RNA folding with Pseudoknots

Performance on Data

Links Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

MCMC sampling of RNA structures with pseudoknots

Dirk Metzler

Johann Wolfgang Goethe-Universität Frankfurt am Main Fachbereich Informatik und Mathematik

joint work with Markus Nebel, Universität Kaiserslautern

RNA folding with SCFGs	RNA folding with Pseudoknots	Performance on Data	Links	Conclusions

Outline

RNA folding with Stochastic Context-Free Grammars

- Basic Model
- Dynamic Programming

2 RNA folding with Pseudoknots

- Pseudoknots
- Combine SCFG with Pseudoknots
- Bayesian Sampling of RNA structures with pseudoknots

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

3 Performance on Data

- tmRNA
- Simulated Data

RNA folding with SCFGs	RNA folding with Pseudoknots	Performance on Data	Links	Conclusions
• 000 0000				

Outline

RNA folding with Stochastic Context-Free Grammars Basic Model

Oynamic Programming

2 RNA folding with Pseudoknots

- Pseudoknots
- Combine SCFG with Pseudoknots
- Bayesian Sampling of RNA structures with pseudoknots

3 Performance on Data

- tmRNA
- Simulated Data

RNA folding with Pseudoknots

Performance on Data

Links Conclusions

▲□▶▲□▶▲□▶▲□▶ □ のQ@

tmRNA of Escherichia Coli

RNA folding with Pseudoknots

Performance on Data

Links Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

tmRNA of Escherichia Coli

RNA folding with Pseudoknots

Performance on Data

Links Conclusions

tmRNA of Escherichia Coli

RNAfold

Implementation of Zuker algorithm in Vienna RNA Package

Zuker (1989) Zuker et al. (1999)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

RNA folding with Pseudoknots

Performance on Data

Conclusions

Stochastic Context-Free Grammar (SCFG)

Terminal Symbols

A,C,G,U

Non-Terminal Symbols

S, L, F

Rules with Probabilities

RNA folding with Pseudoknots

Performance on Data

Links Conclusions

Stochastic Context-Free Grammar (SCFG)

Terminal Symbols

A,C,G,U

Non-Terminal Symbols

S, L, F

Rules with Probabilities

RNA folding with Pseudoknots

Performance on Data

inks Conclusion

Generating RNA structure from SCFG

s

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

RNA folding with Pseudoknots

Performance on Data

nks Conclusion:

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Generating RNA structure from SCFG

s

S->LS

RNA folding with Pseudoknots

Performance on Data

nks Conclusion:

Generating RNA structure from SCFG

LLLLLLLLLLLLLLLLLS

S->LS

RNA folding with Pseudoknots

Performance on Data

nks Conclusion

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Generating RNA structure from SCFG

LLLLLLLLLLLLLLLLLLS

S->x L->x

RNA folding with Pseudoknots

Performance on Data

nks Conclusion:

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Generating RNA structure from SCFG

acgLuaagauLuauLggcauu a

S->x L->x

RNA folding with Pseudoknots

Performance on Data

inks Conclusions

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Generating RNA structure from SCFG

acgLuaagauLuauLggcauua

L->axFyb

RNA folding with Pseudoknots

Performance on Data

inks Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

RNA folding with Pseudoknots

Performance on Data

inks Conclusions

RNA folding with Pseudoknots

Performance on Data

inks Conclusions

RNA folding with Pseudoknots

Performance on Data

nks Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

RNA folding with Pseudoknots

Performance on Data

nks Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

```
acg uaagau uau ggcauua
g-c u-a g-u
a-u u-a g-c F->xLSy
a-u u-a c-g
u-a F g-c
u-a F g-c
F u-a
F u-a
F u-a
F
```

RNA folding with Pseudoknots

Performance on Data

nks Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

RNA folding with Pseudoknots

Performance on Data

nks Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

```
acg uaagau uau ggcauua
gu ua c-g
g-c u-a g-u
a-u u-a c-g
u-a g-c S->LS
u-a g-c c-g
u-a LS g-c
a-u g-c c-g
u-a LS g-c
a-u c-g
LS
```

RNA folding with Pseudoknots

Performance on Data

nks Conclusion

ヘロト 人間 とくほとくほとう

3

RNA folding with Pseudoknots

Performance on Data

nks Conclusions

ヘロト 人間 とくほとくほとう

æ.

RNA folding with Pseudoknots

Performance on Data

イロト イポト イヨト イヨト

э

nks Conclusion

RNA folding with Pseudoknots

Performance on Data

iks Conclusion

Generating RNA structure from SCFG

▲口▶▲圖▶▲厘▶▲厘▶ 厘 のへで

RNA folding with Pseudoknots

Performance on Data

nks Conclusion

Generating RNA structure from SCFG

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 − のへで

RNA folding with SCFGs	RNA folding with Pseudoknots	Performance on Data	Links	Conclusions

Outline

RNA folding with Stochastic Context-Free Grammars Basic Model

Dynamic Programming

2 RNA folding with Pseudoknots

- Pseudoknots
- Combine SCFG with Pseudoknots
- Bayesian Sampling of RNA structures with pseudoknots

3 Performance on Data

- tmRNA
- Simulated Data

RNA folding with Pseudoknots

Performance on Data

Links Conclusions

▲□▶▲□▶▲□▶▲□▶ □ のQで

Computing the Probability of a sequence

For given $S = (s_1, ..., s_n) \in \{a, c, g, u\}^n$ and probabilities of grammar rules

compute the probability that S is transformed into S.

RNA folding with Pseudoknots

Performance on Data

Links Conclusions

Computing the Probability of a sequence: partial problems

 $\Phi_{ij}(X) := \Pr(X \text{ is transformed into } \mathbf{s}_i, \dots, \mathbf{s}_j)$

RNA folding with Pseudoknots

Performance on Data

Links Conclusions

▲□▶▲□▶▲□▶▲□▶ □ のQで

Computing the Probability of a sequence: partial problems

 $\Phi_{ij}(X) := \Pr(X \text{ is transformed into } \mathbf{s}_i, \dots, \mathbf{s}_j)$

Aim: compute $\Phi_{1n}(S)$!

RNA folding with Pseudoknots

Performance on Data

Links Conclusions

Computing the Probability of a sequence: partial problems

 $\Phi_{ii}(X) := \Pr(X \text{ is transformed into } \mathbf{s}_i, \dots, \mathbf{s}_i)$

Aim: compute $\Phi_{1n}(S)$!

RNA folding with Pseudoknots

Performance on Data

Links Conclusions

Computing the Probability of a sequence: partial problems

 $\Phi_{ij}(X) := \Pr(X \text{ is transformed into } \mathbf{s}_i, \dots, \mathbf{s}_j)$

Aim: compute $\Phi_{1n}(S)$!

RNA folding with Pseudoknots

Performance on Data

Links Conclusions

Computing the Probability of a sequence: partial problems

 $\Phi_{ij}(X) := \Pr(X \text{ is transformed into } \mathbf{s}_i, \dots, \mathbf{s}_j)$

Aim: compute $\Phi_{1n}(S)$!

$$\Phi_{ij}(F) = \Phi_{i+1,j-1}(F) \cdot \Pr(F \to xFy) \cdot \pi_{s_i s_j} + \sum_k \pi_{s_i s_j} \cdot \Pr(F \to xLSy) \cdot \Phi_{i+1,k}(L) \cdot \Phi_{k+1,j-1}(S)$$

RNA folding with Pseudoknots

Performance on Data

ks Conclusions

Sampling a Structure from Posterior in SCFG model

Sample according to contribution to $\Phi_{ii}(X)$

◆ロ▶ ◆御▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

RNA folding with Pseudoknots

Performance on Data

ks Conclusions

Sampling a Structure from Posterior in SCFG model

Sample according to contribution to $\Phi_{ii}(X)$

< □ > < □ > < 亘 > < 亘 > < 亘 > のへで

RNA folding with Pseudoknots

Performance on Data

Links Conclusions

Sampling a Structure from Posterior in SCFG model

▲□▶▲□▶▲□▶▲□▶ □ のへ⊙
RNA folding with Pseudoknots

Performance on Data

Links Conclusions

Sampling a Structure from Posterior in SCFG model

Performance on Data

Conclusions

Sampling a Structure from Posterior in SCFG model

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

RNA folding with Pseudoknots

Performance on Data

s Conclusion

Sampling a Structure from Posterior in SCFG model

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

RNA folding with Pseudoknots

Performance on Data

s Conclusions

Sampling a Structure from Posterior in SCFG model

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

RNA folding	with	SCFGs

RNA folding with Pseudoknots

Performance on Data

Links Conclusions

Outline

RNA folding with Stochastic Context-Free Grammars

- Basic Model
- Oynamic Programming

2 RNA folding with Pseudoknots

- Pseudoknots
- Combine SCFG with Pseudoknots
- Bayesian Sampling of RNA structures with pseudoknots

3 Performance on Data

- tmRNA
- Simulated Data

RNA folding with Pseudoknots

Performance on Data

ks Conclusior

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Pseudoknots

RNA folding with Pseudoknots

Performance on Data

nks Conclusio

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Pseudoknots

RNA folding with Pseudoknots

Performance on Data

ks Conclusions

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Structure of Escherichia Coli tmRNA

picture stolen from tmRNA website http://www.indiana.edu/~tmrna/

RNA folding with Pseudoknots

Performance on Data

ks Conclusions

Structure of Escherichia Coli tmRNA

picture stolen from tmRNA website http://www.indiana.edu/~tmrna/

RNA folding with Pseudoknots

Performance on Data

iks Conclusior

Structure of Escherichia Coli tmRNA

RNAfold estimation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

RNA folding with Pseudoknots

Performance on Data

ks Conclusions

Structure of Escherichia Coli tmRNA

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

3

RNA folding with Pseudoknots

Performance on Data

iks Conclusio

Structure of Escherichia Coli tmRNA

RNA folding	with	SCFGs

RNA folding with Pseudoknots

Performance on Data

Links Conclusions

Outline

RNA folding with Stochastic Context-Free Grammars

- Basic Model
- Oynamic Programming

2 RNA folding with Pseudoknots

Pseudoknots

Combine SCFG with Pseudoknots

Bayesian Sampling of RNA structures with pseudoknots

3 Performance on Data

- tmRNA
- Simulated Data

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Models with restricted types of pseudoknots

L. Cai, R. L. Malmberg and Y. Wu. (2003)

Stochastic modeling of RNA pseudoknotted structures: a gramatical approach. *Bioinformatics* 19: i66-i73.

E. Rivas and S. R. Eddy. (1999)

A dynamic programming algorithm for RNA structure prediction including pseudoknots. *J. Mol. Biol.* 285:2053-2068.

J. Reeder and R. Giegerich.(2004)

Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics. *BMC Bioinformatics*, 5:104.

- ... and several others
 - restrict the way pseuknots may intersect
 - o compute THE BEST Structure for given RNA sequence

RNA folding with Pseudoknots

Performance on Data

Links Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Aims for our Pseudoknot Grammar / Method

• a priori no restrictions on pseudoknot interactions

- sampling structures from posterior distributions
- efficient if high number of pseudoknots is unlikely
- rather prior distribution than biologically meaningful model
- simplicity!

RNA folding with Pseudoknots

Performance on Data

Links Conclusions

(日)

- a priori no restrictions on pseudoknot interactions
- sampling structures from posterior distributions
- efficient if high number of pseudoknots is unlikely
- rather prior distribution than biologically meaningful model
- simplicity!

RNA folding with Pseudoknots

Performance on Data

Links Conclusions

(日)

- a priori no restrictions on pseudoknot interactions
- sampling structures from posterior distributions
- efficient if high number of pseudoknots is unlikely
- rather prior distribution than biologically meaningful model
- simplicity!

RNA folding with Pseudoknots

Performance on Data

Links Conclusions

(日)

- a priori no restrictions on pseudoknot interactions
- sampling structures from posterior distributions
- efficient if high number of pseudoknots is unlikely
- rather prior distribution than biologically meaningful model
 simplicity!

RNA folding with Pseudoknots

Performance on Data

Links Conclusions

(日)

- a priori no restrictions on pseudoknot interactions
- sampling structures from posterior distributions
- efficient if high number of pseudoknots is unlikely
- rather prior distribution than biologically meaningful model
- simplicity!

RNA folding with Pseudoknots

Performance on Data

inks Conclusions

Combine SCFG with pseudoknots

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

RNA folding with Pseudoknots

Performance on Data

inks Conclusions

Combine SCFG with pseudoknots

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

RNA folding with Pseudoknots

Performance on Data

inks Conclusions

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Combine SCFG with pseudoknots

- SCFG ~~ RNA with Q-Symbols
- In a random mating of Q-symbols
- Q-Q-pairs produce stems

RNA folding	with	SCFGs	R

NA folding with Pseudoknots

Performance on Data

inks Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Notations

- S: given Sequence
- Q: Configuration of Q-stems
- ♥: SCFG Parse Tree
- $\Omega = [\Psi, Q]$: Stucture = {(*i*, *j*) | Positions *i* and *j* are paired }.
- θ : Model parameters

RNA folding	with	SCFGs	

RNA folding with Pseudoknots

Performance on Data

Links Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Notations

- S: given Sequence
- Q: Configuration of Q-stems
- V: SCFG Parse Tree
- $\Omega = [\Psi, Q]$: Stucture = {(*i*, *j*) | Positions *i* and *j* are paired }.
- *θ*: Model parameters

Aims:

Compute

 $L_{\mathcal{S}}(\theta) = \mathsf{Pr}_{\theta}(\mathcal{S}) = \sum_{\Psi, \mathcal{Q}} \mathsf{Pr}_{\theta}(\mathcal{S} \mid \mathcal{Q}, \Psi) \cdot \mathsf{Pr}_{\theta}(\Psi) \cdot \mathsf{Pr}_{\theta}(\mathcal{Q} \mid \Psi)$

• Sample RNA Structure according to $Pr(\Omega \mid S) = \sum_{\Psi, Q : [\Psi, Q] = \Omega} Pr(\Psi, Q \mid S)$

RNA folding with SCFGs	RNA folding with Pseudoknots	Performance on Data	Links	Conclusion
	000000000000000000000000000000000000000			

Outline

RNA folding with Stochastic Context-Free Grammars

- Basic Model
- Dynamic Programming

2 RNA folding with Pseudoknots

- Pseudoknots
- Combine SCFG with Pseudoknots
- Bayesian Sampling of RNA structures with pseudoknots

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

3 Performance on Data

- tmRNA
- Simulated Data

RNA folding with Pseudoknots

Performance on Data

Links Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

For fixed Q doable by dynamic programming

• Compute $Pr(\mathcal{Q} \mid \mathcal{S}) = \sum_{\Psi} Pr(\Psi, \mathcal{Q} \mid \mathcal{S})$

- Sample SCFG Parse Tree Ψ according to $Pr(\Psi \mid Q, S)$
- Sample Structure Ω according to $Pr(\Omega \mid Q, S)$
- Compute

 $\arg \max_{\Psi} \Pr(\Psi \mid \mathcal{Q}, \mathcal{S})$

RNA folding with Pseudoknots

Performance on Data

Links Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

For fixed Q doable by dynamic programming

- Compute $\Pr(\mathcal{Q} \mid S) = \sum_{\Psi} \Pr(\Psi, \mathcal{Q} \mid S)$
- Sample SCFG Parse Tree Ψ according to $Pr(\Psi | Q, S)$
- Sample Structure Ω according to $Pr(\Omega \mid Q, S)$
- Compute

 $\arg \max_{\Psi} \Pr(\Psi \mid \mathcal{Q}, \mathcal{S})$

RNA folding with Pseudoknots

Performance on Data

Links Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

For fixed Q doable by dynamic programming

- Compute $\Pr(\mathcal{Q} \mid S) = \sum_{\Psi} \Pr(\Psi, \mathcal{Q} \mid S)$
- Sample SCFG Parse Tree Ψ according to $Pr(\Psi | Q, S)$
- Sample Structure Ω according to $Pr(\Omega \mid Q, S)$
- Compute

 $\arg\max_{\Psi} \Pr(\Psi \mid \mathcal{Q}, \mathcal{S})$

RNA folding with Pseudoknots

Performance on Data

Links Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

For fixed Q doable by dynamic programming

- Compute $\Pr(\mathcal{Q} \mid \mathcal{S}) = \sum_{\Psi} \Pr(\Psi, \mathcal{Q} \mid \mathcal{S})$
- Sample SCFG Parse Tree Ψ according to $Pr(\Psi | Q, S)$
- Sample Structure Ω according to Pr(Ω | Q, S)
- Compute

 $\arg \max_{\Psi} \Pr(\Psi \mid \mathcal{Q}, \mathcal{S})$

RNA folding with Pseudoknots

Performance on Data

Links Conclusions

Bayesian sampling of Ω

Strategy for sampling RNA structure Ω according to its posterior probability $Pr(\Omega \mid S)$ for given RNA sequence S:

- Sample Q_i according to Pr(Q | S) by Markov-Chain Monte Carlo (MCMC) Method.
- Sample Ψ_i according to Pr(Ψ | Q_i, S) by dynamic programming.
- **③** Then $Ω_i = [Ψ_i, Q_i]$ is sample according to

$$Pr(\Omega \mid S) = \sum_{\Psi, Q : [\Psi, Q] = \Omega} Pr(\Psi, Q \mid S)$$
$$= \sum_{\Psi, Q : [\Psi, Q] = \Omega} Pr(\Psi \mid Q, S) \cdot Pr(Q \mid S)$$

RNA folding with SCFGs RNA folding with Pseudoknots Performance on Data Links Conclusions

Bayesian sampling of Ω

Strategy for sampling RNA structure Ω according to its posterior probability $Pr(\Omega \mid S)$ for given RNA sequence S:

- Sample Q_i according to Pr(Q | S) by Markov-Chain Monte Carlo (MCMC) Method.
- Sample Ψ_i according to $\Pr(\Psi \mid Q_i, S)$ by dynamic programming.
- 3 Then $\Omega_i = [\Psi_i, \mathcal{Q}_i]$ is sample according to

$$Pr(\Omega \mid S) = \sum_{\Psi, Q : [\Psi, Q] = \Omega} Pr(\Psi, Q \mid S)$$
$$= \sum_{\Psi, Q : [\Psi, Q] = \Omega} Pr(\Psi \mid Q, S) \cdot Pr(Q \mid S)$$

Payagian compling of O				
	RNA folding with Pseudoknots	Performance on Data	Links	Conclusions

Bayesian sampling of Ω

Strategy for sampling RNA structure Ω according to its posterior probability $Pr(\Omega \mid S)$ for given RNA sequence S:

- Sample Q_i according to Pr(Q | S) by Markov-Chain Monte Carlo (MCMC) Method.
- Sample Ψ_i according to $\Pr(\Psi \mid Q_i, S)$ by dynamic programming.
- Solution $\Omega_i = [\Psi_i, Q_i]$ is sample according to

$$Pr(\Omega \mid S) = \sum_{\Psi, Q : [\Psi, Q] = \Omega} Pr(\Psi, Q \mid S)$$
$$= \sum_{\Psi, Q : [\Psi, Q] = \Omega} Pr(\Psi \mid Q, S) \cdot Pr(Q \mid S)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

RNA folding with Pseudoknots

Performance on Data

Links Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Markov-Chain Monte Carlo (MCMC)

MCMC: construct Markov chain $Q_0, Q_1, Q_2, ...$ with stationary distribution $Pr(Q \mid S)$ and let it converge.

Metropolis-Hastings:

Given current state Q_i propose Q' with Prob. $p(Q_i \rightarrow Q')$ Accept $Q_{i+1} := Q'$ with probability

$$\min\left\{1, \frac{p(\mathcal{Q}' \to \mathcal{Q}_i) \cdot \Pr(\mathcal{Q}' \mid \mathcal{S})}{p(\mathcal{Q}_i \to \mathcal{Q}') \cdot \Pr(\mathcal{Q}_i \mid \mathcal{S})}\right\}$$

otherwise $Q_{i+1} := Q_i$

Performance on Data

Links Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Markov-Chain Monte Carlo (MCMC)

MCMC: construct Markov chain $Q_0, Q_1, Q_2, ...$ with stationary distribution $Pr(Q \mid S)$ and let it converge.

Metropolis-Hastings:

Given current state Q_i propose Q' with Prob. $p(Q_i \rightarrow Q')$ Accept $Q_{i+1} := Q'$ with probability

$$\mathsf{min}\left\{1, \frac{p(\mathcal{Q}' \to \mathcal{Q}_i) \cdot \mathsf{Pr}(\mathcal{Q}' \mid \mathcal{S})}{p(\mathcal{Q}_i \to \mathcal{Q}') \cdot \mathsf{Pr}(\mathcal{Q}_i \mid \mathcal{S})}\right\}$$

otherwise $Q_{i+1} := Q_i$

RNA folding with Pseudoknots

Performance on Data

inks Conclusio

Proposals for Q_{i+1}

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 - の Q @

RNA folding with Pseudoknots

Performance on Data

nks Conclusio

Proposals for Q_{i+1}

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q ()
RNA folding with Pseudoknots

Performance on Data

nks Conclusior

Proposals for Q_{i+1}

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q ()

RNA folding with Pseudoknots

Performance on Data

ks Conclusio

Candidates for Pseudoknots

tmRNA of rice bacterium

RNA folding with Pseudoknots

Performance on Data

ks Conclusio

Candidates for Pseudoknots

tmRNA of rice bacterium

RNA folding with Pseudoknots

Performance on Data

Links Conclusior

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Weight for *Q*-stem proposal

Proposal probability for HSP
$$\propto \frac{1 - e^{(\text{alignment score}) \cdot c_1}}{\max\{(\text{SCFG stem probability}), c_2\}}$$

$$c_1 = 10^{-6}, c_2 = 10^{-5}$$

RNA folding with Pseudoknots

Performance on Data

inks Conclusion

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Looking for Optima

We search for

$$\arg\max_{[\Psi,\mathcal{Q}]} \mathsf{Pr}([\Psi,\mathcal{Q}] \mid \mathcal{S})$$

by simulated annealing.

RNA folding	with	SCFGs	

RNA folding with Pseudoknots

Performance on Data

Links Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Outline

RNA folding with Stochastic Context-Free Grammars

- Basic Model
- Oynamic Programming

2 RNA folding with Pseudoknots

- Pseudoknots
- Combine SCFG with Pseudoknots
- Bayesian Sampling of RNA structures with pseudoknots

Performance on Data

- tmRNA
- Simulated Data

RNA folding with Pseudoknots

Performance on Data

nks Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Model parameter values used

RNA folding with Pseudoknots

Performance on Data

nks Conclusio

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Treponema pallidum pre-tmRNA

posterior vs. most probable

RNA folding with Pseudoknots

Performance on Data

nks Conclusio

Treponema pallidum pre-tmRNA

posterior vs. known

position

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

RNA folding with SCFGs	RNA folding with Pseudoknots	Performance on Data
		000000000000000000000000000000000000000

nks Conclusi

Treponema pallidum pre-tmRNA

predictions vs. real

RNA folding with Pseudoknots

Performance on Data

inks Conclusio

tmRNA of rice bacterium posterior vs. most probable

position

RNA folding with Pseudoknots

Performance on Data

nks Conclusior

tmRNA of rice bacterium

posterior vs. known

position

RNA folding	with	SCFGs	

RNA folding with Pseudoknots

Performance on Data

nks Conclusio

tmRNA of rice bacterium

predictions vs. known

position

RNA folding with Pseudoknots

Performance on Data

Links Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Comparison with RNAfold and pknotsRG

351 tmRNA Sequeces of length> 200 from http://www.indiana.edu/~tmrna/

	estimated	estimated	
	to be paired	not to be paired	
in fact paired	A	а	
in fact not paired	В	b	

correctness: A/(A+B)sensitivity: A/(A+a)

RNA folding with Pseudoknots

Performance on Data

inks Conclusior

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

RNA folding with Pseudoknots

Performance on Data

iks Conclusior

estimated pairing probabilities

tmRNA

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

RNA folding	with	SCFGs	

RNA folding with Pseudoknots

Performance on Data

Links Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Outline

RNA folding with Stochastic Context-Free Grammars

- Basic Model
- Oynamic Programming

2 RNA folding with Pseudoknots

- Pseudoknots
- Combine SCFG with Pseudoknots
- Bayesian Sampling of RNA structures with pseudoknots

Performance on Data

- tmRNA
- Simulated Data

RNA folding with Pseudoknots

Performance on Data

Links Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Simulated Data

200 folded sequences of length 300-460

- generated according to our model
- same parameters as above
- McQFold uses same parameters
- of course unfair against RNAfold and pknotsRG

RNA folding with Pseudoknots

Performance on Data

Links Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Simulated Data

200 folded sequences of length 300-460

generated according to our model

- same parameters as above
- McQFold uses same parameters
- of course unfair against RNAfold and pknotsRG

RNA folding with Pseudoknots

Performance on Data

Links Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Simulated Data

- 200 folded sequences of length 300-460
- generated according to our model
- same parameters as above
- McQFold uses same parameters
- of course unfair against RNAfold and pknotsRG

RNA folding with Pseudoknots

Performance on Data

Links Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Simulated Data

- 200 folded sequences of length 300-460
- generated according to our model
- same parameters as above
- McQFold uses same parameters
- of course unfair against RNAfold and pknotsRG

RNA folding with Pseudoknots

Performance on Data

Links Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Simulated Data

- 200 folded sequences of length 300-460
- generated according to our model
- same parameters as above
- McQFold uses same parameters
- of course unfair against RNAfold and pknotsRG

RNA folding with Pseudoknots

Performance on Data

inks Conclusior

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

RNA folding with Pseudoknots

Performance on Data

inks Conclusion

<ロ> <=> <=> <=> <=> <=>

æ

RNA folding with SCFGs	RNA folding with Pseudoknots	Performance on Data	Links	Conclusions
Links				

D. Metzler, M. Nebel (2006) Predicting RNA Secondary Structures with Pseudoknots by MCMC Sampling submitted

Preprint:

www.cs.uni-frankfurt.de/~metzler/McQFold/McQFold.pdf

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Homepage of McQFold Software

www.cs.uni-frankfurt.de/~metzler/McQFold/

RNA folding with Pseudoknots

Performance on Data

Links Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Conclusions and Future Plans

- Estimation of RNA structure from sequence can be very uncertain.
- Uncertainty should be assessed. This can be done by Bayesian sampling.
- Perhaps better to combine informations from related sequences.
- Combine SCFGs with Q-stems to allow pseudoknots in structural alignments and/or structural sequence profiles.

RNA folding with Pseudoknots

Performance on Data

Links Conclusions

Conclusions and Future Plans

- Estimation of RNA structure from sequence can be very uncertain.
- Uncertainty should be assessed. This can be done by Bayesian sampling.
- Perhaps better to combine informations from related sequences.
- Combine SCFGs with Q-stems to allow pseudoknots in structural alignments and/or structural sequence profiles.

Thanks: Martina Fröhlich, Christian Färber, Markus Nebel, audience