
Hans Ekkehard Plesser
UMB / Simula Research Center

Simulating Neuronal Networks
with PyNEST

It is easy to do –
but do we know what we are doing?

Oldenburg 6 April 2009 2© H E Plesser / UMB

Overview

● NEST Initiative & Simulator
● PyNEST: Simple examples
● PyNEST: Network examples
● “Showtime”

● How “science” are simulations today?
● Reproducibility
● Sharing and re-use
● Perspectives

Oldenburg 6 April 2009 3© H E Plesser / UMB

NEST

Initiative & Simulator

Oldenburg 6 April 2009 4© H E Plesser / UMB

The NEST Initiative

 Activities:
 ht t p: / / www. nes t - i ni t i at i v e. or g

 Public releases of NEST available
since fall 2004

 Since 2004 used at the EU
Advanced Course in Computational
Neuroscience

 NEST Workshops at the CNS*2005
in Madison (USA) and CNS*2006 in
Edinburgh (UK)

 Goals of the NEST Initiative:
1. share expertise
2. combine resources
3. coordinate research and software

development
4. increase software quality
5. share simulations and results

 Neural Simulation Technology (NEST)
Initiative was established in 2001.

 Currently four core developing groups:
1. Honda Research Institute Europe
2. BCCN Freiburg
3. Norwegian University of Life

Science, Ås
4. Brain Science Institute, RIKEN

Oldenburg 6 April 2009 5© H E Plesser / UMB

Computational Neuroscience

"The goal of neural modeling is to relate, in nervous systems, function to
structure on the basis of operation."
 MacGregor & Lewis 1977

Oldenburg 6 April 2009 6© H E Plesser / UMB

Important properties
● Discrete processing units: neurons
● Neurons process incoming signals internally
● Neurons communicate through stereotypical

pulses with finite transmission delays: spikes
● Typical scales

– internal dynamics ~ 1ms

– spike delays ~ 1ms

– firing rates ~ 10 Hz

– 105 neurons/mm3

– 104 inputs/output per neuron

Oldenburg 6 April 2009 7© H E Plesser / UMB

NEST in a nutshell
 Available from www.nest-initiative.org
 Command-line application
 Network models built from neurons, synapses, and devices.
 High-level simulation language (Python or SLI).
 Models for neurons, synapses, and devices are written in C++
 Support for parallel and distributed simulation (Threads and MPI)
 Used at international summer schools since 2004
 «Tell us and cite us» open source license

Oldenburg 6 April 2009 8© H E Plesser / UMB

Neural Networks in NEST

● Network: Directed graph
● Nodes: Neurons (104-106)
● Edges: Connections (107-109)
● Interaction: Delayed pulses
● Kernel tasks:

– Process incoming spikes

– Advance neuron states

– Emit outgoing spikes

node 1

node 2

node 3

time

Oldenburg 6 April 2009 9© H E Plesser / UMB

Parallel Simulation in NEST2

SERIAL PARALLEL

Oldenburg 6 April 2009 10© H E Plesser / UMB

NEST

Simple Examples

Oldenburg 6 April 2009 11© H E Plesser / UMB

A simple model

import nest
import nest.voltage_trace

nest.ResetKernel()

neuron=nest.Create("iaf_neuron")
noise =nest.Create("poisson_generator",2)
sine =nest.Create("ac_generator")
voltmeter= nest.Create("voltmeter")

nest.SetStatus(noise,[{"rate":75000.0},
 {"rate":20000.0}])
nest.SetStatus(sine, [{"amplitude":100.0,
 "frequency":2.0}])

nest.SetStatus(voltmeter,[{"withgid": True, "withtime": True}])

nest.ConvergentConnect(noise,neuron,weight=[1., -1.])
nest.Connect(voltmeter,neuron)
nest.Connect(sine,neuron)

nest.Simulate(1000.0)

nest.voltage_trace.from_device(voltmeter)

PG SG

VM

IAF

PG

Oldenburg 6 April 2009 12© H E Plesser / UMB

Example: Optimizing a network
● Excitatory population modeled

as Poisson process
● Inhibitory population modeled

as Poisson process
● Single I&F neuron receiving

input from both populations
● Goal: Adjust inhibitory

population rate so neuron
fires with same rate as
excitatory population

● Approach: repeated simulation
+ bisection

Excit Inhib

I&F

Oldenburg 6 April 2009 13© H E Plesser / UMB

Optimizing: the code
neuron = nest.Create("iaf_neuron")
noise = nest.Create("poisson_generator",2)
spikedetector = nest.Create("spike_detector")

nest.SetStatus(noise, [{"rate": n_ex*r_ex}, {"rate": n_in*r_in}])

nest.ConvergentConnect(noise, neuron, [w_excit, w_inhib], 1.0)
nest.Connect(neuron, spikedetector)

in_rate = bisect(lambda x: output_rate(x) - r_ex,
 lower, upper, xtol=prec)

def output_rate(guess):
 rate = float(abs(n_in*guess))
 nest.SetStatus([noise[1]], "rate", rate)
 nest.SetStatus(spikedetector, "n_events", 0)
 nest.Simulate(t_sim)
 out=nest.GetStatus(spikedetector, "n_events")[0]*1000.0/t_sim
 return out

Oldenburg 6 April 2009 14© H E Plesser / UMB

Optimization: example run
Inhibitory rate estimate: 15.00 Hz -> Neuron rate: 347.64 Hz
Inhibitory rate estimate: 25.00 Hz -> Neuron rate: 0.04 Hz
Inhibitory rate estimate: 20.00 Hz -> Neuron rate: 37.04 Hz
Inhibitory rate estimate: 22.50 Hz -> Neuron rate: 0.00 Hz
Inhibitory rate estimate: 21.25 Hz -> Neuron rate: 0.92 Hz
Inhibitory rate estimate: 20.62 Hz -> Neuron rate: 7.32 Hz
Inhibitory rate estimate: 20.94 Hz -> Neuron rate: 3.48 Hz
Inhibitory rate estimate: 20.78 Hz -> Neuron rate: 3.92 Hz
Inhibitory rate estimate: 20.70 Hz -> Neuron rate: 6.04 Hz
Inhibitory rate estimate: 20.74 Hz -> Neuron rate: 5.76 Hz
Inhibitory rate estimate: 20.76 Hz -> Neuron rate: 5.24 Hz
Inhibitory rate estimate: 20.77 Hz -> Neuron rate: 5.28 Hz

Optimal rate for the inhibitory population: 20.77 Hz

Oldenburg 6 April 2009 15© H E Plesser / UMB

PyNEST

Network Example

Oldenburg 6 April 2009 16© H E Plesser / UMB

NEST Topology Module
● Idea: User-friendly support for layered networks
● Implementation: Kittel Austvoll
● Describe network as collection of layers
● Elements of a layer can be

● Individual neurons
● Groups of neurons (e.g. Microcolumn)
● Placed on a fixed grid
● Placed arbitrarily in space

● Connections described by
● Masks: no connections outside mask
● Kernels: give distance-dependent connection

probability

Oldenburg 6 April 2009 17© H E Plesser / UMB

Example Network
(after Lumer et al, 1997)

● LGN: Layer of individual neurons
● Vp: Layer of microcolums

● L4: 2 pyr. cells, 1 internrn
● L6: 1 pyramidal cell

● Connections:
● LGN -> Vp/L4 pyr: rectangle
● Vp/L4 pyr -> internrn: circular
● Vp/L4 internrn -> pyr: “doughnut”
● Vp/L4 internrn -> internrn: “flat”
● Vp/L4 pyr -> Vp/L6 pyr: Gaussian
● Vp/L6 pyr -> LGN: Gaussian

After Lumer et al, 1997

Oldenburg 6 April 2009 18© H E Plesser / UMB

PyNEST/Topology Code for Network
layout = {'rows': 50, 'columns': 50,
 'extent': [5.0, 5.0],
 'center': [0.0, 0.0],
 'edge_wrap': False}

- Retina --------------------------------

nest.CopyModel('ac_poisson_generator',
 'retina_cell',
 {'DC': 30.0, 'AC': [30.0],
 'Freq': [2.0], 'Phi': [0.0]})

ret_config = dict(layout)
ret_config['elements'] = 'retina_cell'

retina = nest.CreateLayer(ret_config)

- LGN -----------------------------------

nest.CopyModel('iaf_neuron', 'lgn_rc')

lgn_config = dict(layout)
lgn_config['elements'] = 'lgn_rc'

lgn = nest.CreateLayer(lgn_config)

- V1 ------------------------------------

nest.CopyModel('iaf_neuron', 'l4_pyr')
nest.CopyModel('iaf_neuron', 'l4_inh')
nest.CopyModel('iaf_neuron', 'l6_pyr')

v1_config = dict(layout)
v1_config['elements']

= [['l4_pyr', 2, 'l4_inh', 1], ['l6_pyr', 1]]

v1 = nest.CreateLayer(v1_config)

- Retina -> LGN -------------------------

nest.ConnectLayer(retina, lgn,
 {'connection_type': 'convergent',
 'mask': { 'grid': {'rows': 1, 'columns': 1} },
 'delay': 1.0,
 'weight': 10.0})

- LGN -> V1/L4 --------------------------

nest.ConnectLayer(lgn, v1,
 {'connection_type': 'convergent',
 'targets': {'model': 'l4_pyr'},
 'mask': {'rectangular':
 {'lower_left': [-0.4, -0.1],
 'upper_right': [0.4, 0.1]}},
 'kernel': 0.5,
 'weights': 5.0,
 'delays': {'uniform': {'min': 2, 'max': 3}}})

- V1/L4 -> V1/L4 ------------------------

nest.ConnectLayer(v1, v1,
 {'connection_type': 'divergent',
 'sources': {'model': 'l4_pyr'},
 'targets': {'model': 'l4_inh'},
 'mask': {'circular': {'radius': 1.0}},
 'kernel': {'linear': {'c': 1.0, 'a': -1.0}},
 'delays': 1.0,
 'weights': 2.0})

- V1/L4 -> V1/L6 ------------------------
...

- V1/L6 -> LGN --------------------------
...

Oldenburg 6 April 2009 19© H E Plesser / UMB

Showtime

Oldenburg 6 April 2009 20© H E Plesser / UMB

Simplified version of Hill & Tononi (2005)

Oldenburg 6 April 2009 21© H E Plesser / UMB

Larger visual-pathway model

Oldenburg 6 April 2009 22© H E Plesser / UMB

How “science” is
neuronal network simulation

today?

Oldenburg 6 April 2009 23© H E Plesser / UMB

Scientific method

● Thorough critique of methods, observations,
and conclusions

● Validation based on independent reproduction
● Accumulation of knowledge through exchange,

evolution and (sometimes) revolution of ideas
● Requires precise and comprehensible

description of research

Oldenburg 6 April 2009 24© H E Plesser / UMB

Reproducibility

Neuronal network simulations are generally not
reproducible today (and everyone knows ...)

Oldenburg 6 April 2009 25© H E Plesser / UMB

Example 1

● Single neuron model
● Generally well presented
● Paper-and-pencil analysis shows

that row “3” should have no spikes
● Could not be resolved in

collaboration with author
● Probably figure mix-up
● No qualitative consequences

Oldenburg 6 April 2009 26© H E Plesser / UMB

Example 2

● Well-known integrate-and-fire network model
● Chosen as benchmark for simulator comparison
● Author of paper unable to reproduce figures

from his own paper with his own simulator
● Differences probably due to “minor” changes in

simulator code
● Never resolved
● No qualitative consequences

Oldenburg 6 April 2009 27© H E Plesser / UMB

Example 3

● Well-known paper on plasticity
● Neuronal connections based on

Gaussian profile
● Reproduction failed qualitatively
● Inspection of original C-code

revealed Gaussian with cut-off
● Were original authors aware of

role of cut-off?

Oldenburg 6 April 2009 28© H E Plesser / UMB

How bad is it?
● “It is currently impossible to reproduce and validate

most of the results that computational scientist
publish ...” (Stodden, 2009)

● “[A]n article about computational science in a scientific
publication is not the scholarship itself, it is merely
advertising on scholarship.” (J Claerbout)

● Shooting-star crystallographer had to retract six
papers because “a homemade data-analysis program
had flipped two columns of data” (Science 314:1856
2006).

● See Victoria Stodden for more
(http://www.stanford.edu/~vcs/)

Oldenburg 6 April 2009 29© H E Plesser / UMB

Sharing and re-use

Oldenburg 6 April 2009 30© H E Plesser / UMB

Resources: NeuronDB & ModelDB

Oldenburg 6 April 2009 31© H E Plesser / UMB

But are they used?
● Google Scholar search for “ModelDB Accession Number”:

Oldenburg 6 April 2009 32© H E Plesser / UMB

Why not?
● Little tradition for use of standard tools/simulators
● Difficult to port models from one simulator to other
● PhD students like to write their own simulators

– Instant gratification from software development

– Unaware of pitfalls

– Desire for “total understanding & control”

– Lack of compentence among supervisors?

● Models described in widely different ways in
literature

● Rarely ever in a way facilitating re-building

Oldenburg 6 April 2009 33© H E Plesser / UMB

Ways of model description

Nordlie, Gewaltig, Plesser (submitted)

Oldenburg 6 April 2009 34© H E Plesser / UMB

Description vs Development
● Models often described with detailed references

to biological literature
● Biological justification may obfuscate concise of

resulting model architecture
● But in fact

– Design decisions often based on “what was
needed to make model work”

– Some decisions motivated by external factors,
eg need to define student project

● Last to points rarely mentioned in papers
● Information important for re-use lacking

Oldenburg 6 April 2009 35© H E Plesser / UMB

Perspectives
● Increasing awareness of advantages of

“standard simulators” (Neuron, NEST, Genesis/
Moose, PCSim, Brian)

● Review by Brette et al, J Comp Neurosci 2007
● Simulator integration (PyNN, Music)
● SBML & CellML showing advantages of

standards for sharing models
● INCF Task Force on Standard Language for

Neuronal Network Models
● BUT: Requires conscious effort by all in the field

