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What we are interested in...

• develop, improve and implement algorithms for
optimization problems occuring in physics:
ground states of

• Ising spin glasses in different dimensions
• Potts glasses
• Potts glasses for q → ∞
• etc.

• study their physics together with physics colleagues

We always compute exact ground states!
methods we use:

• polynomial algorithms (matching, maximum flow
algorithms, etc.)

• branch-and-bound or branch-and-cut algorithms with
exponential worst-case running time
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Spin Glasses

e.g. Rb2Cu1−xCoxF4

experiments (Cannella & Mydosh 1972) reveal:
at low temperatures: → phase transition spin glass state
Edwards Anderson Model (1975)

• short-range model

• interactions randomly chosen
• Jij ∈ {+1,−1} or
• Gaussian distributed

• H(S) = −∑

<i ,j> JijSiSj , with
spin variables Si

Jij

ground state: min{H(S) | S is spin configuration}
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‘This is a Hard Problem’ means...

• NP-hard, i.e. we cannot expect to find an algorithm that
solves it in time growing polynomial in the size of the input

• e.g., 2d Ising spin glasses with an external field or 3d
lattices

• whereas 2d , no field, free boundaries: ‘easy’
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The Exact Algorithm for Hard
Instances
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The Exact Algorithm for Hard
Instances

Jij

Si = −1 Si = +1

cij

G = (V , E )

H = −∑

e∈E JijSiSj



Computing Exact Ground States
Jij

Si = −1 Si = +1

cij

H(S) +
∑

(i ,j)∈E

Jij =
∑

(i ,j)∈E

Jij (1 − SiSj)
︸ ︷︷ ︸

=

{

2 , if Si 6= Sj

0 , otherwise

= 2
∑

Si 6=Sj

Jij



Computing Exact Ground States

Jij

H(S) + const

= 2
∑

Si 6=Sj

Jij

cij

cut = {(i , j) ∈ E | (i , j) = }

its weight:
∑

(i ,j)∈cut
cij



Computing Exact Ground States

Jij cij

cut = {(i , j) ∈ E | (i , j) = }

H(S)+const = 2
∑

Si 6=Sj

Jij
weight

∑

(i ,j)∈cut
cij

ground state minH(S)
with cij = −Jij :

maximum cut in G

NP-hard in general
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Branch-and-Cut

• is a clever enumeration method

• is a general framework for solving hard combinatorial
optimization problems

• however: specification to a certain problem is science of its
own

• for maxcut: started by M. Jünger, G. Reinelt, G. Rinaldi

• improved by M. Diehl, FL

• ground-state server via command-line client or web
interface, get result by email (will be extended)



Branch-and-Cut

• is a clever enumeration method

• is a general framework for solving hard combinatorial
optimization problems

• however: specification to a certain problem is science of its
own

• for maxcut: started by M. Jünger, G. Reinelt, G. Rinaldi
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Branch-and-Cut Algorithm
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upper bound
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• (lb): lower bound for
optimum

• (ub): upper bound

• (lb) = (ub) ⇒ optimality



Calculation Of (ub) For Maxcut

(i , j) ∈ E → 0 ≤ xij ≤ 1

(i , j) ∈ cut → xij = 1

(i , j) 6∈ cut → xij = 0

consider
PC (G ) : convex hull of all cut vectors

e.g. for

x1 x2

x3
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conv{





0
0
0



 ,





0
1
1



 ,





1
0
1



 ,





1
1
0



} =

cut polytope can be described by linear inequalities!



• however: in higher dimensions too many would be needed,
not all known

• solution: find part of the necessary inequalities that can
‘easily’ be determined

• → optimize over a solution space P that contains cut
polytope

• yields (ub)
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Branch And Cut Algorithm

FL, M. Jünger, G. Reinelt, G. Rinaldi, in ’New Optimization Algorithms in Physics’, A.K. Hartmann and H.

Rieger (Eds.), Wiley-VCH (2004).

1 start with some solution space P ⊇ PC (G )

2 solve linear program

(ub) = cx⋆ =max
∑

e∈E

cexe , x ∈ P

3 (lb): value of any cut

4 if (ub)=(lb) or x⋆ is a cut: STOP

5 else: find better description P, goto 2)
6 if no better description can be found: BRANCH

• select xe with x⋆

e 6∈ {0; 1}

xe = 0 xe = 1
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2d Spin Glasses in a Field

with Olivier C. Martin (Paris)
FL, O.C. Martin, Physical Review B, 76, 6 (2007).

spin glasses

• exhibit subtle phase transitions

• in 2d: Tc = 0, in 3d: Tc > 0

• their physics in 3d is not yet agreed upon

• their physics in 2d without a field agrees well with the
scaling/droplet (DS) picture of Bray/Moore and
Fisher/Huse (mid 80’)

• for 2d with a field: previous studies found discrepancies to
DS

Is DS correct for 2d spin glasses in a field?
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Our Approach

• exact ground-state algorithm

• study larger lattice sizes than before

• determine precise points where the ground states change
as function of B

• study the properties of flipped clusters

Jij • L × L lattice, periodic
boundaries, Ising spins

• Gaussian/exponential Jij

• H(S) ≡
−∑

〈ij〉 JijSiSj − B
∑

i Si



The droplet and scaling hypothesis

• low-lying excitations arise by droplet flips

GS

flipped
GS ℓ

• zero-field droplets ∼ ℓ and compact. Interfacial energy is
O(ℓθ), total (random) magnetization goes as ℓd/2

• B = 0: yT = −θ, yT defined by ξ ∼ T
−1
yT

• B = 0: previous studies in 2d agree with DS and find
yT = −θ ≈ 0.282

• B 6= 0: droplet prediction in dimension d is

yB = yT + d/2, yB defined by ξ ∼ B
−1
yB (T = Tc) →

yB ≈ 1.282 in d = 2.

• B 6= 0: magnetization m(B) ∼ B1/δ, and δ = yB in d = 2
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Previous work

• Kinzel and Binder 1983: δ ≈ 1.39 (Monte Carlo at low T )

• ground-state calculations:
• Kawashima/Suzuki 1992: δ ≈ 1.48
• Barahona 1994: δ ≈ 1.54
• Rieger et al. 1996: δ ≈ 1.48

• Carter et al. 2003: power scaling probably only arises for
huge sizes

Are there large corrections to scaling or does the droplet
reasoning break down?
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Details of our project

• Gaussian (and exponential) Jij

• 2500 for L = 80, 5000 for L = 70, 2000− 11000 for L ≤ 60

0 0.5 1 1.5 2

B
0

0.2

0.4

0.6

0.8

m

sample 1
sample 2
sample 3

1 compute gs at B = 0

2 determine ∆B so that gs
at B remains optimum in
[B, B + ∆B] (linear
programming)

3 reoptimize at B + ∆B + ǫ
with ǫ > 0

L = 70, 80: exact gs, B = 0, 0.02, 0.04, 0.06, . . .
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Exponent δ

• m(B) ∼ B1/δ → for δDS = 1.28, we should see an
envelope curve appear in m(B)/B1/δDS as a fct. of B
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• however: no flat region for
L → ∞, as found earlier

• power-law fit yields
δ = 1.45 (L = 50)

• reason for discrepancy: m has analytic and non-analytic
contributions: m = χ1B + χSB1/δ + . . ., where χ1B

cannot be neglected

• taking χ1B into account (inset): droplet scaling fits data
very well
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• however: no flat region for
L → ∞, as found earlier

• power-law fit yields
δ = 1.45 (L = 50)

• reason for discrepancy: m has analytic and non-analytic
contributions: m = χ1B + χSB1/δ + . . ., where χ1B

cannot be neglected

• taking χ1B into account (inset): droplet scaling fits data
very well
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Flipping clusters are like zero-field
clusters

study for each realization of the disorder the largest cluster
flipped for B ∈ [0,∞[
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yB and finite size scaling of m

measure yB in ξB ∼ B−1/yB :

• for a sample, largest cluster flips at field B∗
J . B∗ = 〈B∗

J 〉J
• biggest cluster involves ∼ L2 spins → ξB(B∗

J ) ≈ L →
B∗ ∼ L−yB

• pure power with yB = 1.28 works well
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• excellent data collapse as
m(B,L)−χ1B

m(B∗,L)−χ1B∗ =

W (B/B∗)

• W (0) = O(1),
W (x) ∼ x1/δ at large x .

• B∗L1.28 as fct. of 1/L works well with

• O(1/L) finite size effects.
B∗(L) = uL−yB (1 + v/L) ⇒ 1.28 ≤ yB ≤ 1.30
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Conclusions for 2d Ising Spin
Glasses in a Field

We validated the predictions of the droplet/scaling picture:

• we find 1.28 ≤ δ ≤ 1.32 by more careful analysis

• earlier discrepances to δ = 1.282 because analytic
contributions to magnetization curve were not treated

• direct measurement of the magnetic length yields
1.28 ≤ yB ≤ 1.30

• relevant spin clusters are compact, random magnetization

• same is true with exponentially distributed Jij



Conclusions for 2d Ising Spin
Glasses in a Field

We validated the predictions of the droplet/scaling picture:

• we find 1.28 ≤ δ ≤ 1.32 by more careful analysis

• earlier discrepances to δ = 1.282 because analytic
contributions to magnetization curve were not treated

• direct measurement of the magnetic length yields
1.28 ≤ yB ≤ 1.30

• relevant spin clusters are compact, random magnetization

• same is true with exponentially distributed Jij



Conclusions for 2d Ising Spin
Glasses in a Field

We validated the predictions of the droplet/scaling picture:

• we find 1.28 ≤ δ ≤ 1.32 by more careful analysis

• earlier discrepances to δ = 1.282 because analytic
contributions to magnetization curve were not treated

• direct measurement of the magnetic length yields
1.28 ≤ yB ≤ 1.30

• relevant spin clusters are compact, random magnetization

• same is true with exponentially distributed Jij



Conclusions for 2d Ising Spin
Glasses in a Field

We validated the predictions of the droplet/scaling picture:

• we find 1.28 ≤ δ ≤ 1.32 by more careful analysis

• earlier discrepances to δ = 1.282 because analytic
contributions to magnetization curve were not treated

• direct measurement of the magnetic length yields
1.28 ≤ yB ≤ 1.30

• relevant spin clusters are compact, random magnetization

• same is true with exponentially distributed Jij



Conclusions for 2d Ising Spin
Glasses in a Field

We validated the predictions of the droplet/scaling picture:

• we find 1.28 ≤ δ ≤ 1.32 by more careful analysis

• earlier discrepances to δ = 1.282 because analytic
contributions to magnetization curve were not treated

• direct measurement of the magnetic length yields
1.28 ≤ yB ≤ 1.30

• relevant spin clusters are compact, random magnetization

• same is true with exponentially distributed Jij



Conclusions for 2d Ising Spin
Glasses in a Field

We validated the predictions of the droplet/scaling picture:

• we find 1.28 ≤ δ ≤ 1.32 by more careful analysis

• earlier discrepances to δ = 1.282 because analytic
contributions to magnetization curve were not treated

• direct measurement of the magnetic length yields
1.28 ≤ yB ≤ 1.30

• relevant spin clusters are compact, random magnetization

• same is true with exponentially distributed Jij



Outline

1 Hard Ising Spin Glass Instances

2 2d Ising Spin Glasses in a Field

3 Potts Glasses

4 Potts Glasses with q → ∞



Potts Glasses

with Bissan Ghaddar, Miguel Anjos (U. Waterloo, Canada)
B. Ghaddar, M. Anjos, FL (submitted)

• A spin can be in k different states q1, . . . qk

Hamiltonian:

H = −
∑

〈i ,j〉

Jijδqiqj

• we solve the problem also via branch-and-cut

• however: the bounds through linear optimization are very
weak in practice and

• can be considerably improved by positive semidefinite
optimization

• still: gs determination for Potts glasses is considerably
more difficult in practice than for Ising spin glasses
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semidefinite programming (SDP) problem: minimize a linear
function of a symmetric matrix X subject to linear constraints
on X , with X being positive semidefinite.



Branch-and-Cut Algorithm for
Potts Glasses

at each node of the branch-and-cut tree:

1 use pos. semidef. optimization to obtain a LB

2 add valid inequalities to get a tighter LB

3 find a feasible solution to get an UB

4 choose an edge (ij) to branch on if optimality cannot yet
be proven
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Results

Best Solution Root Node # of Nodes - Time
|V | Value LB UB Time to achieve 0%

5 × 5 -1484348 -1484722 -1484348 0:00:18 2 - 0:00:23
6 × 6 -2865560 -2865560 -2865560 0:05:12 1 - 0:05:12
7 × 7 -3282435 -3282435 -3282435 0:52:08 1 - 0:52:08
8 × 8 -5935341 -5935341 -5935341 2:21:43 1 - 2:21:43
9 × 9 -4758332 -4806178 -4758332 3:35:49 4 - 13:41:17

10 × 10 -6570984 -6630202.5 -6570984 10:36:23 6 - 18:09:41
11 × 11 -8586382 -9015701.1 -8586382 5:48:50 -
12 × 12 -10646782 -11189768 -10646782 9:31:00 -
13 × 13 -11618406 -12292274 -11618406 29:33:27 -
14 × 14 -13780370 -14607192 -13780370 47:16:57 -

2 × 3 × 4 -2197030 -2197030 -2197030 0:01:14 1 - 0:01:14
2 × 3 × 5 -2026448 -2026448 -2026448 0:08:02 1 - 0:08:02
2 × 4 × 5 -3392938 -3392938 -3392938 0:36:18 1 - 0:36:18
3 × 3 × 3 -1882389 -1882389 -1882389 0:00:21 1 - 0:00:21
3 × 3 × 4 -3192317 -3192317 -3192317 0:26:52 1 - 0:26:52
3 × 3 × 5 -4204246 -4209348 -4204246 2:52:31 5 - 3:38:37
3 × 4 × 4 -5387838 -5421403 -5387838 0:58:15 3 - 1:38:51
4 × 4 × 4 -7474525 -7529318 -7474525 3:22:37 3 - 10:12:11

Table: results for spinglass2g and spinglass3g instances where k = 3.
The time is given in hr:min:sec.



Results

k = 5 k = 7
|V | Objective Value Time Objective Value Time

spinglass2g 6 × 6 -2865560 0:23:41 -2865560 0:21:00
7 × 7 -3843979 0:42:31 -3864156 0:39:23
8 × 8 -5935341 2:09:07 -5935341 2:13:05
9 × 9 -5745419 2:39:38 -6026024 2:18:56

10 × 10 -6860706 19:14:02 -7644016 17:32:29

spinglass3g 2 × 3 × 4 -2212707 0:00:10 -2212707 0:00:08
2 × 3 × 5 -2081357 0:08:07 -2081358 0:05:35
2 × 4 × 5 -3578762 0:17:00 -3578762 0:13:01
3 × 3 × 3 -2932403 0:00:47 -2932403 0:00:03
3 × 3 × 4 -3552295 0:26:58 -3559337 0:21:15
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Potts Glasses with q → ∞
with Diana Fanghänel (Cologne)

D. Fanghänel, FL (in preparation)

Juhasz, Rieger, Iglòi (2001) have shown: for many states the
dominant contribution to the partition function is

max
A∈E(G)

qf (A),

f (A) = number of connected components in A(G ) +
∑

i ,j∈A(G)

Jij

f (A) = 16
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• our work: reduce the number of maximum-flow
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• number of maximum-flow calculations reduces by ∼ 1
3

• L = 128: ca 1.5 minutes cpu time

• L = 256: < 4 h cpu time

• will be improved further



Preliminary Results

use coupling strengths w1, w2 at criticality: w1 + w2 = 1

• number of maximum-flow calculations reduces by ∼ 1
3

• L = 128: ca 1.5 minutes cpu time

• L = 256: < 4 h cpu time

• will be improved further



Preliminary Results

use coupling strengths w1, w2 at criticality: w1 + w2 = 1

• number of maximum-flow calculations reduces by ∼ 1
3

• L = 128: ca 1.5 minutes cpu time

• L = 256: < 4 h cpu time

• will be improved further



Preliminary Results

use coupling strengths w1, w2 at criticality: w1 + w2 = 1

• number of maximum-flow calculations reduces by ∼ 1
3

• L = 128: ca 1.5 minutes cpu time

• L = 256: < 4 h cpu time

• will be improved further



Preliminary Results

use coupling strengths w1, w2 at criticality: w1 + w2 = 1

• number of maximum-flow calculations reduces by ∼ 1
3

• L = 128: ca 1.5 minutes cpu time

• L = 256: < 4 h cpu time

• will be improved further



The Current Limits

from ‘difficult’ to ‘easy’:
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3d Ising (w/o field) ∼ 123

2d Ising (periodic bc) > 1502

Potts(q → ∞) > 2562
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Thank you for your attention!


