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Current Goal in Genetics

Since the end Human Genome Project (2003), the new main goal in genomic is
to understand functions and links between genes, and find way of action to

achieve a particular phenotype.

Applications

o Medecine
o Breast Cancer
e Laron syndrome
e Agronomy

o Quantitative trait, like meat or milk
e Animal’s robustness
e Hornless cattle

Gilles Monneret Identification of causal relationships in gene networks



Introduction
Causality and genomics
Do-calculus
Gene Regulatory Network

Detecting Gene influence

Correlation

Traditionnal use of statistics give to us correlation#causality.
o Correlation can be the expression of a (indirect) causal effect

@ Can be the consequence of another variable that have a causal
effect on both

@ Or means nothing, just bad luck or methodological bias (e.g :
normalization)

Genes can be correlated because they are located in the same
geographic area.
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Confounder

Does umbrellas cause

car accidents?
WET STREET
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Do-calculus

Wild type Knock-out

WET STREET DO

P(CAR ACCIDENTS|UMBRELLAS=YES) # P(CAR ACCIDENTS| do(UMBRELLAS=YES))
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Gene Regulatory Network

Gene 1 Gene 2 Gene 3 Gene 4
—

E] Coding DNA (gene) 1 e

O Transcription factor
B TF binding site in promoter region °

Gilles Monneret Identification of causal relationships in gene networks



MCMC-Mallows Goal and mode‘l
Search of an order

Penalized estimation
Experimental results

MCMC-Mallows

Gilles Monneret Ident

ation of causal relationships in gene networks



Goal and model
Search of an order
Penalized estimation
Experimental results
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Bayesian Network

Directed Acyclic Graph G = (V, E),
No directed cycles are allowed.

Bayesian Network B = (G, Py).
V are linked to X ~ Py.

Py (X) = I1;Po (Xi| pa(Xi)).

e e Causal Network : experiments,
interventions... Pg — Py

First use of directed graph : Geneticist Wright (1921).

Wright, S. (1934). The method of path coefficients. The annals of mathematical statistics, 5(3),

161-215.
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Causal Gaussian Bayesian Network

Xjk is the expression of gene j € 1,..., p in experiment
kel ....N
Xjk =mj+ Z VV,"J'X,-k +€j with €j NN(O./UE)
iepa(j)

with W; ; # 0 if and only if / € pa(j) and nodes ordered such that
i €pa(j)=i<j(i.e., W= (W) is upper triangular). Model
parameters are § = (W, m, o).
@ Direct causal effects are W
o Total causal effectsare L = (I = W) L =14+W ... + Wr!
d d
Wis = SEIXldo(X ), Xi = x] Lij = SEDGldo(X; = )]
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Markov equivalence

7
N\ P(Graph) = B(X) P(Y|X) P(Z]Y)

P(Graph) = P(Z) P(Y|Z)P(X|Y)

With only observational data,
we can not choose between these models.
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Posterior Causal Ordering

For any given ordering 0 = 01, 00, . . ., op we assume the full model :

W;; # Vi < j (not suitable for large p without some kind of
regularization).

Posterior Causal Ordering is defined as :
P(o|data) o< P(data|8,) x P(o0)

where 8, is the MLE of the full model with causal ordering o and P(0) is
a prior distribution.

Causal effect estimates :

W = ZP(o\data) x W, and L= Z]P’(o|data) x Lo
o o

Gilles Monneret Identification of causal relationships in gene networks



Goal and model
Search of an order
Penalized estimation
Experimental results

MCMC-Mallows

log-likelihood (1)

Consider experiment k with intervention on 7, (Jx = () means no
intervention), where IC; = {k,j ¢ Ji} and N; = |K;|.

The log-likelihood of the model can be written as :

{(m,o, W) = Cst— ZN log(oj)— Z Z X; —kae —mj)

J J Jke}C

Then
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log-likelihood (2)

The log-likelihood of the model can then be rewritten as :

l(o, W) = Cst — Z N;j log(o}) Z Z ' )’k‘JWejT)2

J J Jkelc

where for (k,j) such that k € K; : ykJ = xk — 1/N; Zkle,cj xK’

Then W solution of the following linear system :

Z WWZ ki k’J—Zyk” kJ forall (i,j) € &€

i’ (i"j)eE kek; kek;

and )
hy .
o} = N > (v -y We/)?
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Metropolis-Hasting

Objective : draw samples from P(o|data) (which is only known up
to a normalization factor).

Metropolis-Hasting algorithm :
@ start from arbitrary order 0(%)
Q fori=1,....,N:

o propose o’ according to proposal distribution Q(o’|o!~1)
e compute acceptance rate

i (1 P(0’|data) x Q(ol~Y|0’)
"P(oli-Vl]data) x Q(0’|oli=1)

e if move accepted o) = o’ else 0() = oli~1)
© 0,01 0N is a (dependent) sample of the target
distribution.
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MCMC-Mallows

Limitations

Problem in High Dimension :
If we do not have enough Data, we can not solve

ST Wi > vy =3yl forall (ij) e €

i,(i" j)eE keK; kekK;

2. Large number of parameters. (pH) + 2p parameters to
estimate, with generally p observatlon/lnterventlon data or
less : overfitting.

3. The search space is huge : p! orders. We need to explore this
space, so the MCMC-Mallows takes a long time until

convergence.
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Penalized Maximum Likelihood

The penalized log-likelihood can be written as :

(myo, W) = Cst—QZ Z yk’jWejT)zfg Z W,-Jz-

of kek; (iJ)e€

W become the solution of the following linear system, for all (i, )

s.t. i €pa;:
Dov > wiiyyt = 3 vy aofw
kEKJ /7(’ 7.])6‘5v kEIC
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Skeleton - Simulation

o Fixed DAG of 10 nodes
@ 100 run with 10 random observations each.

o Estimation of skeleton with glasso
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Posterior Order 10 nodes

A posteriori order with and without skeleton.
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Gaussian Bayesian Network

Wild Type Knock-out

We assume that data are generated under a directed acyclic graph.
Our approach : marginal linear causal analysis

Z=aX+puz+ez

pz =BW 7Y + iz

Where ez ~ N(0,03%) : we want to find causal links.
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Marginal causality : Upstream/Downstream

G "do-node"

Upstream

Downstream

@ Upstream : Xp — G, X1 — G, node G ko
@ Downstream : G — X, G — X3 node G ko
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Downstream causality
Marginal approach Models

Likelihood

Experimental results

Wild type @—)@

Knock-out do(G = g) °

MO

Knock-out do(G = g) ®
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Correlation/Causality model and Bayes Factor

Markov equivalence

M1:Zy ~ N(p1,02) Za~N(pz,03) G=23 X=aZi+2

, . s . . .
MO : Zy ~ N (41, 01%) Z2 ~ N(i2,027) G=pZL+Z> X=2

e (£)-w(2)(E )

H1 = H2 = -« o1 = [e% o2 = 4/ "
Hi = i2 = = [ o1 = B= g2 = = g7

B = exp (eo(éo)) / exp (zl(e]))
B = IP(data|Mp)/P(data| M)
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Likelihood

twr ()= > log® (Xylux + aGy,ox ) +log® (Gylug, 0% ) »
kewT

lko (0) = > |°g¢(Xk\Hx+(¥Gk,U§(),
keKo

2
Bo0)= 3 |og¢(Xk|ux+auG,aza"é+Ux),
keko

M1 : Downstream causality

Caty (8) = tw (9) + Lio (8)

MO : Upstream/Correlation case

Lmg (0) = bwT (0) + Lo (0) -

v
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Simulation

Simulated graph,

1
?

-43

9 o
B

KO-node
+ Upstream

Correlation
+ Downstream
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Results

Boxplot of bayes factor for all genes.
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[ 1 2 3 4 5 6 7 8 9 10 11 12 13|
[380 106 1.09 088 066 0.87 076 527 121 130 111 1.33 245 |

Table — Residual standard deviation
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Data analysis : Causality

Number of samples 24 24
Growth Hormone Receptor state active inactive
Genes 43088
Differentially expressed genes 16276

@ How to find the causal relationship between GHR and other
genes ? Causality paradigm

e Classical analysis : differential analysis with limma... but does
not identify real causal relationships.
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Differential Analysis

Two sample t-test
XwT and Xko are n samples for two random variable, with
respective mean E (Xwt) and E (Xko). § = \/(ﬁaﬁ +382,) /2

Ho 5 ﬂ = ]E(XWT) — ]E(XKo) =0.
Corresponding statistics :
Bv/n

t=— T < t-distribution with 2(n — 1) degrees of freedom

Do not use any links between genes.
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Hierarchical Empirical Bayes

Somes prior (not all priors are listed here) :
1 1
o == dos2 Xdo
o f| B,s* ~ N (B,20%)
1.2 s2
Q@ s52|s° ~ 72 Xdg
do * s + dg x 82
do + dg ’
where dp and sp being some precalculated prior.

moderated t-statistic

NG

n
5

Which result to: &

t =

~ t-distribution with dg + do degrees of freedom
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Marginal test
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Summary - 1

MCMC-Mallows

@ MCMC approach can find an posterior ordering based only on
data.

@ Can handle many interventions in the same time.

@ To have good quality for the solution, needs of many
interventions.

@ MCMC approach is not tractable for more than 100 genes.
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Summary - 2

Marginal approach
@ Explicit use of do-calculus
@ Likelihood derivation
@ Simulations that validate this model

@ Very related to differential analysis.
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Conclusion

What next :
o Parallel-tempering inside MCMC approach
e Differential analysis// Causal analysis
@ Integrate several KO

@ Interventions models (bypath, knock-down)

Funding : x ED386 : PhD grant
* INRA : Data (Causality)
Thanks to my supervisors : Florence Jaffrezic, Andrea Rau and Gregory Nuel.
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Thank you!
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Mallows" Proposal

Mallows’ Ranking Distribution : with parameter ¢ €]0, 1] and reference
ordering r is defined by

P(0; ¢, r) = ¢
where d(o, r) counts the number of pairwise disagreements.

Properties :
@ modeisin r
@ ¢ — 0 corresponds to a dirac distribution
@ ¢ — 1 corresponds to the uniform distribution
@ normalization factoris 1 x (1 + @) x ... x (L+ ¢+ ... +¢P71)
@ sampling in O(p) with the Repeated Insertion Method
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reference ordering of r = (1 2 3 4 5) for different temperatures
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Examples of real-life GRN

| E. coli |
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Bias-variance dilemna

We use the MSE to test our model. We can show that :
MSE = Cst + Bias® + Variance

The idea is to put some constraint to decrease greatly the variance
of our estimator, even if that increases slightly the bias.

= Bias
Variance
= MSE

Hoh compienty Tow gty
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Skeleton coming from the DREAM 4 challenge.
We simulate DAG and data from this skeleton.
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Quality of estimation : W and L

Effect of the constraint on both direct and total causal effect, 10

Direct causal effect matrix W Total causal effect matrix L
=
8
=
<
P
8 4
@
- 2
2
wo = w
1] =]
= = <« |
o
< P
=
2
8 4
<
3
T T T T T T T T T T
1e-06 1e-03 1e+00 1e+03 1e+06 1e-06 1e-03 16+00 1e+03 1e+06
Ridge Penalty Ridge Penalty
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Including Skeleton

If we know the underlying skeleton, we can integrate this
information to improve our model. Both speed and quality of the
output are improved as shown below :

Figure — Acceptance rate for several temperatures

Temperature

Without skeleton

With skeleton

0.1
0.3
0.5
0.7
0.9
1
10

0.9995
0.8285
0.5170
0.2910
0.1520
0.1240
0.0040

1.0000
0.8915
0.6430
0.3940
0.2325
0.2000
0.0050
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Skeleton and speed

From DREAM 10 and 100 graphs, we have more or less 5% of

edges.
Number of Computational | Computational ~time
equations time for MLE | for 50.000 iterations of
MCMC
Without skeleton ~ | 5050 30s 17 days
With skeleton | 250 <Is 2 hours

In fact, computation is in order of O(p°).
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Estimation enhancement with structure

Expectation of estimation quality enhancement.
Fixed DAG of 10 nodes with known order, 100 run with 10 random
observations each.

MSE W MSE L
Without Skeleton | 271.6166 21.18093
With Skeleton 0.1726994 | 0.02466682
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Biological context

«—— Gene regulation

Transcriptomic data ——— 3

Interventional data (knock-out
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Simulation-1

We simulate two kinds of data : some are causally related (1), and
others are only associated (2).

@—)@ Downstream model

(1) M1 :

(2) MO : Correlation model

G is knocked-down. 24 observations/24 interventions for each
model — 96 samples. Repeated 100 times.
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Results-1

Figure — Bayes factor to choose between correlation and causality

~ ; ~ 3
: B i g ’
down cor down

ype ype

Parameters : N =24 o = 0.3, u1 = 2.0, up = —3.1,
Left : 03 = 0.3,00, = 0.5, Right : 01 = 3,0, = 5.
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