Studying Mesoscale Flow with Dissipative Particle Dynamics

Friederike Schmid

(Universität Mainz)

Jens Smiatek, Sebastian Meinhard, Jiajia Zhou, Stefan Medina

Mesoscale Flows

Examples

Microfluidic systems

Lab on a Chip Art gallery

Blood in capillaries

Sickled cells Normal red blood cells

© healtwise, incorporated

R. Goldstein, Web site

Flow in Cells

S. Windsor, Web site

Flow and Transport in Electric Fields

λ-DNA in a microchannel (*T.T. Duong et al, MEE 67, 905 (2003)*)

Integrated microfluidic bioprocessors

LioniX

(Blazej et al, PNAS 2006)

Flow on the micro- and nanoscale

On the nanoscale, things are special ...

- ... Reynolds numbers are tiny \rightarrow Flows are laminar.
- ... Thermal fluctuations are important
- ... Boundary effects are important
 - Fluids slip at surfaces (can usually be neglected on the macroscale)
 - Surfaces may be charged

Surfaces can be used to manipulate flows. Flows can be used to manipulate particles.

Hydrodynamic Boundary Conditions

<u>Macroscopically</u>: most common assumption:

Stick boundaries: Fluid velocity vanishes at walls

Microscopically more appropriate: Partial slip

$$\delta_B \left. \frac{\partial v}{\partial z} \right|_{z=z_B} = v(z) \Big|_{z=z_B}$$

 z_B : Hydrodynamic boundary δ_B : Slip length

Hydrodynamic Interactions

Force on solute j

- \rightarrow Solvent flow
- \rightarrow Convective transport
- \rightarrow Induced motion of solute i

Stokes regime: Response to external force

$$\mathbf{v}_{i} = \frac{1}{k_{B}T} D_{0} \ \mathbf{F}_{i} + \frac{1}{k_{B}T} \sum_{j \neq i} \mathbf{D}(\mathbf{r}_{ij}) \ \mathbf{F}_{j}$$

with mobility matrix:
$$\mathbf{D}(\mathbf{r}) = \frac{k_{B}T}{8\pi\eta r} \left(\mathbf{1} + \mathbf{rr} / r^{2}\right) + O(\frac{1}{r^{2}})$$

 \Rightarrow Long-range "Hydrodynamic interaction"

Electrostatic boundary conditions

Electric field drags mobile ion layer along \Rightarrow Induces flow!

Electrohydrodynamic "Screening"

Example: Polyelectrolyte chain in a static electric field

Hydrodynamic drag

Hydrodynamic interactions

Counterions: opposite force

 \Rightarrow Hydrodynamic interactions are screened (leading order) BUT ... only with respect to static fields, only for long chains

Challenges for Computer Simulations

Study in full the interplay of

- Hydrodynamics
- Charges
- Flow and boundary conditions

- ... ideally under physiological conditions
 - Ion concentration ~ 0.2 M or more
 - Debye length < 1 nm
 - \rightarrow Fluid full with ions

 \rightarrow Devise strategies how to manipulate flows and transport

Method: Dissipative Particle Dynamics

A type of particle-based coarse-grained model for fluids

Source: M.E. Kutay, Web site

Structure of a Standard DPD Model

(Koelman, Hoogerbrugge 1993, Espanol, Warren, 1995)

Pairwise forces between particles i and j: $(\mathbf{e}_{ij} = \mathbf{r}_{ij} / \mathbf{r}_{ij})$ $\mathbf{F}_{ij} = \mathbf{F}_{ij}^{\ \ C} + \mathbf{F}_{ij}^{\ \ D} + \mathbf{F}_{ij}^{\ \ R} = - \mathbf{F}_{ji}$ with $\mathbf{F}_{ij}^{\ \ C}$: conservative pair force (conservative multibody forces are also possible) $\mathbf{F}_{i}^{\ \ D} = -\gamma \omega(\mathbf{r}_{ij} / \mathbf{r}_{c}) (\mathbf{e}_{ij} \mathbf{v}_{ij}) \mathbf{e}_{ij}$: dissipative force \mathbf{F}^{R} : random, satisfies fluctuation-dissipation theorem

 $\Rightarrow Momentum conserving thermostat$ $\Rightarrow Can be used to simulate hydrodynamic flows$

Why use DPD?

Physical motivation:

simplest Ansatz for coarse-grained model with dissipative dynamics that preserves momentum conservation

- Useful as off-lattice solver for hydrodynamics

 → Easy with curved boundaries
 → Easy with constant pressure (fluctuating box)
- Can be combined naturally with other particle based models (i.e., molecular dynamics models)
- "Smoothed dissipative particle dynamics" (SDPD)
 → Equation of state of fluid is put in

(but: admittedly slower than Lattice Boltzmann methods)

Outline of this Talk

Part 1: Surface slip

- Implementing (no)-slip boundaries in DPD simulations
- > Example: Effective slip on structured surfaces
- Part 2: An application
 - Separation of chiral particles in microfluidic channels
- Part 3: An efficient DPD algorithm for electrolyte fluids
 - The condiff-DPD method
 - Example: Electroosmotic flow on patterned surfaces

Part I: Tunable slip boundaries

Jens Smiatek, M.P. Allen, FS, Eur. Phys. J. E 26, 115 (2008).

J. Zhou, A. Belyaev, FS, O. Vinogradova, JCP 136, 194706 (2012). E.S. Asmolov, *J. Zhou*, FS, O.I. Vinogradova, PRE 88, 023004 (2013). *J. Zhou*, E.S. Asmolov, FS, O.I. Vinogradova, JCP 139, 1748708 (2013). T.V. Nizkaya, E. Asmolov, *J. Zhou*, FS, O.I. Vinogradova, submitted (2014).

Recall: Hydrodynamic boundaries

Partial slip boundary condition

$$\delta_B \left. \frac{\partial v}{\partial z} \right|_{z=z_B} = v(z) \Big|_{z=z_B}$$

 $\begin{array}{ll} \textbf{z}_{B}: & \text{Hydrodynamic boundary} \\ \boldsymbol{\delta}_{B}: & \text{Slip length} \end{array}$

Task: Implement this in DPD simulations

Tunable-slip boundaries

Idea: Jens Smiatek, M.P. Allen, FS, Eur. Phys. J. E 26, 115 (2008)

Represent wall-fluid friction by an effective viscous force \rightarrow Viscous layer of finite thickness.

$$\mathbf{F}_{i} = \mathbf{F}_{i}^{D} + \mathbf{F}_{i}^{R}$$
 with $\mathbf{F}_{i}^{D} = -\gamma \omega (\mathbf{z}_{i}/\mathbf{z}_{c}) (\mathbf{v}_{i} - \mathbf{v}_{wall})$
 \mathbf{F}^{R} : random, satisfies fluctuation-dissipation theorem

Advantages:

- Slip length can be tuned by tuning γ
- By solving Stokes equation, one can derive an analytical expression for $\,\delta_{\rm B}$

 \rightarrow depends on $\omega(x)$ and dimensionless parameter

$$\alpha = \frac{z_c^2 \gamma \rho}{\eta}$$

Results: Tunable slip boundary method

⇒ Data collapse, good agreement with theory. Slip length δ_B can be tuned from 0 to ∞ !

Effective slip on structured surfaces

J. Zhou, A. Belyaev, FS, O. Vinogradova, J. Chem. Phys. 136, 194706 (2012). E.S. Asmolov, J. Zhou, FS, O.I. Vinogradova, Phys. Rev. E 88, 023004 (2013). J.Zhou, E.S. Asmolov, FS, O.I. Vinogradova, J. Chem. Phys. 139, 1748708 (2013).

Goal: Use structured surfaces to control flows

Here: Alternating stripes slip / no slip (≅ superhydrophobic surface, Cassie state)

Expectation:

Surface tunes effective slip (Cottin-Bizonne et al, 2005)

Theory: Slip Tensor

(Bazant & Vinogradova, J. Fluid Mech. 2008; Belyaev & Vinogradova, J. Fluid Mech. 2010)

On anisotropic surfaces, slip becomes a tensorial quantity!

$$\delta_B \frac{\partial v}{\partial z}\Big|_{z=z_B} = v(z)\Big|_{z=z_B} \longrightarrow \left| b_{ij} \frac{\partial v_j}{\partial z} \right|_{z=z_B} = v_i(z)\Big|_{z=z_B}$$

Stripe pattern \Rightarrow Eigendirections are || and \perp to the stripes Analytical predictions for b_{ij} for arbitrary channel width L

e.g., at
$$L \rightarrow \infty$$

$$b_{\text{eff}}^{\parallel,\perp} = \frac{L}{2\pi} \frac{\ln\left(\sec\left(\pi\phi/2\right)\right)}{1 + \frac{L}{2\pi\delta}\ln\left(\sec\left(\pi\phi/2\right) + \tan\left(\pi\phi/2\right)\right)}$$

(ϕ : Fraction of hydrophobic surface area; δ : slip length there)

Simulation Details

- > DPD fluid without conservative interactions, DPD density $\rho=3.75 \rightarrow$ viscosity $\eta=1.35$
- Simulation box: One period L=50. Box size 20 x H x L
- Flat surface, Tunable slip boundaries
- Periodic boundary conditions except in y direction
- Pressure driven flow (volume force)
- ESPResSo package (Holm group, Stuttgart)

(Simulation units: DPD interaction range, thermal energy k_BT)

Average Flow Profile

Typical in-plane average of flow profile under pressure

 \Rightarrow Parabolic Poiseuille-type flow

 \Rightarrow Effective slip length can be extracted.

Effective slip lengths

 \Rightarrow Good agreement with theory by Vinogradova & coworkers \Rightarrow Theory works ! Tunable slip algorithm works !

Parallel and Perpendicular Slip Lengths

Fraction ϕ of hydrophobic surface area

⇒ Again very good agreement with theory Surface slip can be tuned over wide range by patterning Flow at Intermediate Angles

Poiseuille flow that is not aligned with stripes

 \Rightarrow Generation of **transverse flow**

Flow in Channels with Misaligned Stripes

T.V. Nizkaya, E. Asmolov, J. Zhou, FS, O.I. Vinogradova, PRE 2015.

Theoretical prediction: Superposition of Poiseuille flow and shear flow

Question: Can this be useful ?

Flow versus Shear

Particle Displacements after one Period

Potential as micromixers?

Conclusion of Part 1: Surface Slip

On nanoscales, fluids may slip on surfaces

- We have devised a way to implement arbitrary slip boundary conditions in DPD simulations.
- Surface slip can be controlled by patterning surfaces.
- Patterned surfaces with variable surface slip can possibly be exploited in lab-on-a chip technologies, e.g., for mixing of fluids on microscales
 - ... or for particle separation

Part 2: Separation of Chiral Particles in Microfluidic Channels

S. Meinhardt, J. Smiatek, R. Eichhorn, F. Schmid, Phys. Rev. Lett. 108, 214504 (2012).

Distinguish between particles with different chirality

Why bother ?

Nature is chiral (e.g., proteins, sugars, DNA)

> Biological response depends on chirality

Example: Carvone

Idea : To separate chiral partners ...

Use microfluidic devices with asymmetric flow patterns

Examples in two dimensions

Kostur et al, PRL 2006

Speer et al, PRL 2010 Bogunovic et al, PRL 2012

Separation in Asymmetric Poiseuille Flow

Ralf Eichhorn, PRL 2010

2D asymmetric flow Langevin simulations

\Rightarrow Different enantiomers can be separated !

Our Question

Can asymmetric Poiseuille flow also be used for chiral separation in more realistic situations ?

- three spatial dimensions
- taking account of hydrodynamics

Methods

Dissipative particle dynamics (DPD) simulations. Langevin dynamics (LD) in an imposed flow profile. (for comparison, to assess hydrodynamic effects)

Asymmetric Poiseuille Profile in 3 D

Square channel, different slip lengths at all four walls

Result I: Chiral Tetrahedra

Particle Motion in Microchannel

Different chirality => Different speed Two particles pass each other without problems.

Helices: Langevin Simulations

Separation along the channel

 \Rightarrow Good separation in the presence of hydrodynamics Very weak separation without.

Try Symmetric Couette Flow (DPD)

⇒ Enantiomers have the same speed (not shown) ...
... but different center-of-mass distribution!

Distribution in Asymmetric Flow

\Rightarrow Separation mechanism: Separation by shear !

Chiral Particles in Planar Couette Flow

(Kim and Rae, 1991; Makino and Doi, 2005-2008)

For chiral particles, shear can induce motion in the vorticity direction.

- ➢<u>Hydrodynamic</u> effect
- Nonlinear effect (forbidden in linear response regime)
- > Depends on <u>Peclet number</u>: $Pe = \frac{\dot{\gamma}}{D_P}$

Varying Pe systematically

Orientational distribution of particles

Helices are first oriented by shear, then they migrate Two step mechanism \Rightarrow nonlinear

Conclusion of Part 2

Chiral particles can be separated in microfluidic channels with asymmetric flow profiles.

The separation is driven by a nonlinear hydrodynamic mechanism, which induces vorticity motion in shear flow.

Other separation mechanisms don't seem to work very well in 3 dimensions. (but maybe we have not tried hard enough!)

Part 3: An efficient DPD algorithm for electrolyte fluids

S. Medina , J. Zhou, Z.-G. Wang, FS., J. Chem. Phys. 2015.

Motivation: back to our "grand challenge"

Study in full the interplay of

- Hydrodynamics $\sqrt{}$
- Charges
- Flow and boundary conditions $\sqrt{}$

- ... ideally under physiological conditions
 - Ion concentration ~ 0.2 M or more
 - Debye length < 1 nm
 - \rightarrow Fluid full with ions

 \rightarrow Devise strategies how to manipulate flows and transport

The problem

Simulations of electrolyte fluids at high salt concentrations (i.e., physiological conditions): Most of the computing time goes in the evaluation of electrostatic interactions

lons mostly screen each other (electrostatically, electro-hydrodynamically)

However, just replacing them by short range interactions will not reproduce correct dynamics

 \Rightarrow Search for algorithm without explicit ions, but with full ion dynamics

Our solution: ConDiff-DPD" algorithm

Explicit treatment of ions not possible (high concentrations, large systems)

⇒Development of a new hybrid algorithm which treats micro-ions at the level of **density fields**.

Basic Idea of "Condiff-DPD" Algorithm II

Simple Test: Electroosmotic Flow

Counterion-induced electroosmotic flow in slit channel

Simple Test: Electroosmotic Flow

Varying the number of pseudo-ions per charge

Condiff-DPD algorithm: Pros and Cons

Pros

- Run time independent of ion concentration
- At physiological salt concentrations: Speedup by one order of magnitude compared to fully explicit simulations
- Ions have no (unphysical) inertia (as they should) Ion diffusion constant is an input parameter.
- Ions have no (unphysical) hard core interactions → No unphysical ion structure, fast equilibration times

Cons

Local ion correlation effects are neglected

Application: EOF on structured surfaces

S. Medina et al., submitted (2014).

Goal: Use structured surfaces to control EOF flows

Here: Alternating stripes slip / no slip Varying surface charge density

Expectations: Surface tunes effective EOF mobility Anisotropic, tensorial EOF mobility (Squires 2008, Belyaev and Vinogradova, 2011)

Results: EOF on patterned surfaces (I)

Oppositely charged stripes with equal width

- ⇒ Good agreement with theory of Belyaev & Vinogradova (PRL 107, 98301 (2011))
- ⇒ Tensorial mobility,
 slip length highest
 in parallel direction

 $(1E_0 \sim 3.10^5 \text{ V/cm})$

Results: EOF on patterned surfaces (I)

Equally charged stripes with equal width

⇒ Still good agreement with theory of Belyaev & Vinogradova (PRL 107, 98301 (2011))

 $(E=0.1E_0 \sim 3.10^4 \text{ V/cm})$

Results: EOF on patterned surfaces (II)

Oppositely charged stripes with variable width

$$(E=0.1E_0 \sim 3.10^4 \text{ V/cm}, \delta/\text{L}=0.27)$$

- \Rightarrow Mobility reversal
- ⇒ Mobility becomes large for large slip fraction

⇒ Still good agreement with theory

Results: EOF on patterned surfaces (III)

Only no-slip sector charged

 $(E=0.1E_0 \sim 3.10^4 \text{ V/cm})$

Conclusion of Part 3: Condiff-DPD Method

We have devised a new efficient method to simulate electrohydrodynamic effects in electrolytes with high salt concentration with DPD simulations

The method can easily be adapted to other situations where convection-diffusion is important (e.g., diffusiophoresis, chemical reactions)

Application to electroosmotic flow on patterned surfaces

A rich flow behavior is observed on patterned surfaces with varying slip length and charge density. Much of it, but not all, is in good agreement with the theoretical predictions ob Belyaev & Vinogradova.

Acknowledgments

Jens Smiatek Sebastian Meinhard Jiajia Zhou Stefan Medina

VolkswagenStiftung SFB TR6 Physics of Colloidal Dispersions

Mike Allen (Warwick)

Olga Vinogradova (Moscow/Aachen) Aleksey Belyaev (Moscow) Evgenij Asmolov (Moscow) Tatiana Nizkaya (Moscow)

in External Fields

NIC Jülich

