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Mesoscale Flows  

Microfluidic systems

R. Goldstein, Web site

Bacteria
Blood in capillaries

 healtwise, incorporated

Flow in Cells

S. Windsor, Web site

Lab on a Chip
Art gallery

Examples



Flow and Transport in Electric Fields   

l-DNA in a microchannel

(T.T. Duong et al, MEE 67, 905 (2003))  

Integrated  

microfluidic

bioprocessors

(Blazej et al, PNAS 2006)  
LioniX



Flow on the micro- and nanoscale   

On the nanoscale,  things are special …

… Reynolds numbers are tiny → Flows are laminar.

… Thermal fluctuations are important

… Boundary effects are important

 Fluids slip at surfaces

(can usually be neglected on the macroscale)

 Surfaces may be charged

Surfaces can be used to manipulate flows.

Flows can be used to manipulate particles.



Hydrodynamic Boundary Conditions 

Macroscopically: most common assumption:

Stick boundaries: Fluid velocity v vanishes at  walls

Microscopically more appropriate: Partial slip  
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Hydrodynamic Interactions 

Force on solute j

→ Solvent flow

→ Convective transport 

→ Induced motion of solute i

Stokes regime: Response to external force
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 Long-range "Hydrodynamic interaction"



Electrostatic boundary conditions 

Electric field drags mobile ion layer along

 Induces flow!

diffuse ion layers

Apply electric field

diffuse ion layers

Electric double layer Electroosmotic flow



Electrohydrodynamic „Screening“

Hydrodynamic interactions

Hydrodynamic drag Electroosmosis

Counterions: opposite force

 Hydrodynamic interactions are screened (leading order)

BUT … only with respect to static fields, only for long chains

Example: Polyelectrolyte chain in a static electric field



Challenges for Computer Simulations   

Study in full the interplay of

- Hydrodynamics

- Charges

- Flow and boundary conditions

… ideally under physiological conditions

- Ion concentration ~ 0.2 M or more

- Debye length < 1 nm

 Fluid full with ions

 Devise strategies how to manipulate flows and transport



Method: Dissipative Particle Dynamics

Source: M.E. Kutay, Web site

A type of particle-based coarse-grained model for fluids



Structure of a Standard DPD Model

(Koelman, Hoogerbrugge 1993, Espanol, Warren, 1995)

Pairwise forces between particles i and j: (eij = rij/ rij )

Fij= Fij
C + Fij

D+Fij
R = - Fji with

Fij
C : conservative pair force

(conservative multibody forces are also possible) 

Fi
D= - g w(rij /rc) (eij vij) eij : dissipative force

FR : random, satisfies fluctuation-dissipation theorem

 Momentum conserving thermostat

 Can be used to simulate hydrodynamic flows



Why use DPD?

Physical motivation:

simplest Ansatz for coarse-grained model

with dissipative dynamics

that preserves momentum conservation

Useful as off-lattice solver for hydrodynamics

 Easy with curved boundaries

 Easy with constant pressure (fluctuating box)

Can be combined naturally with other particle based

models (i.e., molecular dynamics models)

“Smoothed dissipative particle dynamics” (SDPD)

 Equation of state of fluid is put in 

(but: admittedly slower than Lattice Boltzmann methods) 



Outline of this Talk

Part 1: Surface slip

 Implementing (no)-slip boundaries in DPD simulations

 Example: Effective slip on structured surfaces

Part 2: An applicaton

 Separation of chiral particles in microfluidic channels

Part 3:  An efficient DPD algorithm for electrolyte fluids

 The condiff-DPD method

 Example: Electroosmotic flow on patterned surfaces



Part I: Tunable slip boundaries

Jens Smiatek, M.P. Allen, FS, 
Eur. Phys. J. E 26, 115 (2008).

J. Zhou, A. Belyaev, FS, O. Vinogradova, JCP 136, 194706 (2012). 

E.S. Asmolov, J. Zhou, FS, O.I. Vinogradova, PRE 88, 023004 (2013).

J. Zhou, E.S. Asmolov, FS, O.I. Vinogradova, JCP 139, 1748708 (2013).

T.V. Nizkaya, E. Asmolov, J. Zhou, FS, O.I. Vinogradova, submitted (2014).  



Recall: Hydrodynamic boundaries   

Partial slip boundary condition  
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Task: Implement this in DPD simulations



Tunable-slip boundaries 

Idea: 

Represent wall-fluid friction by an effective viscous force

→ Viscous layer of finite thickness.

Advantages: 

- Slip length can be tuned by tuning g

- By solving Stokes equation, one can derive an 

analytical expression for B

→ depends on wx and dimensionless parameter 

FR : random, satisfies fluctuation-dissipation theorem

Fi=Fi
D+Fi

R with    Fi
D= - g w(zi /zc) (vi-vwall)  
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Jens Smiatek, M.P. Allen, FS, Eur. Phys. J. E 26, 115 (2008)



Results: Tunable slip boundary method 

Data for 

g = 0.1 - 1

 = 3.75 - 12.3

 = 1 – 5

Dashed line:

theory 

 Data collapse, good agreement with theory.

Slip length B can be tuned from 0 to  !  



Effective slip on structured surfaces  

Goal: Use structured surfaces

to control flows

Here: Alternating stripes slip / no slip

( superhydrophobic surface, Cassie state)

Expectation:

Surface tunes effective slip

(Cottin-Bizonne et al, 2005) 

J. Zhou, A. Belyaev, FS, O. Vinogradova, J. Chem. Phys. 136, 194706 (2012). 
E.S. Asmolov, J. Zhou, FS, O.I. Vinogradova, Phys. Rev. E 88, 023004 (2013).

J.Zhou, E.S. Asmolov, FS, O.I. Vinogradova, J. Chem. Phys. 139, 1748708 (2013). 



Theory: Slip Tensor  
(Bazant & Vinogradova, J. Fluid Mech. 2008; 
Belyaev & Vinogradova, J. Fluid Mech. 2010)

On anisotropic surfaces, slip becomes a tensorial quantity!
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Simulation Details  

 DPD fluid without conservative interactions, 

DPD density =3.75  viscosity =1.35

 Simulation box: One period L=50.  Box size 20 x H x L

 Flat surface, Tunable slip boundaries

 Periodic boundary conditions except in y direction

 Pressure driven flow (volume force) 

 ESPResSo package (Holm group, Stuttgart)

(Simulation units: DPD interaction range, thermal energy kBT)



Average Flow Profile   

 Parabolic Poiseuille-type flow

 Effective slip length can be extracted.

Typical in-plane average of flow profile under pressure

 density

Longitudinal flow,

L=H=b=50

50:50 coverage



Effective slip lengths   

 Good agreement with theory by Vinogradova & coworkers

 Theory works !   Tunable slip algorithm works !

(50:50 coverage)



Parallel and Perpendicular Slip Lengths   

 Again very good agreement with theory

Surface slip can be tuned over wide range by patterning

Fraction  of hydrophobic surface area

Thick film Thin film



Flow at Intermediate Angles   

Poiseuille flow that is not aligned with stripes

 Generation of transverse flow

H=10

H=50

=/4

50:50 coverage

Relative transverse flow



Flow in Channels with Misaligned Stripes  

Theoretical prediction:

Superposition of Poiseuille flow

and shear flow

Question: Can this be useful ?  

T.V. Nizkaya, E. Asmolov, J. Zhou, FS, O.I. Vinogradova, PRE 2015.  



Flow versus Shear 

Flow rate Shear rate

Thick film

Thinner film



Particle Displacements after one Period 

Shear rate

Potential as micromixers?



Conclusion of Part 1: Surface Slip  

On nanoscales, fluids may slip on surfaces

We have devised a way to implement arbitrary slip 

boundary conditions in DPD simulations.

Surface slip can be controlled by patterning surfaces.

Patterned surfaces with variable surface slip can 

possibly be exploited in lab-on-a chip technologies, 

e.g., for mixing of fluids on microscales

… or for particle separation



Part 2:

Separation of Chiral Particles
in Microfluidic Channels

S. Meinhardt, J. Smiatek, R. Eichhorn, F. Schmid, 
Phys. Rev. Lett. 108, 214504 (2012). 



The Challenge 

Distinguish between particles 

with different chirality

 Nature is chiral

(e.g., proteins, sugars, DNA)

 Biological response depends on chirality

Why bother ? 



Example: Carvone 



Idea : To separate chiral partners ...  

Use microfluidic devices 

with asymmetric flow patterns

Examples in two dimensions

Kostur et al, PRL 2006 Speer et al, PRL 2010
Bogunovic et al, PRL 2012



Separation in Asymmetric Poiseuille Flow 

2D asymmetric flow

Langevin simulations

 Different enantiomers can be separated !

Ralf Eichhorn, PRL 2010



Our Question 

Can asymmetric Poiseuille flow also be used for 

chiral separation in more realistic situations ?

- three spatial dimensions

- taking account of hydrodynamics

Methods 

Dissipative particle dynamics (DPD) simulations.

Langevin dynamics (LD) in an imposed flow profile.

(for comparison, to assess hydrodynamic effects)  



Asymmetric Poiseuille Profile in 3 D  

Square channel, 

different slip lengths at all four walls 

DPD

profile
Theoretical

profile



Result I: Chiral Tetrahedra  

 No Separation 

<x>/t
<x>



Result II: Helices  

 Separation Works 

<x>/t

<x>



Particle Motion in Microchannel  

Different chirality => Different speed

Two particles pass each other without problems.



Helices: Langevin Simulations  

No Separation !?!   

<x>/t

<x>

3

2.4

2.6

2.8



Separation along the channel

 Good separation in the presence of hydrodynamics

Very weak separation without.



Try Symmetric Couette Flow (DPD)  

 Enantiomers have the same speed (not shown) ... 

... but different center-of-mass distribution!  



Distribution in Asymmetric Flow  

 Separation mechanism: Separation by shear !

faster slower



Chiral Particles in Planar Couette Flow  

(Kim and Rae, 1991; Makino and Doi, 2005-2008)

?

For chiral particles, shear can induce

motion in the vorticity direction.

Hydrodynamic effect

Nonlinear effect
(forbidden in linear response regime)

 Depends on Peclet number:

:  Pe=15 :  Pe=120



Varying Pe systematically  

Body force ( ~ amplitude of flow)
0 0.1 0.2 0.3

0.04

-0.04

0vy

vy

relative 

velocity

difference

pL-pR



Orientational distribution of particles  

width of

distribution

Helices are first oriented by shear, then they migrate

Two step mechanism  nonlinear



Conclusion of Part 2

Chiral particles can be separated  in microfluidic

channels with asymmetric flow profiles.

The separation is driven by a nonlinear 

hydrodynamic mechanism, which induces 

vorticity motion in shear flow.

Other separation mechanisms don't seem to work 

very well in 3 dimensions. 

(but maybe we have not tried hard enough!)



Part 3: 

An efficient DPD algorithm 

for electrolyte fluids

S. Medina , J. Zhou, Z.-G. Wang, FS.,  
J. Chem. Phys. 2015.



Motivation: back to our “grand challenge”  

Study in full the interplay of

- Hydrodynamics

- Charges

- Flow and boundary conditions

… ideally under physiological conditions

- Ion concentration ~ 0.2 M or more

- Debye length < 1 nm

 Fluid full with ions

 Devise strategies how to manipulate flows and transport







The problem

Simulations of electrolyte fluids at high salt 

concentrations (i.e., physiological conditions):

Most of the computing time goes in the evaluation of 

electrostatic interactions

Ions mostly screen each other (electrostatically, 

electro-hydrodynamically)

However, just replacing them by short range 

interactions will not reproduce correct dynamics

 Search for algorithm without explicit ions, but with 

full ion dynamics



Our solution: ConDiff-DPD” algorithm  

Explicit treatment of ions not possible (high concentrations, large systems)

Development of a new hybrid algorithm

which treats micro-ions at the level of density fields.

Based on electrokinetic equations
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Navier-Stokes equation

Nernst-Planck equation for ions

Poisson equation

 DPD fluid

 Brownian particles

“pseudo-ions”

 Particle-mesh Ewald method



Basic Idea of “Condiff-DPD” Algorithm II  
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Simple Test: Electroosmotic Flow  

Counterion-induced electroosmotic flow in slit channel



Simple Test: Electroosmotic Flow  

Varying the number of pseudo-ions per charge

Charge density

z

z

EOF velocity



Condiff-DPD algorithm: Pros and Cons  

Pros

 Run time independent of ion concentration

 At physiological salt concentrations: 

Speedup by one order of magnitude

compared to fully explicit simulations

 Ions have no (unphysical) inertia (as they should)

Ion diffusion constant is an input parameter.

 Ions have no (unphysical) hard core interactions

 No unphysical ion structure, fast equilibration times

Cons

 Local ion correlation effects are neglected



Goal: Use structured surfaces

to control EOF flows

Here: Alternating stripes slip / no slip

Varying surface charge density

Expectations: Surface tunes effective EOF mobility

Anisotropic, tensorial EOF mobility

(Squires 2008, Belyaev and Vinogradova, 2011)

Application: EOF on structured surfaces  

S. Medina et al., submitted (2014).



Results: EOF on patterned surfaces (I)

Oppositely charged stripes with equal width

(1E0 ~ 3105 V/cm)

 Good agreement

with theory of

Belyaev & Vinogradova

(PRL 107, 98301 (2011))

 Tensorial mobility,

slip length highest

in parallel direction
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Results: EOF on patterned surfaces (I)

Equally charged stripes with equal width

(E=0.1E0 ~ 3104 V/cm)

 Still good agreement

with theory of

Belyaev & Vinogradova

(PRL 107, 98301 (2011))
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Results: EOF on patterned surfaces (II)

(E= 0.1E0 ~ 3104 V/cm,  /L=0.27)

 Mobility reversal

 Mobility becomes large

for large slip fraction

 Still good agreement

with theory 
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with variable width



Results: EOF on patterned surfaces (III)

Only no-slip sector charged

(E= 0.1E0 ~ 3104 V/cm)

 Theory qualitatively correct,

but underestimates

slip for parallel EOF flow
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Conclusion of Part 3: Condiff-DPD Method  

We have devised a new efficient method to simulate 

electrohydrodynamic effects in electrolytes with high salt 

concentration with DPD simulations

The method can easily be adapted to other situations where 

convection-diffusion is important 

(e.g., diffusiophoresis, chemical reactions)

Application to electroosmotic flow on patterned surfaces  

A rich flow behavior is observed on patterned surfaces with 

varying slip length and charge density. 

Much of it, but not all, is in good agreement with the 

theoretical predictions ob Belyaev & Vinogradova.
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