & Fisher [PRL 72, 2466 (1994)]: $C_{ab}(r) \sim log(r)$ (RG)Le Doussal [cond-mat/0505679]: $C_{ab}(r) \sim log^2(r) / r^{\mu}$ with μ =0.19 in 2d (FRG)

Exact GS calculations, Schehr & HR `05:

 \Rightarrow Numerical results support RG picture of Hwa & Fisher.