

Loop length distributions in the Negative Weight Percolation problem: Extension to d=2...6

G. Claußen, O. Melchert and A.K. Hartmann Institut für Physik, Universität Oldenb<u>urg, Germany</u>

Negative-weight percolation (NWP)

 $d\text{-}{\rm dimensional}$ lattice model with quenched disorder. Edge weights ω drawn from disorder distribution

$$P(\omega) = \rho \ e^{-\omega^2/2} / \sqrt{2\pi} \ + \ (1 - \rho) \ \delta(\omega - 1)$$

- Allows for loops $\mathcal L$ with negative weight $\omega_{\mathcal L}$
- Tunable disorder parameter ρ: ρ=0: no loops with ω_L < 0 ρ=1: many (large) loops with ω_L < 0

Compute loop configuration C with minimum weight

$$E \equiv \sum_{\mathcal{L} \in \mathcal{C}} \omega_{\mathcal{L}} \stackrel{!}{=} \min$$

- "Easy" combinatorial optimization problem
- Solvable through mapping to minimum weight perfect matching (MWPM) problem [1]

Percolation phenomenon

- (2D square lattice, side length $L\!=\!64$)
- Loop lengths l "grow" for increasing ρ
- System spanning loops appear for $\rho\!\ge\!\rho_c=0.34$
- Disorder induced, geometric transition

Measuring and quantities

- Set up random edge weights for $\rho < \rho_c$
- Compute distribution n(l) of loop lengths l
- Count "small", i.e. non-percolating loops only!

Consider the following relations:

- $\rho \approx \rho_c$: $n \propto l^{-\tau}$ with Fisher exponent τ
- $\rho < \rho_c$: $n \propto l^{-\tau} \exp(-T_L l)$ with line tension T_L
- $\rho < \rho_c$: $T_L \propto |\rho \rho_c|^{1/\sigma}$ with the finite-size cut-off parameter σ

Estimate $\sigma_{lit} = \frac{1}{d_f \cdot \nu}$ (see [5]) employing:

- Fractal dimension d_f
- Correlation length exponent ν

Measured for percolating loops at $\rho > \rho_c$

Bibliography

- $[1]\;$ OM, AKH, New J. Phys. 10 (2008) 043039
- [2] R. Ahuja, T. Magnanti, J. Orlin, *Network flows*, (Prentice Hall, 1993)
- [3] AKH, Practical Guide to Computer Simulations, (World Scientific, 2009)
- [4] W. Cook, A. Rohe, INFORMS 11 (1999) pp. 138-148
- [5]~ L. Apolo, OM, AKH, Phys. Rev. E 79 (2009) 031103 $\,$

 NEWS
 Modern Computational Science

 open summary database
 Summer School August 20-31, 2012

 www.papercore.org
 www.mcs.uni-oldenburg.de

Loop algorithm – path-to-matching transformation

- Standard minimum-weight path algorithms don't work, since $d(i) = \min_{j \in N(i)} [d(j) + \omega(i, j)]$ not fulfilled
- Minimum-weight path problem requires matching techniques [1, 2]:
- (a) original graph G,
- (b) auxiliary graph $G_{\rm A}$,
- (c) MWPM on G_A (blue edges),
- (d) loop configuration on G

A MWPM is found through the Blossom IV algorithm [4].

Exponential suppression of loop lengths

- $\bullet\,$ Distributions n(l) show exponential suppression of lengths
- Measured through the $\exp(-T_L l)$ factor ($\rho = \rho_c : T_L = 0$)

Results and conclusion

d	L	N_{max}	$ ho_c$	σ_{lit}	best σ	Remarks about the fit
2	512	6400	0.34	0.53(3)	0.53(3)	rs for $ ho < 0.28$, $\tilde{ ho}_c = 0.344(2)$
3	64	4800	0.1273	0.69(2)	0.67(1)	$\tilde{\rho}_c = 0.1278(1)$
4	16-21	32000	0.064	0.78(3)	0.78(2)	resampling for $ ho < 0.045$
5	10-12	16000	0.0385	0.86(4)	0.88(2)	$[0.025:\rho_c]$
6	6	54864	0.02670	1.00(3)	0.97(4)	[0.022: <i>ρ</i> _c]

- Conclusion: Theory holds well up to d = 6, fitted values meet expectations
- No considerable result at d = 7 (upper critical dimension d = 6, see [5]) System size limited to L = 5 by computer memory (MWPM calculations)
- Improvement: Logarithmic binning reduces noise in the n(l) tails