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The Nobel Prize in Physics 2021

“for groundbreaking contributions to our understanding of

complex physical systems”
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“for the discovery of the interplay of

disorder and fluctuations in physical systems

from atomic to planetary scales”



Complex systems

complicated vs. complex

we can understand a mechanical watch (Ottino 2004)
not so complex systems

— emergence

different properties at each level of complexity
e.g. chemistry obeys laws of physics but we cannot infer

chemistry from them (Anderson 1972, Strogatz et al. 2022)



Cities as complex systems - urban complexity

Cities are attractive despite many negative characteristics
difficulties in managing them
due to high degree of complexity

Interacting entities (people, infrastructure)

Emergent properties, in addition to sum of isolated properties

- discrete dynamics and cellular automata
- networks

- dynamical systems

- agent-based modeling

- scaling




Cities as complex systems — urban complexity

Selected aspects

1. Gravitation Growth

2. Urban Percolation

3. City Size Distributions & Urban Scaling



Gravitational
Growth



Gravitational Growth
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Gravitational Growth: cluster size distribution
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Real-world data
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Cumulative version
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Population density

Y.Li et al. 2021
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Fundamental allometry
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Comparison with exponential
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Urban
Percolation
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Laws of population growth
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An important issue in the study of cities is defining a metropali-
tan area, because different definitions affect conelusions regarding
the statistical distribution of urban activity. A commonly employed
method of defining a metropolitan area is the Metropolitan Statis-
tical Areas (M5As), based on rules attempting to capture the notion
of city as afunctional economic region, and it is performed by using
experience. The construction of MSAs is a time-consuming process
and is typically dene enly for a subset (afew hundreds) of the mast
highly populated cities. Here, we introduce a method to designate
metropolitan areas, denoted "Gty Clustering Algorithm® (CCA). The
CCA is based on spatial distributions of the population at a fine
geographic scale, defining a city beyond the scope of its admin-
istrative boundaries. We use the CCA to examine Gibrat's law of
proportional growth, which postulates that the mean and standard
deviation of the growth rate of dties are constant, independent of
city size. We find that the mean growth rate of a cluster by uti-
lizing the CCA exhibits deviations from Gibrat's law, and that the
standard deviation decreases as a power law with respect to the
city size. The CCA allows for the study of the underlying process
leading to these deviations, which are shown to arise from the
existence of long-range spatial correlations in population growth.
These results have sociopolitical implications, for example, for the
location of new emnomic development in dties of varied size.

scaling | statistical analysis |urban growth

n recent years there has been considerable work on how to

country and continental levels (Great Britain, the United States,
and Africa) deviates from Gibrat's law. We find that the mean
and standard deviation of population growth rates decrease with
population size, in some cases following a power-law behavior.
We argue that the underlying de mographic process leading to the
deviations from Gibrat's law can be modeled from the existence
of long-range spatial correlations in the growth of the popula-
tion, which mayarise from the concept that “deve lopment attracts
further development.” These results have implications for social
policies, such as those pertaining to the location of new e conomic
development in cities of different sizes. The present results imply
that, on average. the greatest growth rate occurs in the smallest
places where there is the greatest risk of failure {larger fluctua-
tions). A corollary is that the safest growth occurs in the largest
places having less likelihood for rapid growth.

The analyzed data consist of the number of inhabitants, s; (1), in
each celliof a fine geographical grid at a given time, ¢. The cell size
varies for each dataset used in this study. We consider three dif-
ferent geographic scales: on the smallestscale. the area of study is
Grreat Britain (GB: England, Scotland and Wales), a highly urban-
ized country with a population of 58.7 million in 2007, and an area
of 0.23 million km®. The grid is composed of 5.75 million cells of
200 m by 200 m (£). At the intermediate scale, we study the USA
(continental Unite d States without Alaska), asingle country nearly
continental inscale, with a population of 303 million in 2007, and
an area of 7.44 million km?. The orginal USA data consists of
59,456 sites defined by Federal Information Processing Standards




City Clustering Algorithm (CCA) - Rozenfeld et al. AER 2011
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Any two objects are assigned to
the same cluster if their distance
Is short than or equal to a

ii v predefined threshold distance.
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Generalization of Burning Algorithm
(Stauffer & Aharony 1991;
Hoshen & Kopelman, PRB 1976)



City Clustering Algorithm (CCA) - Rozenfeld et al. AER 2011
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(Stauffer & Aharony 1991; (but without network)

Hoshen & Kopelman, PRB 1976)
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Percolation
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City Clustering Algorithm (point data)
Rozenfeld et al. AER 2011

Continuum Percolation
Bunde & Havlin 1991 (Fig.2.2)

(be aware of factor 2)



Behnisch et al. Land.Urban.Plan 2019
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Behnisch et al. Land.Urban.Plan 2019
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Excursus: Behnisch et al. Land.Urban.Plan 2019
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Excursus: Wolves — Reinhardt et al. Conserv.Lett. 2018
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Military training areas facilitate the recolonization of wolves in Germany.
The first territories were always established on MTAs.



Excursus: Wolves — Reinhardt et al. Conserv.Lett. 2018
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Percolation?

Is Urban Percolation aka CCA Percolation
a percolation phenomenon in the original sense?
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How can we make the connection to “true” percolation?

When do we have a percolation transition for /=17



“Predictive Percolation”: Hemond et al. 2023

A. 1950 - 2019, 7km B. 1950- 2019, 9km C. 1950s
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“Predictive Percolation”: Hemond et al. 2023
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“Predictive Percolation”: Hemond et al. 2023
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City size distribution
& urban scaling



City size distribution
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Urban scaling
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socio-economic:  g>1
personal needs: g1

infrastructure: p<1

contrary to Dreisatz



Data: FUA

Functional Urban Areas (FUA) provided by OECD & EU
Includes population from GHSL

o o o
Kummu et al. Sci Data 2018 A

Together:
- Consistently defined Urban Units’

- 457 1 Cltl es fro m 96 CcOou ntrl es Schiavina, Marcello; Moreno-Monroy, Ana; Maffenini, Luca;

Veneri, Paolo (2019). GHS-FUA R2019A - GHS functional
urban areas, derived from GHS-UCDB R2019A, (2015),

= pO p U I atl O n an d G D P fOr eaC h R2019A. European Commission, Joint Research Centre.



Complementary cumulative

Results: example

Nice example: India (ccdf, rank-plot, urban scaling)
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Are there correlations? Yes



Results: maps
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Results: scatter-plot

QL 20 -
I=
D
S
on
< 1.5 -
(b
(@))
=
I
3 1.0 -
-
S
e
- o /M High-GDP O Mid-GDP < Low-GDP
I | I [ I I
0.5 1.0 1.5 2.0 2.5 3.0
y = cs’ Zipf exponent, a r~s @



Hypothesis

Global aggregates also scale

- Y
l.e. country GDP & population Y = YOS
» . _ o
Additional global constraints: Smin — as
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° g Smax «— bS@
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Note: country & global exponents



Results: regression
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Results: country scaling
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Results: overview
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Why are the exponent related?

Inter-city interactions

1. Urban system with few large cities (large Zipf exponent)
diverse specialized companies concentrate in less cities
pronounced increasing returns to scale

(large urban scaling exponent)
vice versa

2. Urban system with pronounced increasing returns to scale
(large urban scaling exponent)
population is attracted by large cities
(moving alters Zipf exponent)
if they find no job or a less payed one, GDP/cap reduces
(urban scaling exponent adjusted)
vice versa

Note: urban scaling is often attributed to intra-city interactions



Summary

Zipf’'s and urban scaling exponents are correlated
We derive a relation based on country scaling (3 exponents)
No causality (from our analysis & derivation)

Simulations (not shown)

Zipf's law and urban scaling are two sides of the same coin

Urban scaling does not solely emerge from intra-city processes

Paper:

Ribeiro HV, Oehlers M, Moreno-Monroy Al, Kropp JP, Rybski D (2021)
Association between population distribution and urban GDP scaling.
PL0oS ONE 16(1): e0245771.
https://doi.org/10.1371/journal.pone.0245771
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