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Random Graphs/Networks
Graphs are essentially a collection of vertices (nodes) and edges 
(links). One could think of weighted graphs, where the edges are 
weighted according to some rule.

There are many interesting families of random graphs, examples 
being – Erdos-Renyi (ER) graphs (N nodes, and probability p for the 
existence of every possible edge independently), e.g. for 𝑁𝑁 = 10

p 0.2= p 0.4= p 0.6=

Binomial (Poisson) degree distribution  𝑃𝑃 𝑘𝑘 = 𝑁𝑁 − 1
𝑘𝑘 𝑝𝑝𝑘𝑘 1 − 𝑝𝑝 𝑁𝑁−1−𝑘𝑘



Random Graphs/Networks
Random regular graphs (N nodes, all vertices of degree k0, and a 

uniform sampling out this ensemble), e.g. N = 8, 𝑃𝑃 𝑘𝑘 = 𝛿𝛿𝑘𝑘,𝑘𝑘0

Such graphs often enjoy many analytical results

𝑘𝑘0 = 4 𝑘𝑘0 = 𝟓𝟓𝑘𝑘0 = 𝟑𝟑
(cubic)



Random Graphs/Networks
Random planar graphs (random cities)

Such graphs are not always easy to generate nor to sample uniformly 

from, but they model nicely spatial networks such as transportation, 

road networks in cities, vein networks in leaves, spread of diseases.

Barthelemy & Flammini 2008 -
Modeling urban street patterns

Snapshots of the network at 
different times of its evolution. At 
short times, we have almost a 
tree structure and loops appear 
for larger density values obtained 
at larger times.



Why are they interesting?
As null models for real networks:
Annibale, Coolen et al. 2010, Tailored graph ensembles as proxies or 
null models for real networks – suppose you have a real network with 
a given degree distribution, and you observe a certain pattern. A 
meaningful way to test for the robustness of this observation would be 
to compare it to a random null-model or a benchmark.

Insight into generic properties of certain networks, such as the 
small-world property of random scale-free networks:
In models of scale-free random networks it is possible to demonstrate 
that Dunbar's number (cognitive limit to the number of people with 
whom one can maintain stable social relationships, i.e. 100-200) is the 
cause of the phenomenon known as the 'six degrees of separation'
(everyone and everything is six or fewer steps away, by way of 
introduction, from any other person in the world).



Preliminaries
This presentation focuses on Erdos-Renyi graphs on N nodes and with 

probability p for every possible edge to exists independently.

We denote this ensemble by 𝐸𝐸𝐸𝐸 𝑁𝑁,𝑝𝑝 .

A short review of some properties of ER graphs as a function of p, or 

the mean connectivity now follows:

1. Sparse case – p = 𝑐𝑐/𝑁𝑁 where c is the mean connectivity which is 

of order unity in this case. There is a percolation transition at c=1.

2. Dense case – when 𝑐𝑐 ≥ log N and so there are no isolated 

components in the network. Important examples are

𝑐𝑐 ∼ log N, 𝑐𝑐 ∼ N𝛼𝛼 0 < 𝛼𝛼 < 1 (both with vanishing 𝑝𝑝)

and 𝑐𝑐 ∼ N (with p of order unity) 



Examples – ER N, p , 𝑐𝑐 = 1/2
N = 100, 𝑐𝑐 = 1/2 – mostly isolated components



Examples – ER N, p , 𝑐𝑐 = 1
N = 100, 𝑐𝑐 = 1 – on the phase transition, clusters of size N2/3,

with a substantial number of isolated components



Examples – ER N, p , 𝑐𝑐 = 2
N = 100, 𝑐𝑐 = 2 – above the phase transition, with a giant cluster of 

order 𝑁𝑁, with some isolated components



Examples – ER N, p , 𝑐𝑐 = 4.6
N = 100, 𝑐𝑐 = log𝑁𝑁 – one giant cluster with no isolated 

components. The probability for an isolated node smaller than 1/N



Examples – ER N, p , 𝑐𝑐 = 10
N = 100, 𝑐𝑐 = 𝑁𝑁1/2 – dense. One giant cluster with no isolated 

components.



Examples – ER N, p , 𝑐𝑐 = 50

N = 100, 𝑐𝑐 = 1
2
𝑁𝑁 – very dense.



Focus
We will focus in cases where is ‘generally speaking’ a connected 

network, potentially with some isolated components. The theory 

collapses below the percolation transition, and works excellently when 

there are no isolated components at all



Shortest Paths
Choose two nodes at random i and j, and consider the different paths 
connecting them. 

If these two nodes lie on different clusters then 𝑑𝑑𝑖𝑖𝑖𝑖 = ∞

Otherwise, we focus on the shortest possible path (which needs not be 
unique) and its length is denoted by 𝑑𝑑𝑖𝑖𝑖𝑖 (and is finite 𝑑𝑑𝑖𝑖𝑖𝑖 < ∞). 
Note that the shortest path on a finite graph cannot exceed 𝑁𝑁 − 1.

𝑑𝑑𝑖𝑖𝑖𝑖 = ∞ 𝑑𝑑𝑖𝑖𝑖𝑖 = 2



Shortest Paths
The Distribution of Shortest Path Lengths (DSPL) 𝑃𝑃𝑁𝑁 𝑑𝑑𝑖𝑖𝑖𝑖 is simply the 
distribution of all these distances over the ensemble of random graphs. 
And we can drop the indices i,j in 𝑃𝑃𝑁𝑁 𝑑𝑑 since it holds for any pair.

It is sometimes convenient to study the tail-distribution (also known as the 

survival probability) defined by 𝐹𝐹𝑁𝑁 𝑘𝑘 = 𝑃𝑃𝑟𝑟𝑁𝑁 𝑑𝑑𝑖𝑖𝑖𝑖 > 𝑘𝑘

e.g. 𝐹𝐹𝑁𝑁 1 = 𝑃𝑃𝑟𝑟𝑁𝑁 𝑑𝑑𝑖𝑖𝑖𝑖 > 1 = 1 − 𝑝𝑝 = 𝑞𝑞
Last, 𝑃𝑃𝑁𝑁 𝑘𝑘 = 𝐹𝐹𝑁𝑁 𝑘𝑘 − 1 − 𝐹𝐹𝑁𝑁 𝑘𝑘

N = 100
c = 3



Shortest Paths – known results
Known results are mainly for the sparse case p = c/N

The mean distance is then

𝑑𝑑 = �
𝑑𝑑

𝑑𝑑 ⋅ 𝑃𝑃𝑁𝑁 𝑑𝑑 ≃
log𝑁𝑁
log𝑐𝑐

+ 𝑂𝑂 1

which exhibits/explains the small-world phenomenon.

And the diameter, i.e. the longest possible distance among all possible 

shortest paths in a given network (i.e. ),

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝐸𝐸𝐸𝐸 𝑁𝑁, 𝑐𝑐/𝑁𝑁 = max 𝑑𝑑12,𝑑𝑑13, … ,𝑑𝑑𝑁𝑁−1,𝑁𝑁 →
log𝑁𝑁
log𝑐𝑐

+ 1

(Bollobás, Janson & Riordan 2007) - essentially the same as the mean!

The full distribution is nevertheless of great interest, but has not been 

studies even for the simple ER case. 



getting started …
𝐹𝐹𝑁𝑁 1 = 𝑃𝑃𝑁𝑁 𝑑𝑑 > 1 = 1 − 𝑝𝑝 = 𝑞𝑞 𝑑𝑑 𝑗𝑗

𝐹𝐹𝑁𝑁 2 = 𝑃𝑃𝑁𝑁 𝑑𝑑 > 2 = ?



getting started …
𝐹𝐹𝑁𝑁 1 = 𝑃𝑃𝑁𝑁 𝑑𝑑 > 1 = 1 − 𝑝𝑝 = 𝑞𝑞

𝐹𝐹𝑁𝑁 2 = 𝑃𝑃𝑁𝑁 𝑑𝑑 > 2 = 𝑞𝑞 × 1 − 𝑝𝑝2 𝑁𝑁−2 Exact!

𝐹𝐹𝑁𝑁 3 = 𝑃𝑃𝑁𝑁 𝑑𝑑 > 3 = 𝑞𝑞 × 1 − 𝑝𝑝2 𝑁𝑁−2 × ?

𝑑𝑑 𝑗𝑗

ℓ𝑁𝑁−2
..…

𝑑𝑑 𝑗𝑗

ℓ1
ℓ2



getting started …
𝐹𝐹𝑁𝑁 1 = 𝑃𝑃𝑁𝑁 𝑑𝑑 > 1 = 1 − 𝑝𝑝 = 𝑞𝑞

𝐹𝐹𝑁𝑁 3 = 𝑃𝑃𝑁𝑁 𝑑𝑑 > 3 = 𝑃𝑃𝑁𝑁 𝑑𝑑 > 2 × 𝑃𝑃𝑁𝑁 𝑑𝑑 > 3|𝑑𝑑 > 2 = 𝐹𝐹𝑁𝑁 2 × 𝑃𝑃𝑁𝑁 𝑑𝑑 > 3|𝑑𝑑 > 2

𝐹𝐹𝑁𝑁 2 = 𝑃𝑃𝑁𝑁 𝑑𝑑 > 2 = 𝑞𝑞 × 1 − 𝑝𝑝2 𝑁𝑁−2 = 𝑃𝑃𝑁𝑁 𝑑𝑑 > 1 × 𝑃𝑃𝑁𝑁 𝑑𝑑 > 2|𝑑𝑑 > 1

𝑑𝑑 𝑗𝑗

ℓ𝑁𝑁−2
..…

𝑑𝑑 𝑗𝑗

ℓ1
ℓ2

And the questions is  𝑃𝑃𝑁𝑁 𝑑𝑑 > 3|𝑑𝑑 > 2 = ?

𝑑𝑑 𝑗𝑗

ℓ m

𝑑𝑑 𝑗𝑗

ℓ m

𝑑𝑑 𝑗𝑗

ℓ m



getting started …

And the questions is  𝑃𝑃𝑁𝑁 𝑑𝑑 > 3|𝑑𝑑 > 2 = ?

𝑑𝑑 𝑗𝑗

ℓ m

𝑑𝑑 𝑗𝑗

ℓ m

𝑑𝑑 𝑗𝑗

ℓ m

A naïve approach would be 𝑃𝑃𝑁𝑁 𝑑𝑑 > 3|𝑑𝑑 > 2 ≈ 1 − 𝑝𝑝3 𝑁𝑁−2 𝑁𝑁−3

However this result neglects correlations. Some of these correlations can be 

handled, but one can convince oneself that the result cannot be made exact for 

a general N.

𝐹𝐹𝑁𝑁 3 = 𝑃𝑃𝑁𝑁 𝑑𝑑 > 3 = 𝑃𝑃𝑁𝑁 𝑑𝑑 > 2 × 𝑃𝑃𝑁𝑁 𝑑𝑑 > 3|𝑑𝑑 > 2 = 𝐹𝐹𝑁𝑁 2 × 𝑃𝑃𝑁𝑁 𝑑𝑑 > 3|𝑑𝑑 > 2

𝐹𝐹𝑁𝑁 𝑘𝑘 = 𝐹𝐹𝑁𝑁 𝑘𝑘 − 1 𝑃𝑃𝑁𝑁 𝑑𝑑 > 𝑘𝑘|𝑑𝑑 > 𝑘𝑘 − 1 =
= 𝐹𝐹𝑁𝑁 𝑘𝑘 − 2 𝑃𝑃𝑁𝑁 𝑑𝑑 > 𝑘𝑘 − 1|𝑑𝑑 > 𝑘𝑘 − 2 𝑃𝑃𝑁𝑁 𝑑𝑑 > 𝑘𝑘|𝑑𝑑 > 𝑘𝑘 − 1 =
= ⋯ = ∏𝑚𝑚=1

𝑘𝑘 𝑃𝑃𝑁𝑁 𝑑𝑑 > 𝑑𝑑|𝑑𝑑 > 𝑑𝑑 − 1



Recursive Paths Approach (RPA)

𝑑𝑑 𝑗𝑗

ℓ1
ℓ2

ℓ𝑁𝑁−2

𝑁𝑁 − 1
𝑁𝑁 − 2

𝑁𝑁

1 2 𝑘𝑘

Let’s look at the general case – we can actually relate the conditionals 

for a system of size N to those of a smaller system of size N-1, but for 

shorter distances, as follows:

𝑃𝑃𝑁𝑁 𝑑𝑑 > 𝑘𝑘|𝑑𝑑 > 𝑘𝑘 − 1 = 𝑞𝑞 + 𝑝𝑝𝑃𝑃𝑁𝑁−1 𝑑𝑑 > 𝑘𝑘 − 1|𝑑𝑑 > 𝑘𝑘 − 2 𝑁𝑁−2

with 𝑃𝑃𝑁𝑁′ 𝑑𝑑 > 1|𝑑𝑑 > 0 = 𝑃𝑃𝑁𝑁′ 𝑑𝑑 > 1 = 𝑞𝑞



Recursive Paths Approach (RPA)

Comments:
1. It recovers the exact result for 𝑘𝑘 = 2, namely

𝑃𝑃𝑁𝑁 𝑑𝑑 > 2|𝑑𝑑 > 1 = 1 − 𝑝𝑝2 𝑁𝑁−2

2. In the limit of small p:    𝑃𝑃𝑁𝑁 𝑑𝑑 > 𝑘𝑘|𝑑𝑑 > 𝑘𝑘 − 1 ≈ 1 − 𝑝𝑝𝑘𝑘 𝑁𝑁−2 … 𝑁𝑁−𝑘𝑘

3. The final expression
is obtained using

𝑃𝑃𝑁𝑁 𝑑𝑑 > 𝑘𝑘|𝑑𝑑 > 𝑘𝑘 − 1 = 𝑞𝑞 + 𝑝𝑝𝑃𝑃𝑁𝑁−1 𝑑𝑑 > 𝑘𝑘 − 1|𝑑𝑑 > 𝑘𝑘 − 2 𝑁𝑁−2

with 𝑃𝑃𝑁𝑁′ 𝑑𝑑 > 1|𝑑𝑑 > 0 = 𝑞𝑞

𝐹𝐹𝑁𝑁 𝑘𝑘 = �
𝑚𝑚=1

𝑘𝑘

𝑃𝑃𝑁𝑁 𝑑𝑑 > 𝑑𝑑|𝑑𝑑 > 𝑑𝑑 − 1



RPA and the cavity method
The RPA shares the same spirit with the cavity method. This can 
actually be made more formally, and help further progress.

The jPDF of the ER network: 𝑃𝑃 𝐶𝐶 = �
𝑖𝑖<𝑖𝑖

1 − 𝑝𝑝 𝛿𝛿𝑐𝑐𝑖𝑖𝑖𝑖,0 + 𝑝𝑝𝛿𝛿𝑐𝑐𝑖𝑖𝑖𝑖,1𝛿𝛿𝑐𝑐𝑖𝑖𝑖𝑖,1

And the starting point are the indicator functions 𝜒𝜒 𝑑𝑑𝑖𝑖𝑖𝑖 > 𝑘𝑘|𝑑𝑑𝑖𝑖𝑖𝑖 > 𝑘𝑘 − 1
One can write down the recursion equations for these quantities

𝜒𝜒 𝑑𝑑𝑖𝑖𝑖𝑖 > 𝑘𝑘|𝑑𝑑𝑖𝑖𝑖𝑖 > 𝑘𝑘 − 1 = �
ℓ≠𝑖𝑖,𝑖𝑖

1 − 𝑐𝑐𝑖𝑖ℓ + 𝑐𝑐𝑖𝑖ℓ𝜒𝜒 𝑖𝑖 𝑑𝑑ℓ𝑖𝑖 > 𝑘𝑘 − 1|𝑑𝑑ℓ𝑖𝑖 > 𝑘𝑘 − 2

where 𝜒𝜒 𝑖𝑖 𝑑𝑑ℓ𝑖𝑖 > 𝑘𝑘 − 1|𝑑𝑑ℓ𝑖𝑖 > 𝑘𝑘 − 2 are the cavity indicator functions 
obeying a similar equation.
One can average over these equations using 𝑃𝑃 𝐶𝐶 and obtain the RPA 
equations for the Erdos-Renyi case. 
As usual, the regular graph case is straightforward.



RPA – results
N = 1000, c = 4 − 𝐸𝐸𝐸𝐸 1000,

4
1000

The agreement between the numerical result and the RPA equation is 
quite good already for N = 1000.

The tail distribution The PDF



RPA – results
N = 1000, c = 4, i.e. 4-regular graph

The agreement in the case of a regular graph is much better.
Also note that distances in the ER graph are slightly shorter than in a 
regular graph with the same mean degree.

Regular Graph Erdos-Renyi + Regular



RPA – the dense case c = 𝑏𝑏𝑁𝑁𝛼𝛼

In this case the network is dense but p is still vanishingly small.
The prediction of the theory is that there is a categorical difference 
between 𝛼𝛼 = 1/𝑟𝑟 where 𝑟𝑟 ∈ 𝑍𝑍+ (i.e. r = 2,3,4 …) and other values of 𝛼𝛼
namely:

𝑃𝑃𝑁𝑁→∞ 𝑘𝑘 =

�
1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑘𝑘 =

1
𝛼𝛼

+ 1

0 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜𝑑𝑑𝑜𝑜𝑜𝑜
𝑑𝑑𝑓𝑓 𝛼𝛼 ∉

1
2

,
1
3

, …

1 − 𝑜𝑜−𝑏𝑏 ⁄1 𝛼𝛼 𝑓𝑓𝑓𝑓𝑟𝑟 𝑘𝑘 =
1
𝛼𝛼

𝑜𝑜−𝑏𝑏 ⁄1 𝛼𝛼 𝑓𝑓𝑓𝑓𝑟𝑟 𝑘𝑘 =
1
𝛼𝛼

+ 1

0 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜𝑑𝑑𝑜𝑜𝑜𝑜

𝑑𝑑𝑓𝑓 𝛼𝛼 ∈
1
2

,
1
3

, …

The distribution becomes extremely narrow. Generically there is only 
one non-vanishing entry, apart from the special case 𝛼𝛼 = 1/𝑟𝑟 where 
there are two such values.



RPA – the dense case c = 𝑏𝑏𝑁𝑁𝛼𝛼

A new prediction - almost all pairs are at the same distance from each 
other. This is the closest one can get to a regular-distance graph.
(One needs large networks to realize the asymptotic limit)

N = 4096, c = 16,𝛼𝛼 = 1/6 N = 4096, c = 8,𝛼𝛼 = 1/4



RPA – the dense case c = 𝑏𝑏𝑁𝑁𝛼𝛼

A new prediction - almost all pairs are at the same distance from each 
other. This is the closest one can get to a regular-distance graph.

N = 4096, c = 16,𝛼𝛼 = 1/3



N = 4096, c = 16,𝜶𝜶 = 𝟎𝟎.𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑

N = 4096, c = 20,𝜶𝜶 = 𝟎𝟎.𝟑𝟑𝟑𝟑N = 4096, c = 18,𝜶𝜶 = 𝟎𝟎.𝟑𝟑𝟑𝟑𝟑𝟑



Summary
We studied the distribution of shortest path lengths/distances in ER 

networks using a recursive path understanding of the network.

The numerical results agree well with the theory above the percolation 

threshold 𝑐𝑐 = 1, but well still when there are isolated components. It 

becomes really excellent in the dense limit.

Distances are typically (very) short, and the distribution is narrow.

The results for 𝑃𝑃𝑁𝑁 𝑑𝑑 > 1 , 𝑃𝑃𝑁𝑁 𝑑𝑑 > 2 are exact.

Can be extended to other random graph ensembles (e.g. the 

configuration mode), maybe improved, and can have many applications 

– e.g. in dynamical processes on networks, inference and sampling of 

networks with desired distance distribution. 

We have an analytical handle that can serve further riddles.
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