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If you can establish long range connectivity,
then you can ...
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... eat your breakfast egg without a spoon, ...
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... eat your breakfast egg without a spoon, ...

... watch TV at the same time, ...
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... eat your breakfast egg without a spoon, ...

... watch TV at the same time, ...

... win a game of “go”, ...
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... eat your breakfast egg without a spoon, ...

... watch TV at the same time, ...

... win a game of “go”, ...

... or catch the flu.
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In spite of this broad range of phenomena ( & much more! ),
conventional folklore:

percolation is simple & universal:

• continuous (“second order”) phase transition

• for spatial systems (lattices, Voronoi tessalations, ...) : anomalous
critical exponents depending on dimension d

• for random networks (locally loop-less, e.g. Erdös-Renyi): mean
field exponents

• for directed systems (SIS epidemics): directed percolation has dif-
ferent exponents

• finite systems: Finite Size Scaling (FSS)
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That’s it !
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NO, THERE IS MORE!
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Growing random networks (Callaway, Hopcroft, Kleinberg, Newman &
Strogatz, PRE 64, 041902 (2001):

• begin with empty graph (no nodes, no links)

• add one node

• with probability δ add a link between two randomly chosen nodes,
if there are not yet linked node pairs

• repeat

NB: disregard connectivity, no preferential attachment
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• For δ < δc = 1/4, there will be no ∞ cluster, i.e. Smax/N → 0

• For δ > 1/4, Smax/N → finite value ρ(δ) > 0.

• ρ(δ) has no power law singularity ρ(δ) ∼ δβ as in OP, but an
essential singularity:
all derivatives dkρ(δ)/dk = 0 : “infinite order”

• for all δ < 1/4, Smax ∼ N−α(δ): “critical phase”
(cf. Kosterlitz-Thouless-Berezinskii)

Hmm!
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Boettcher, Singh, & Ziff, arXiv 1109.6567:
bond percolation on a hierarchical lattice with finite ramification
→ discontinuous transition: Smax/N jumps (for N → ∞) at p = 1/2.

Hmmm!

Are there more models with first order percolation transitions?
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Large Percolation on interdependent networks
[Buldyrev et al., 2010, Parshani et al., 2010, S.-W. Son et al. 2011, ...]

Ordinary SIR epidemic on sparse random graph (locally loop-less);
infection probability = 1:

u = prob{ end point of random link is not infected}
= uk−1 (k = degree)
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Let p′(k) = kp(k)/〈k〉 = degree distribution of link endpoint;

S = 1 − u = prob{ point is infected} = relative size of infected cluster

S = 1 −
∑

k p′(k)(1 − S)k−1 = 1 − G(1 − S)

G(x) = −
∑

k p′(k)xk = 1 + 〈k〉x + 1
2
〈k(k−1)〉

〈k〉 x2 + . . .

Def.: f(S) = S − 1 + G(1 − S)
→ f(S) = 0 : → self-consistency condition for relative cluster size
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Large Interdependent networks:

• same set of nodes

• two different sets of links: {A,B}

• cluster CAB of sites is (AB)-connected, if any two sites i, j ∈ C are
connected both by A-path and by B-path, both entirely within C

node i ∈ CAB ↔

• i is connected to at least one other node j ∈ CAB through an A-link

• & at least one node ∈ CAB through a B-link

For Erdös-Rényi with 〈k〉A = 〈k〉B :

g(S) ≡ S − (1 − G(S))2 = 0
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First order (discontinuous) transition!

Same simple analytic treatment also for other types of dependencies (Son
et al., 2011):

• > 2 interdependent sets of links,

• mixture of “connectivity” & “dependency” links,

• some nodes need only single connection

• ...
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Intuitive picture (Buldyrev et al., 2010):

Italy, September 28, 2003: Nation-wide power black out
A = network of power lines
B = information network

Failure of first node
to all nodes connected to it via A fail
to all nodes connected to these via B fail
to all nodes connected to these via A fail
. . .

Cascades of mutually induced failures → more abrupt onset of giant
cluster
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NO!

For A,B subsets of links on 2-d lattices:

• S ∼ (〈k〉 − 〈k〉c)
β : continuous transition

• βdepend > βOP : transition is less abrupt
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Large Cooperative contagion

• Barbara tells Thilo: “movie X is good!”
Thilo: ”Hm”

• Stefan tells Thilo: “movie X is good!”
Thilo: ”Hm”

• Ginestra tells Thilo: “movie X is good!”
Thilo: ”Hm”

• Barbara & Stefan & Ginestra tell Thilo: “movie X is good!”

Thilo: ”Oh – Where can I see it!?”
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More generally:

p1 = prob{site is infected at first attack}
p2 = prob{site that was not infected at first attack is infected at 2nd}
p3 = prob{site that is still not infected is infected at 3rd attack}
etc

Ordinary bond percolation: p1 = p2 = p3 = . . .
Ordinary site percolation: p2 = p3 = . . . = 0

pk decrease with k: immunity strengthened by successive attacks: dull
pk increases with k: cooperative contagion – interesting!
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Alternative notation:
qk = prob{site is infected after k attacks}

= p1 + (1 − p1)p2 + . . . (1 − qk−1)pk
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On sparse (i.e., locally loop-less) random graphs:
Similar treatment as before

Ordinary (bond) percolation with infection probability p:

1 − S =

∞
∑

k

kp′(k)(1 − pS)k−1

F (S) ≡
∞
∑

k=1

kp(k){(1 − pS)k−1 + (S − 1)} = 0

Complex contagion:

(1 − pS)k−1 →
k−1
∑

n=0

(

k − 1

n

)

(1 − qn)Sn(1 − S)k−n−1

(each term corresponds to exactly n infective neighbors)
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Transition continuous → discontinuous percolation transition:
F (0) = F ′(0) = F ′′(0) = 0

q1 = p1 =
〈k〉

〈k(k − 1)〉

q2 = 2q1

(Dodds & Watts 2004).
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Spatially embedded (regular lattice, ...):

cooperativity
→ surface of clusters become smoother
→ holes in cluster become smaller
→ cluster density increases

Tricritical point:
cluster becomes compact,
with rough but non-fractal surface

Beyond tricritical point:

“First-order percolation” ≡ rough pinned surfaces
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Why did “explosive percolation” make such a splash?
Why did we, like Molière’s Bourgeois Gentilhomme, not know that we
speak 1st order percolation, whenever we spoke rough pinned surfaces?

• Density of ∞ cluster has always finite density

• Nucleation: growth from point seed is hindered & goes through
bottleneck

BUT:

• No jump in any plot of “order parameter” S against “control pa-
rameter” = #(bonds)

Is this a bona fide “first order” phase transition in the usual sense?
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A short course on first & second order phase transitions:

Thermodynamics:

• order parameter is density of extensive quantity (magnetization,
particle density, ...) or inverse density (specific volume)

• control parameter is conjugate variable (magnetic field, chemical
potential, pressure, ...)

• e.g. van der Waals gas (∼ water / vapor): if pressure is kept fixed
below critical point, then energy jumps at T = Tboil → forst order
transition. If p > pc, no such jump, all is continuous. If p = pc,
then no jump, but dE/dT is not continuous.

• similar, if T = const, p is used as control parameter

! if volume is used at fixed T , then NO jump, even if always p < pc !
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(water in pot with movable tight lid: as lid is moved,
vapor ↔ coexisting vapor/water ↔ water )
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Percolation:

p=fraction of est’d bonds (bond percolation)
p=fraction of est’d sites (site percolation)

neither is conjugate to a density or to an inverse density, but both are
densities themselves!

?!?! Smax/N is not expected to jump at a bona fide first order transition
!?!?!?

Cooperative contagion: q1, q2 are NOT directly related to bond densities
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Phase diagram for regular graphs:
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d = 2: no tricritical point, pinned surfaces are always fractal & in
percolation universality class

d = 5: Upper critical dimension for tricritical point, also upper critical
dimemnsion for rough surfaces

d ≤ 5: ǫ-expansion (field theoretic RG)
H.K. Janssen, M. Müller, & O. Stenull, PRE 70,026114 (2004):
– agrees with simulations for d = 4, 5
– disagrees for d = 3

Points on x-axis (p1 = 0): “Bond bootstrap” percolation
Ordinary bootstrap percolation: all bonds are present, but sites are only
present when > k neighbors.
Here: Bonds are present with probability < 1, sites are only present
when ≥ 2 neighbors
– d > 3: “Edwards-Wilkinson-type” theory (no overhangs) give cor-
rect scaling – d = 3: Numerically observed scaling disagrees with EW-
predictions
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All dimensions:
Cluster surfaces become (t → ∞) locally isotropic, when in ordinary
percolation universality class,
stay anisotropic when in first-order regime

Ordinary & tricritical percolation: decay of local surface anisotropy ∼ ta

with
– one new exponent a for d < 5; – two new exponents for d ≥ 5
(one exponent for directionalities of new contacts, other for anisotropy
of new infections)
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d ≥ 4:

• Finite size scaling as in second-order regime ok.

• Cleanest power laws for p0 = 0 (“bond bootstrap percolation”),
powers agree with Edwards-Wilkinson type models (no overhangs)
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Large Other way to implement cooperativity:

Hamiltonian (“exponential”) graph models

P (G) = e−H(G|θ1,θ2,...)

(Gibbs-Boltzmann)

• ER-model, fluctuating bond number L:

H(G|θ) = θL

• Strauss model:

H(G|θ) = θL + B/Nn∆,

n∆ = number of triangles ...

• 2-star model:

H(G|θ) = θL + B/Nnv,

nv = number of “2-stars”
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• ...
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Percolation thresholds: θ = O(lnN) (givesL ∼ N)

For θ/B = O(1), θ ≥ 1:
first order “clustering” transition with huge jump in L. (Park & New-
man)

For θ/B = O(1), θ = O(ln N):
second order percolation transition is “overrun” by clustering transition,
becomes also first order,
but with “schizophrenic” hysteresis loop
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Agglomerative percolation (AP)

Ordinary bond percolation (OP): in each step, one random pair of nodes
is joined.
AP: in each step, one cluster is chosen randomly and joined with ALL
of its neighbors

[original motivation: claim by Song, Havlin, & Makse (Nature 433, 392
(2005), that similar procedure shows finite fractal dimensions for small
world graphs]

Random trees
Erdös-Renyi networks
1-d chains
→ different results from OP.
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2-d lattices:

triangular lattice: same universality class as OP (τ = 2.055, D = 1.89, ν =
4/3) square lattice: completely different: τ = D = 2, ν = ∞

??
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Hon Wai Lau, PG, Maya Paczuski:

Square lattice is bipartite,

“color” of site/node
to unique color of cluster starting at this site/node
AP transition on bipartite graph coincides with spontaneous symmetry
breaking

0-46



Conclusions:

• Depending on topology, percolation on graphs can have orders
ranging from 1 to ∞
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Figure 1: (Color online) Probabilities that the two largest clusters have
the same color. These probabilities should vanish in the supercritical
phase, if L → ∞. Panel (a) is for the square lattice, panel (b) for
the cubic. The upper inset in panel (b) shows the region close to the
critical point. The lower inset shows a data collapse plot, c−−(n) against
(n − nc)L

1/ν with nc = 0.4109 and ν = 1.01.
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• Definition of “order” of percolation transition requires care

• In a well defined way, pinned rough surfaces are just first order
percolation transitions.

• Their off-lattice equivalents are models for cooperative infectious
spreading studied in the sociological literature

• Although Achlioptas processes are coninuous, they completely dif-
ferent finite size behavior

• Interdependencies in random sparce (loop-less) networks can be
treated theoretically much easier, if cascades are not followed ex-
plicitly –

• – but this might be not so interesting, because geometric networks
show opposite effects

• Agglomerative percolation shows dramatic violations of universal-
ity ;
– it can do so because it is non-local;
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– it does so, because the percolation transition on bipartite lattices
involves spontaneous symmetry breaking

0-51


