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Current Goal in Genetics

Since the end Human Genome Project (2003), the new main goal in genomic is
to understand functions and links between genes, and find way of action to
achieve a particular phenotype.

Applications
Medecine

Breast Cancer
Laron syndrome

Agronomy
Quantitative trait, like meat or milk
Animal’s robustness
Hornless cattle

Gilles Monneret Identification of causal relationships in gene networks



Introduction
MCMC-Mallows

Marginal approach
Application on real dataset

Discussion

Causality and genomics
Do-calculus
Gene Regulatory Network

Detecting Gene influence

Correlation
Traditionnal use of statistics give to us correlation6=causality.

Correlation can be the expression of a (indirect) causal effect
Can be the consequence of another variable that have a causal
effect on both
Or means nothing, just bad luck or methodological bias (e.g :
normalization)

Genes can be correlated because they are located in the same
geographic area.
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Confounder

Does umbrellas cause
car accidents ?

WET STREET

UMBRELLAS CAR ACCIDENTS

RAIN
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Do-calculus

Wild type Knock-out

WET STREET

UMBRELLAS CAR ACCIDENTS

RAIN

WET STREET

UMBRELLAS CAR ACCIDENTS

RAIN

DO

P(CAR ACCIDENTS|UMBRELLAS=YES) 6= P(CAR ACCIDENTS| do(UMBRELLAS=YES))
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Gene Regulatory Network

DNA 

Gene 1 Gene 2 Gene 3 Gene 4 

TF binding site in promoter region 

Coding DNA (gene) 

Transcrip�on factor 
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Bayesian Network

A

B

C

D

E

F

G

Directed Acyclic Graph G = (V ,E ),
No directed cycles are allowed.
Bayesian Network B = (G,Pθ).
V are linked to X ∼ Pθ.
Pθ (X ) =

∏
i Pθ (Xi | pa(Xi )).

Causal Network : experiments,
interventions... Pθ → P̃θ

First use of directed graph : Geneticist Wright (1921).
Wright, S. (1934). The method of path coefficients. The annals of mathematical statistics, 5(3),

161-215.
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Topological ordering
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Causal Gaussian Bayesian Network

X k
j is the expression of gene j ∈ 1, . . . , p in experiment

k ∈ 1, . . . ,N

X k
j = mj +

∑
i∈pa(j)

Wi ,jX k
i + εj with εj ∼ N (0, σ2

j )

with Wi ,j 6= 0 if and only if i ∈ pa(j) and nodes ordered such that
i ∈ pa(j)⇒ i < j (i.e., W = (Wi ,j) is upper triangular). Model
parameters are θ = (W,m,σ).

Direct causal effects are W
Total causal effects are L = (I−W)−1 = I+W + . . .+Wp−1

Wi ,j =
d
dx

E[Xj |do (X−j) ,Xi = x ] Li ,j =
d
dx

E[Xj |do(Xi = x)]
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Markov equivalence

X

Y

Z

X

Y

Z

P(Graph) = P(X )P(Y |X )P(Z |Y )

P(Graph) = P(Z )P(Y |Z )P(X |Y )

With only observational data,
we can not choose between these models.
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Posterior Causal Ordering

For any given ordering o = o1, o2, . . . , op we assume the full model :
Wi,j 6= ∀i < j (not suitable for large p without some kind of
regularization).

Posterior Causal Ordering is defined as :

P(o|data) ∝ P(data|θ̂o)× P(o)

where θ̂o is the MLE of the full model with causal ordering o and P(o) is
a prior distribution.

Causal effect estimates :

Ŵ =
∑
o

P(o|data)× Ŵ o and L̂ =
∑
o

P(o|data)× L̂o
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log-likelihood (1)

Consider experiment k with intervention on Jk (Jk = ∅ means no
intervention), where Kj = {k , j /∈ Jk} and Nj = |Kj |.

The log-likelihood of the model can be written as :

`(m,σ,W) = Cst−
∑

j

Nj log(σj)−
1
2

∑
j

1
σ2

j

∑
k∈Kj

(xk
j −xkWeT

j −mj)
2

Then

mj =
1
Nj

∑
k∈Kj

(xk
j − xkWeT

j )
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log-likelihood (2)

The log-likelihood of the model can then be rewritten as :

˜̀(σ,W) = Cst−
∑

j

Nj log(σj)−
1
2

∑
j

1
σ2

j

∑
k∈Kj

(yk,j
j − yk,jWeT

j )
2

where for (k , j) such that k ∈ Kj : yk,j = xk − 1/Nj
∑

k ′∈Kj
xk ′

Then W solution of the following linear system :∑
i ′,(i ′,j)∈E

Wi ′,j
∑
k∈Kj

yk,j
i yk,j

i ′ =
∑
k∈Kj

yk,j
i yk,j

j for all (i , j) ∈ E

and
σ2

j =
1
Nj

∑
k∈Kj

(yk,j
j − yk,jWeT

j )
2
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Metropolis-Hasting

Objective : draw samples from P(o|data) (which is only known up
to a normalization factor).

Metropolis-Hasting algorithm :
1 start from arbitrary order o(0)

2 for i = 1, . . . ,N :
propose o′ according to proposal distribution Q(o′|o(i−1))
compute acceptance rate

min
(
1,

P(o′|data)× Q(o(i−1)|o′)
P(o(i−1)|data)× Q(o′|o(i−1))

)
if move accepted o(i) = o′ else o(i) = o(i−1)

3 o(0), o(1), o(N) is a (dependent) sample of the target
distribution.
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Limitations

Problem in High Dimension :
1. If we do not have enough Data, we can not solve∑

i ′,(i ′,j)∈E

Wi ′,j
∑
k∈Kj

yk,j
i yk,j

i ′ =
∑
k∈Kj

yk,j
i yk,j

j for all (i , j) ∈ E

2. Large number of parameters. p(p+1)
2 + 2p parameters to

estimate, with generally p observation/intervention data or
less : overfitting.

3. The search space is huge : p! orders. We need to explore this
space, so the MCMC-Mallows takes a long time until
convergence.
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Penalized Maximum Likelihood

The penalized log-likelihood can be written as :

`(m,σ,W ) = Cst − 1
2

∑
j

1
σ2

j

∑
k∈Kj

(yk,j
j − yk,jWeT

j )
2−λ

2

∑
(i ,j)∈E

w2
ij

W become the solution of the following linear system, for all (i , j)
s.t. i ∈ paj :∑

k∈Kj

yk,j
i

∑
i ′,(i ′,j)∈E

wi ′,jy
k,j
i ′ =

∑
k∈Kj

yk,j
i yk,j

j −λσ
2
j wi ,j
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Skeleton - Simulation

Fixed DAG of 10 nodes
100 run with 10 random observations each.
Estimation of skeleton with glasso
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Posterior Order 10 nodes

A posteriori order with and without skeleton.

1 2 3 4 5 6 7 8 9 10

Order

G1

G3

G6

G2
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G10
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Gaussian Bayesian Network

W X

Y Z

?

Wild Type Knock-out

W X

Y Z

We assume that data are generated under a directed acyclic graph.
Our approach : marginal linear causal analysis

Z = αX + µZ + εZ

µZ = βW + γY + µ̃Z

Where εZ ∼ N (0, σ2Z ) : we want to find causal links.
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Marginal causality : Upstream/Downstream

G "do-node"

X0 X1 G X2 X3

 
 

Upstream

Downstream

Upstream : X0 → G , X1 → G , node G ko
Downstream : G → X2, G → X3 node G ko
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Models

M1

G XWild type

do(G = g) XKnock-out

M0

G X G XWild type

do(G = g) XKnock-out
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Correlation/Causality model and Bayes Factor

Markov equivalence
M1 : Z1 ∼ N (µ1, σ

2
1) Z2 ∼ N (µ2, σ

2
2) G = Z1 X = αZ1 + Z2

M0 : Z̃1 ∼ N (µ̃1, σ̃1
2) Z̃2 ∼ N (µ̃2, σ̃2

2) G = βZ̃1 + Z̃2 X = Z̃1

M0 :

(
G
X

)
∼ N

((
m1
m2

)
,

(
s21 ρs1s2
ρs1s2 s22

))

µ1 = m1 µ2 = m2 − αm1 σ1 = s1 α = ρs2/s1 σ2 =
√

s22 − α2s21

µ̃1 = m2 µ̃2 = m1 − βm2 σ̃1 = s2 β = ρs1/s2 σ̃2 =
√

s21 − β2s22

Bayes Factor

B = exp
(
`0(θ̂0)

)
/ exp

(
`1(θ̂1)

)
B = P(data|M0)/P(data|M1)
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Likelihood

`WT (θ) =
∑

k∈WT

log Φ
(
Xk |µX + αGk , σ

2
X

)
+ log Φ

(
Gk |µG , σ

2
G

)
,

`
1
KO (θ) =

∑
k∈KO

log Φ
(
Xk |µX + αGk , σ

2
X

)
,

`
2
KO (θ) =

∑
k∈KO

log Φ
(
Xk |µX + αµG , α

2
σ

2
G + σ

2
X

)
,

M1 : Downstream causality

`M1 (θ) = `WT (θ) + `
1
KO (θ)

M0 : Upstream/Correlation case

`M0 (θ) = `WT (θ) + `
2
KO (θ) .
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Simulation
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3 45
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1

1

0.1

Simulated graph

●

●

●

●

KO−node
Upstream
Correlation
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1 2 3 4 5 7 8 9 10 11 12 13

−
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−
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−
10

0
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gene index

lo
g1

0(
B

ay
es

 fa
ct

or
)

Boxplot of bayes factor for all genes.

1 2 3 4 5 6 7 8 9 10 11 12 13
3.80 1.06 1.09 0.88 0.66 0.87 0.76 5.27 1.21 1.30 1.11 1.33 2.45

Table – Residual standard deviation
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Data analysis : Causality

Number of samples 24 24
Growth Hormone Receptor state active inactive

Genes 43088
Differentially expressed genes 16276

How to find the causal relationship between GHR and other
genes ? Causality paradigm
Classical analysis : differential analysis with limma... but does
not identify real causal relationships.
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Differential Analysis

Two sample t-test
XWT and XKO are n samples for two random variable, with
respective mean E (XWT) and E (XKO). ŝ =

√(
ŝ2
WT + ŝ2

KO

)
/2

H0 : β = E (XWT)− E (XKO) = 0.

Corresponding statistics :

t =
β̂
√

n
ŝ

∼ t-distribution with 2(n − 1) degrees of freedom

Do not use any links between genes.
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limma

Hierarchical Empirical Bayes
Somes prior (not all priors are listed here) :

1
s2 = 1

d0s20
χd0

β̂| β, s2 ∼ N
(
β, 2σ2

)
ŝ2|s2 ∼ s2

dg
χdg

Which result to : s̃ =
d0 ∗ s20 + dg ∗ ŝ2g

d0 + dg
,

where d0 and s0 being some precalculated prior.

moderated t-statistic

t =
β̂
√

n
s̃

∼ t-distribution with dg + d0 degrees of freedom
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Summary - 1

MCMC-Mallows
MCMC approach can find an posterior ordering based only on
data.
Can handle many interventions in the same time.
To have good quality for the solution, needs of many
interventions.
MCMC approach is not tractable for more than 100 genes.
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Summary - 2

Marginal approach
Explicit use of do-calculus
Likelihood derivation
Simulations that validate this model
Very related to differential analysis.
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What next :
Parallel-tempering inside MCMC approach
Differential analysis// Causal analysis
Integrate several KO
Interventions models (bypath, knock-down)

Funding : ? ED386 : PhD grant
? INRA : Data (Causality)

Thanks to my supervisors : Florence Jaffrezic, Andrea Rau and Gregory Nuel.
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Thank you !
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Mallows’ Proposal

Mallows’ Ranking Distribution : with parameter φ ∈]0, 1[ and reference
ordering r is defined by

P(o;φ, r) = φd(o,r)

where d(o, r) counts the number of pairwise disagreements.

Properties :

mode is in r

φ→ 0 corresponds to a dirac distribution

φ→ 1 corresponds to the uniform distribution

normalization factor is 1× (1+ φ)× . . .× (1+ φ+ . . .+ φp−1)

sampling in O(p) with the Repeated Insertion Method
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Mallow’s distribution in action

φ = 0.1 φ = 0.3 φ = 0.6 φ = 0.9
1 2 4 3 5 1
2 3 4 5 1 3
2 4 5 2 1 3
4 5 1 2 3 4
5 1 2 3 4 5
1 2 3 4 5 1
3 2 5 4 1 2
3 4 5 1 2 4
3 5

1 2 3 4 5 2
1 3 4 5 3 1
2 4 5 1 2 3
4 5 1 2 3 5
4 2 1 4 3 5
1 2 4 3 5 1
2 3 4 5 1 2
3 4 5 1 3 4
5 2

1 3 4 5 2 1
3 4 5 2 1 5
3 2 4 1 2 3
4 5 4 5 3 1
2 1 3 2 4 5
3 1 5 2 4 1
2 3 5 4 1 2
4 3 5 1 3 4
5 2

3 4 2 5 1 1
4 5 3 2 3 2
4 5 1 1 2 3
4 5 2 1 5 3
4 2 4 5 1 3
3 4 2 5 1 4
2 1 3 5 3 4
2 1 5 1 5 3
4 2

Table – Example illustrating ten draws from the Mallows model with a
reference ordering of r = (1 2 3 4 5) for different temperatures
(φ = 0.1, 0.3, 0.6, 0.9).
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Examples of real-life GRN
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Bias-variance dilemna

We use the MSE to test our model. We can show that :

MSE = Cst+ Bias2 + Variance

The idea is to put some constraint to decrease greatly the variance
of our estimator, even if that increases slightly the bias.

Gilles Monneret Identification of causal relationships in gene networks



Example of DREAM 10 and 100 Graphs

Skeleton coming from the DREAM 4 challenge.
We simulate DAG and data from this skeleton.

G1

G2

G3

G4

G5

G6

G7

G8

G9

G10

G1

G2G3

G4 G5

G6

G7 G8G9 G10

G11 G12

G13

G14 G15

G16 G17G18 G19

G20

G21

G22

G23

G24

G25

G26

G27

G28

G29

G30

G31G32

G33

G34G35

G36G37

G38

G39

G40 G41

G42

G43 G44G45

G46

G47 G48

G49

G50

G51 G52

G53

G54 G55 G56G57

G58

G59

G60

G61

G62 G63 G64

G65

G66

G67 G68 G69

G70

G71

G72G73

G74G75

G76

G77G78 G79 G80G81

G82

G83

G84 G85

G86

G87G88

G89

G90G91

G92

G93

G94

G95

G96

G97

G98

G99

G100
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Quality of estimation : W and L

Effect of the constraint on both direct and total causal effect, 10
nodes.

1e-06 1e-03 1e+00 1e+03 1e+06

1.8
0

1.8
2

1.8
4

1.8
6

1.8
8

Ridge Penalty

MS
E

Direct causal effect matrix W

1e-06 1e-03 1e+00 1e+03 1e+06

0.8
1.0

1.2
1.4

1.6
1.8

2.0

Ridge Penalty

MS
E

Total causal effect matrix L
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Including Skeleton

If we know the underlying skeleton, we can integrate this
information to improve our model. Both speed and quality of the
output are improved as shown below :

Figure – Acceptance rate for several temperatures

Temperature Without skeleton With skeleton
0.1 0.9995 1.0000
0.3 0.8285 0.8915
0.5 0.5170 0.6430
0.7 0.2910 0.3940
0.9 0.1520 0.2325
1 0.1240 0.2000
10 0.0040 0.0050
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Skeleton and speed

From DREAM 10 and 100 graphs, we have more or less 5% of
edges.

Number of
equations

Computational
time for MLE

Computational time
for 50.000 iterations of
MCMC

Without skeleton 5050 30s 17 days
With skeleton 250 <1s 2 hours

In fact, computation is in order of O(p6).
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Estimation enhancement with structure

Expectation of estimation quality enhancement.
Fixed DAG of 10 nodes with known order, 100 run with 10 random
observations each.

MSE W MSE L
Without Skeleton 271.6166 21.18093
With Skeleton 0.1726994 0.02466682
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Biological context

Gene regulation

Transcriptomic data

Interventional data (knock-out)
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Simulation-1

We simulate two kinds of data : some are causally related (1), and
others are only associated (2).

(1) M1 : G X1 Downstream model

(2) M0 : G X2 Correlation model

G is knocked-down. 24 observations/24 interventions for each
model → 96 samples. Repeated 100 times.
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Results-1

Figure – Bayes factor to choose between correlation and causality
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Parameters : N = 24, α = 0.3, µ1 = 2.0, µ2 = −3.1,
Left : σ1 = 0.3, σ2 = 0.5, Right : σ1 = 3, σ2 = 5.
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Interactome
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