

Physics and Complexity

David Sherrington

University of Oxford & Santa Fe Institute & regularly CNLS, LANL

Physics

Dictionary definition:

Branch of science concerned with the nature and properties of matter and energy

But today I want to use it as a mind-set with valuable methodologies and to show application to complex systems in many different arenas

Complexity

Many body systems

 Cooperative behaviour complex

 not simply anticipatable from microscopics
 occurs even with simple individual units and simple interaction rules

but with surprising conceptual similarities
among superficially different systems

Aim today

Illustrate use of statistical physics methodology to understand complexity and its ubiquity via simple models, pictures and comparisons

Give flavour of concepts

Typical approach

- Essentials?
 - Minimal models
 - Comparisons/checks: e.g. simulation/expt.
 - Analysis: maths & ansätze
- Important consequences?
- Transfers, similarities & differences?

- Conceptualization
 - Generalization
 - Application

Methodology Symbiosis

- Theoretical physics
 - Minimalist modelling
 - Sophisticated mathematical analysis
 - Conceptualization
- Computer simulation
 - Compare models with (more complicated) real world
 - Experiments for which no real analogue
- Real experiment



But only a broad brush picture today

Key ingredients

Frustration Conflicts

Disorder Frozen / self-induced / time-dependent

The Dean's Problem

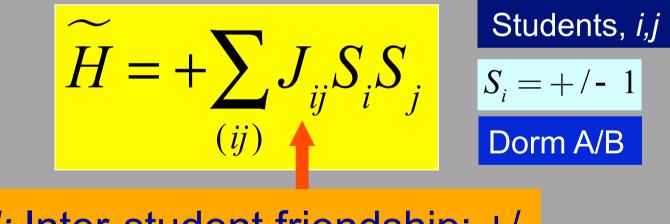
- Dean to allocate *N* students to two dorms
- Some students like one another; prefer same dorm —
- Others dislike one another; prefer different dorms
- Cannot satisfy all \rightarrow Frustration \wedge_{χ} or \wedge

or

Best compromise for whole student body?

The Dean's Problem as combinatorial optimization

Maximise⁺ a Happiness function^{*}



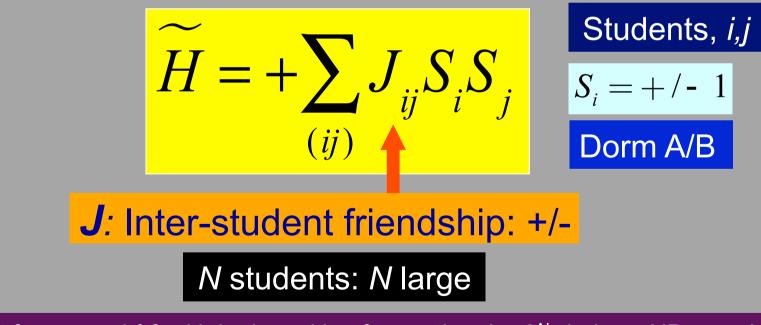
J: Inter-student friendship: +/-

+ w.r.t. the choice of $\{S_i\}$

* alias "fitness"

The Dean's Problem as combinatorial optimization

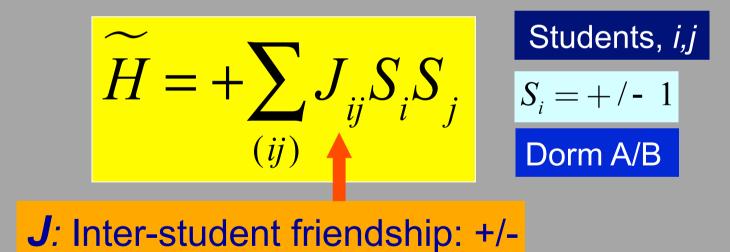
Maximise a Happiness function



Very difficult for general {*J*} with both positive & negative J_{ij} ; 2^{*N*} choices; NP-complete

The Dean's Problem as combinatorial optimization

Maximise a Happiness function



N students: *N* large

Very difficult for general {*J*} with both positive & negative J_{ii} ; 2^{*N*} choices; NP-complete

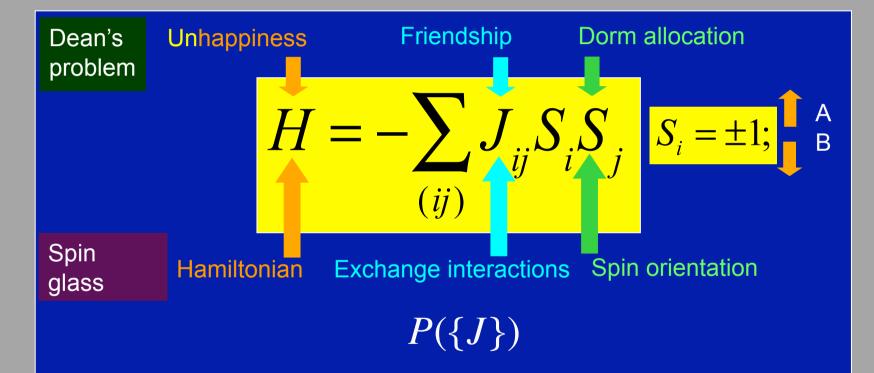
RANDOM DEAN'S PROBLEM: Characterize by probability distribution P(J)

Typical statistical physics

- Large N limit
- Disorder chosen randomly and independently from intensive distribution
- Interest in typical behaviour
 - Often self-averaging
 - But not always
 - Complex systems show non-self-averaging

in some observables

Dean's model equivalent to Range-free Spin Glass Model (SK)



Note: physicists minimize energies, biologists maximize fitnesses Equivalent through minus sign!

Spin glasses

• Experiment: e.g. AuFe

•

$$H = -\sum_{ij} c_i c_j J(R_{ij}) \overrightarrow{S_i} \cdot \overrightarrow{S_j}; \quad c_i = 0,1; \ J(R) \text{ sign osc.}$$

Edwards-Anderson: Not exactly soluble

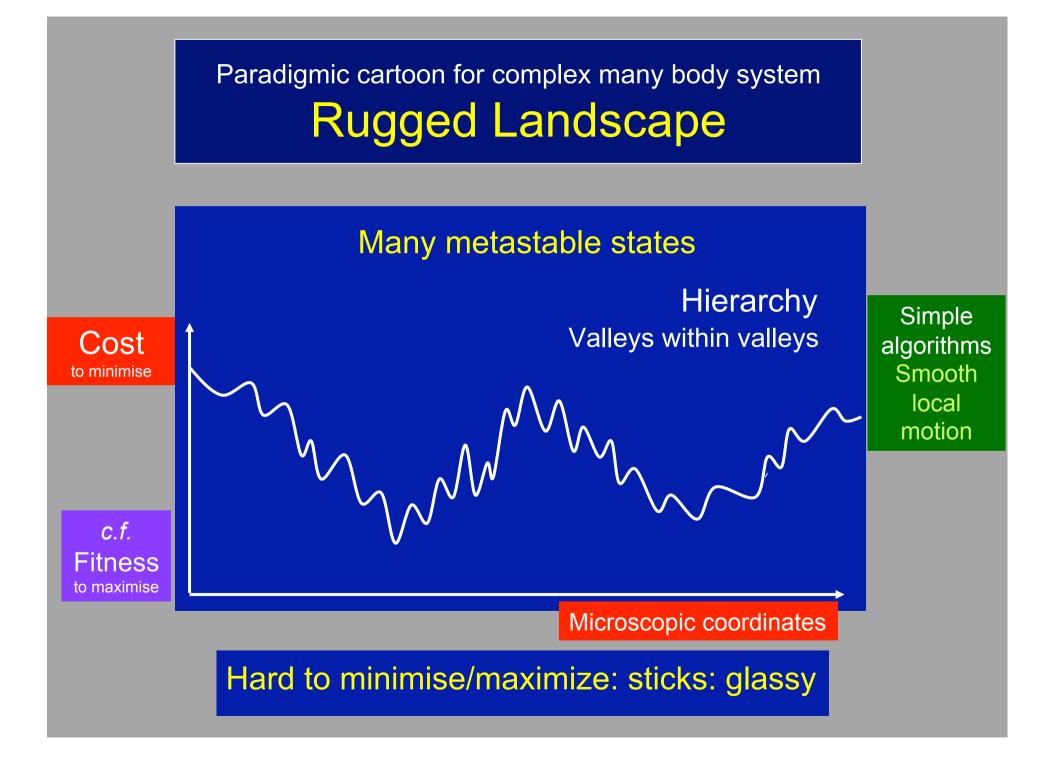
$$H = -\sum_{(ij)} J_{ij} \overrightarrow{S_i} \cdot \overrightarrow{S_j}; \text{ finite-range } P_{sep} (J_{ij})$$

• SK:
$$H = -\sum_{(ij)} J_{ij} \sigma_i \sigma_j; \sigma = \pm 1; P_{\infty}(J_{ij})$$

Dean's Problem/Spin Glass Model

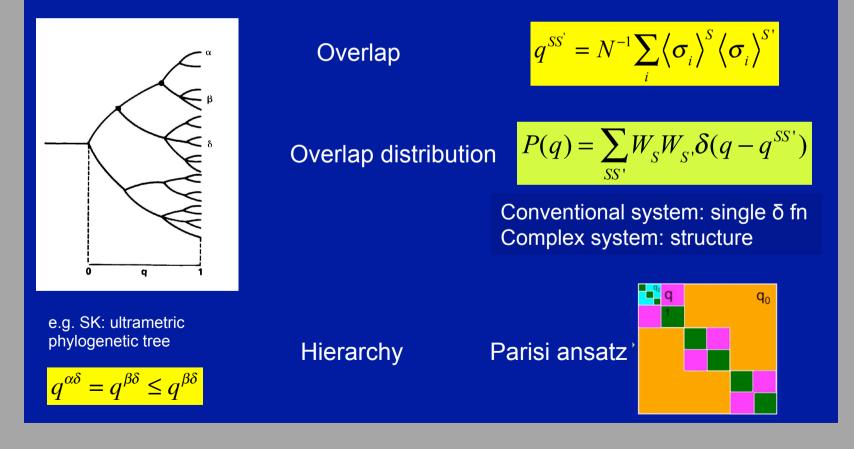
$$H = -\sum_{(ij)} J_{ij} S_i S_j S_j S_i = \pm 1; \square_B$$

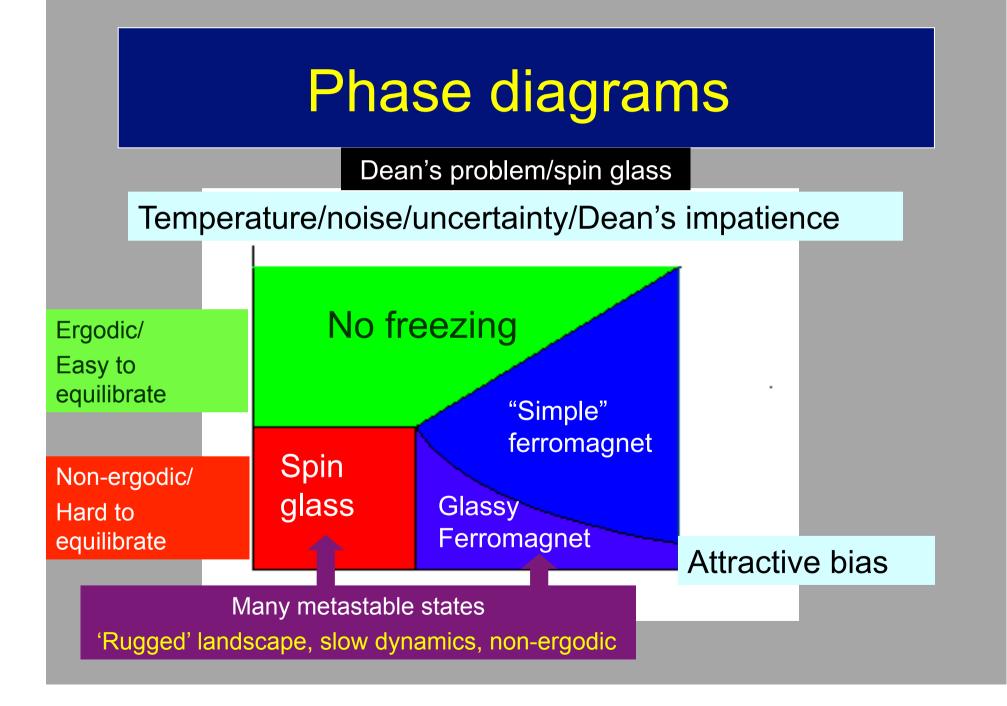
Statistical physics: equilibrium $P_{\{J\}}(\{S\}) \sim \exp(-H_{\{J\}}(\{S\})/T)$ T= temperature or Dean's impatience



Where does this cartoon come from?

Simulations, analytic calculations, anzätze





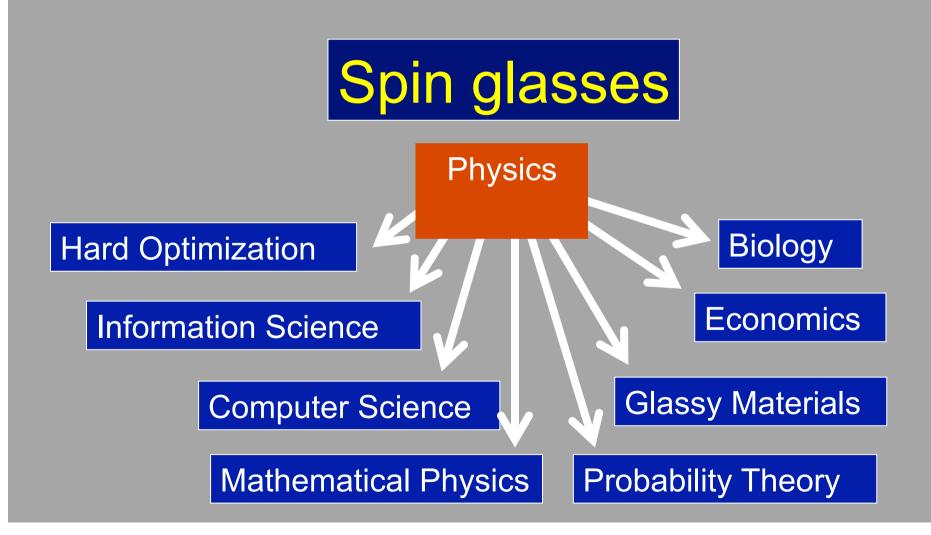
Many further results and subtleties

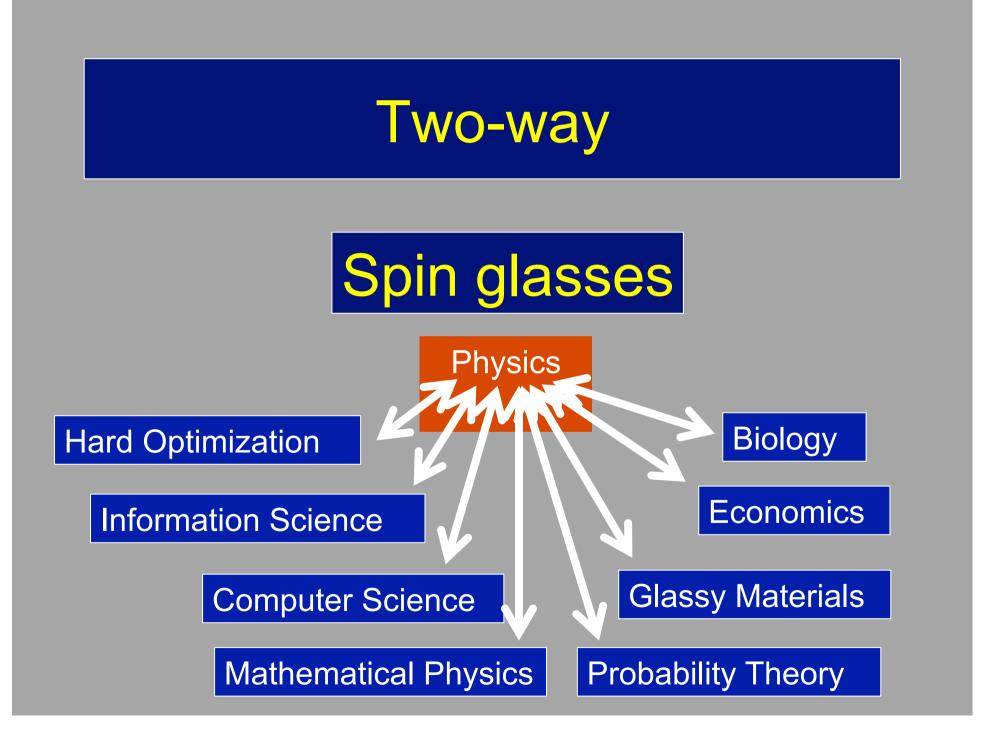
But probably not time today

 Rather, I shall concentrate on transfers between apparently physically different systems

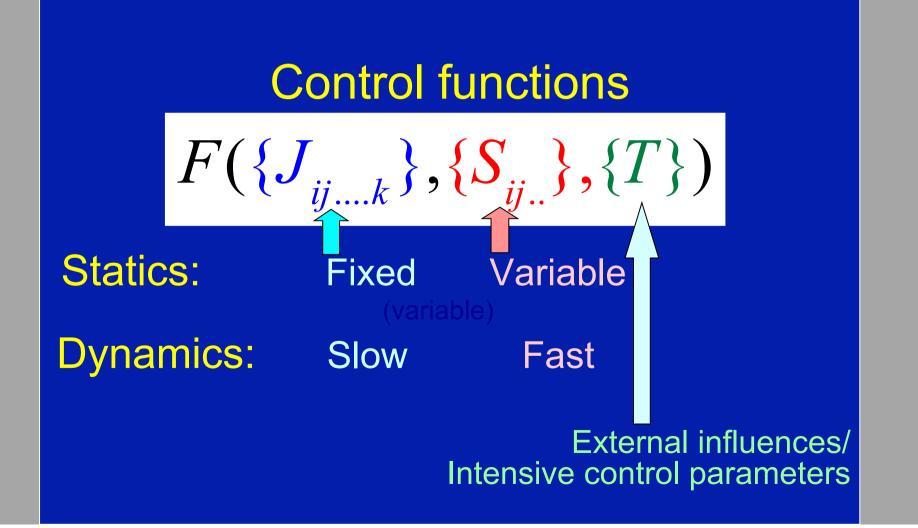
- Technical and conceptual

Transfers/extensions





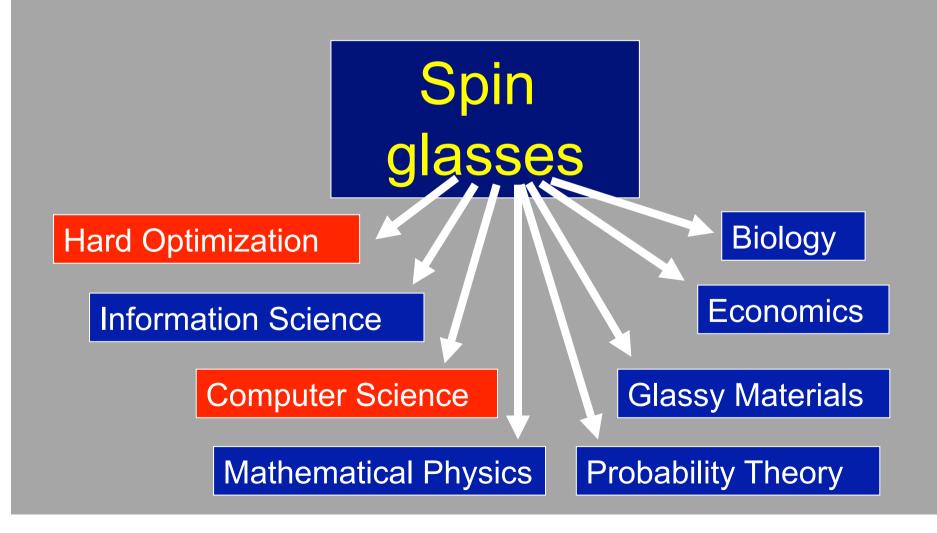
General theoretical structure



Control functions, but who controls?

- Physics: nature/physical laws
- Biology: nature but not necess. equilibrium
- Hard optimization: we choose algorithms
- Information science: we have choice
- Markets: supervisors, government bodies
- Society: governments can change rules

Examples



Examples

- Minimizing a cost
 e.g. distribution of tasks
- Satisfiability
 - Simultaneous satisfaction of 'clauses'
- Error correcting codes
 - Capacity and accuracy

Two issues

What is achievable in principle?
 Analogue in stat. physics:

- thermodynamics ("statics")/equilibrium
- e.g. Dean's best expected happiness
- How to achieve it?

 Needs algorithms ~ dynamics
 But glassiness can badly hinder efficacy

Two issues

What is achievable in principle?
 Analogue in stat. physics:

- thermodynamics ("statics")/equilibrium
- May still be hard to find
- How to achieve it?
 - Needs algorithms ~ dynamics
 - But glassiness can badly hinder efficacy
 - Equilibrium may not be practically achievable

Optimization

- 1. Dean's problem = SK spin glass
- 2. Graph equi-partitioning: cost to minimise

$$C = -\sum_{(ij)} J_{ij} \sigma_i \sigma_j; \sum_i \sigma_i = 0; J_{ij} = 1 \text{ if edge, 0 otherwise}$$

Examples:

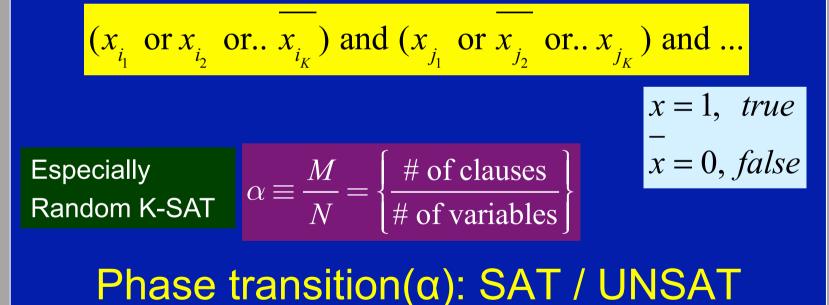
Erdos-Renyi graph = Viana-Bray spin glass

Random graph with uniform local valence/connectivity (generalizable to distribution of nodes of different valence)

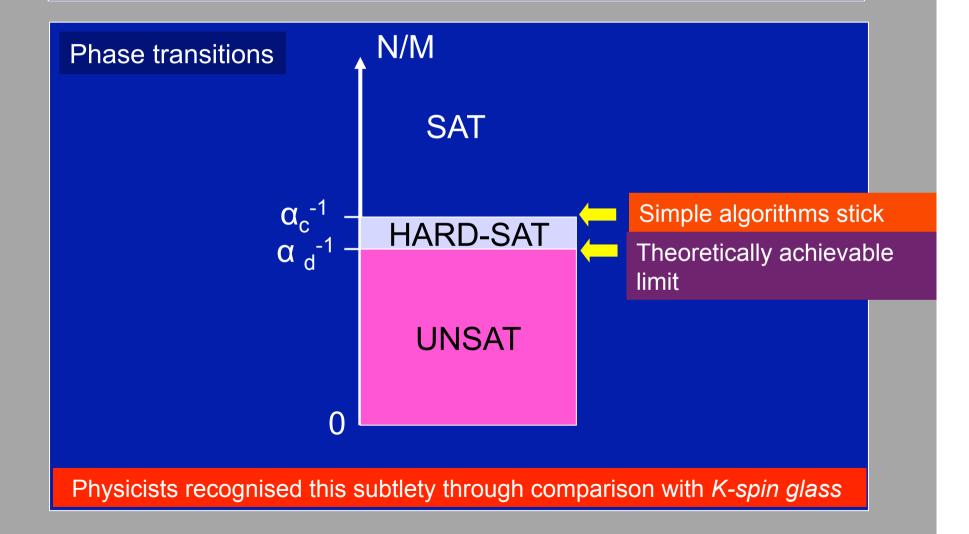
Aside

- Usually interesting (for theoretical physicist) to employ as few parameters as possible to specify a system, including disorder
- Sometimes easy analytically and simulationally
- Sometimes not one or other or neither
 - E.g. random graphs of fixed distribution of vertex connectivities; see Klein-Hennig & Hartmann arXiv: 1107.5734 (simulations → bias)
 - Or amorphous network
 - I know of no simple analytic specification
 - ? Simulationally use Monte-Carlo at finite T with WWW (*c.f.* T1) moves ?
- Some problems difficult to pose analytically as minimization of a cost function see your 'neighbour' Stefan Mertens + his new book with Moore

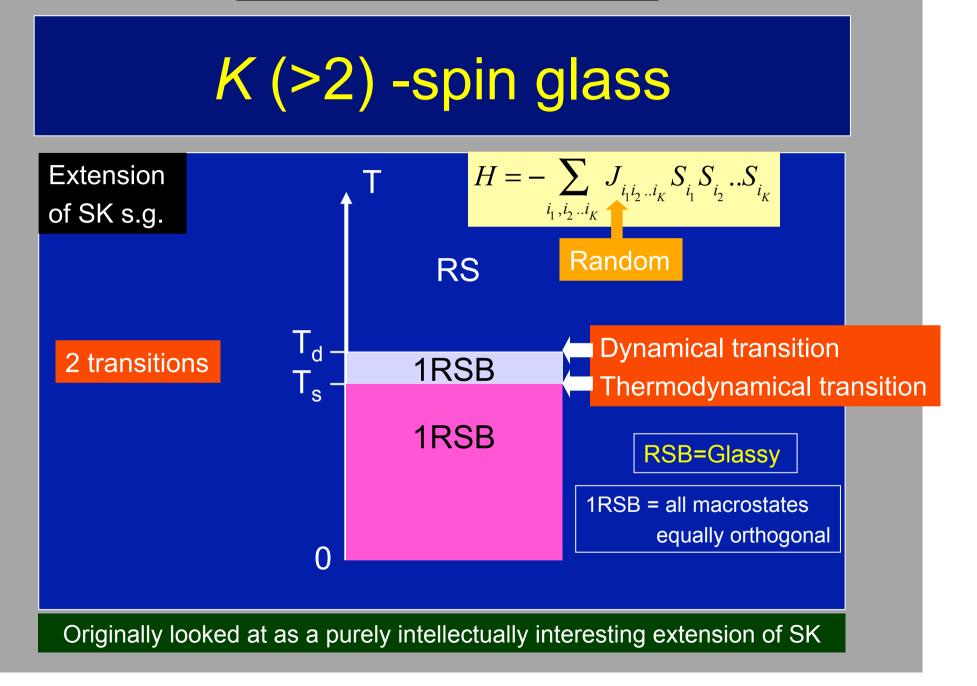
simultaneous satisfiability of many 'clauses' of length K



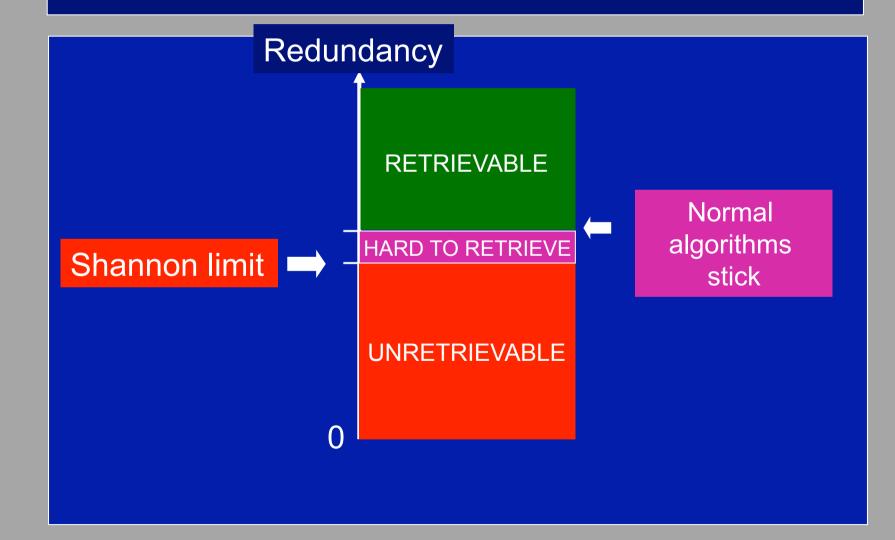
Random K-SAT



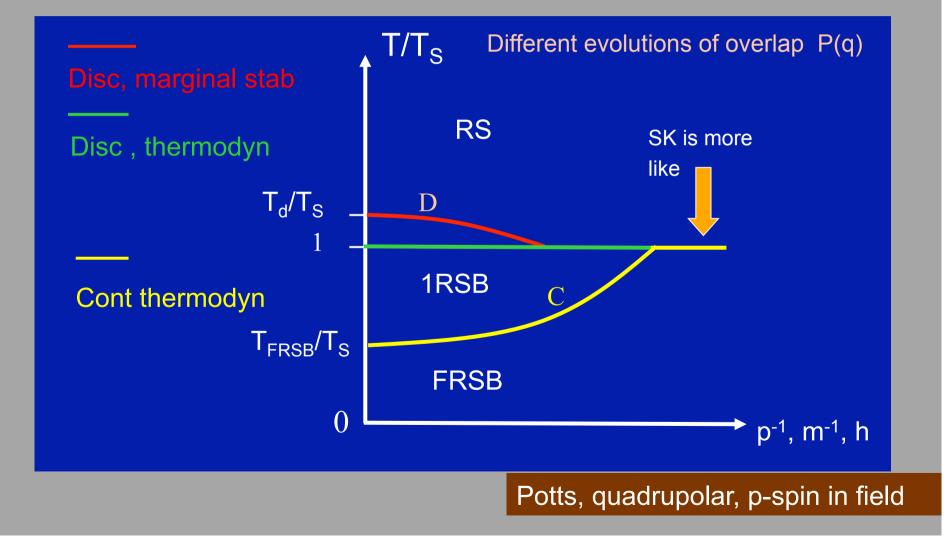
Where the idea came from



Similarly: error-correcting codes

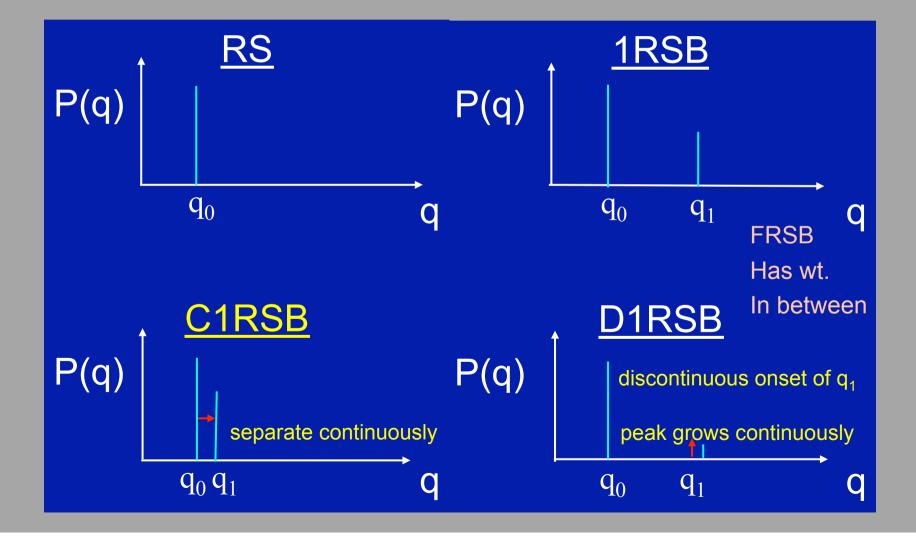


Generic phase transitions



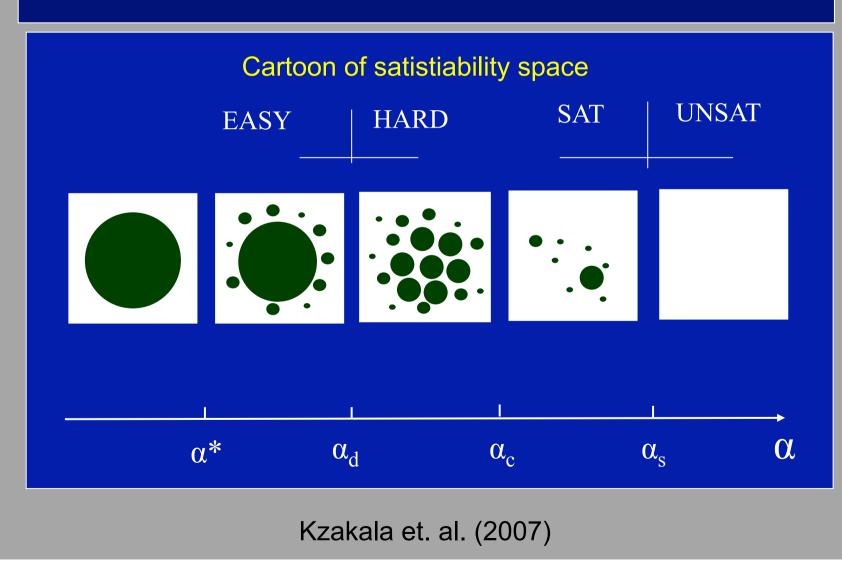
RS, RSB and onset

(via overlap distributions)



In fact, more regimes

Clustering: Random K-SAT



Understanding brings opportunities

- Normal physics
 Nature gives dynamics
- Artificial and model systems
 - Ensemble thermal-weighting or optimization
 - We can design dynamics
 - Computational algorithms & Simulational expts.
 - Simulated annealling
 - Parallel tempering
 - Belief/survey propagation
- Controlled systems
- New probes

Temperature

- Natural for real physics
- Characterise stochastic noise or uncertainty also in other scenarios; e.g. Dean's impatience
- Often useful for practical optimization by algorithmic dynamics to introduce an artificial 'temperature' T_A :

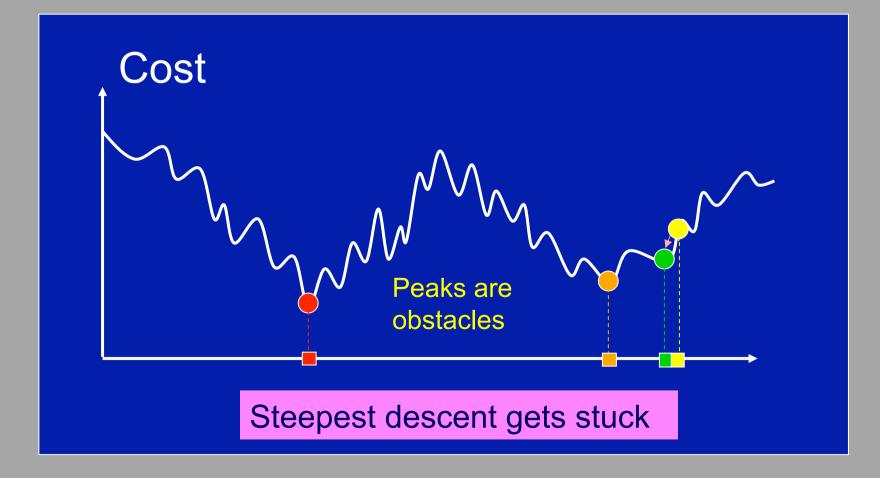
 $P(\mathbf{S}) \sim \exp(-H_{\{\mathbf{J}\}}(\mathbf{S})/T_A)$

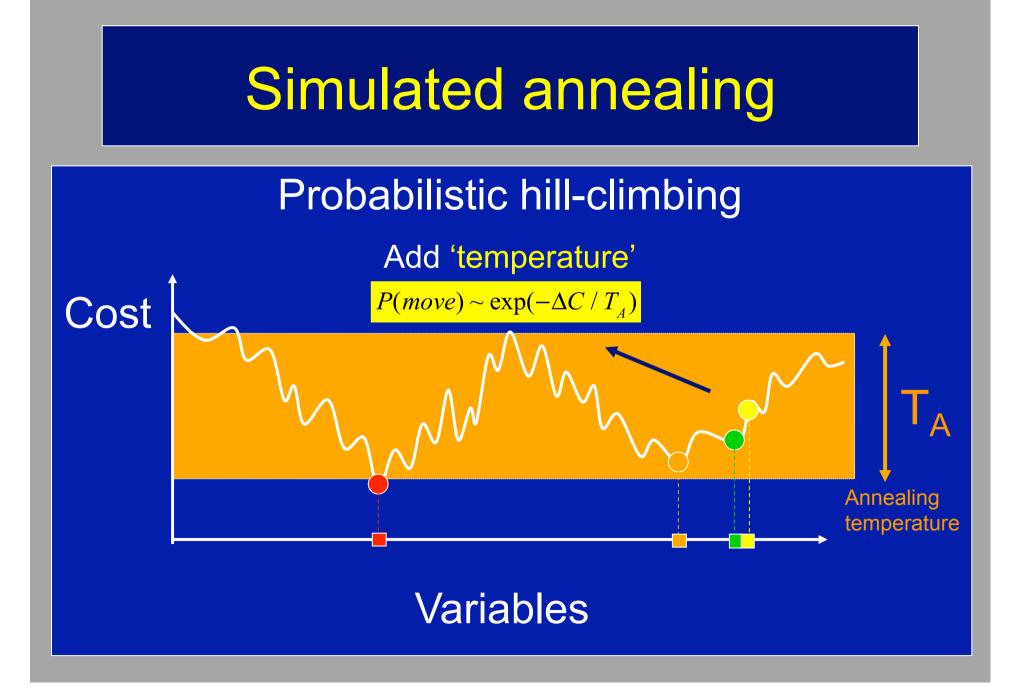
and reduce slowly (simulated annealing).

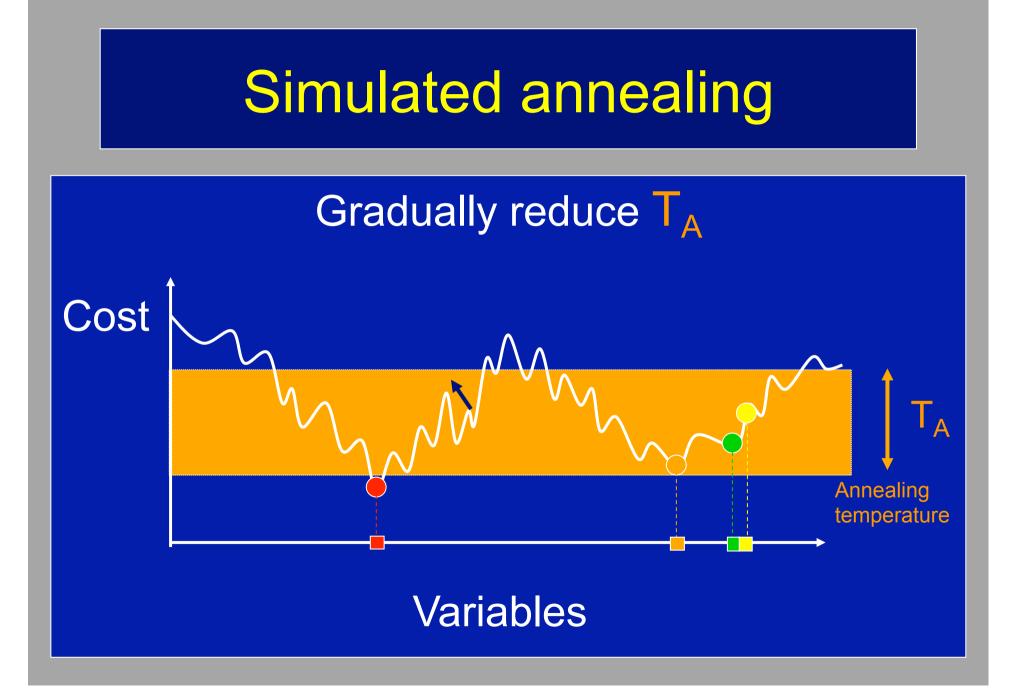
Or analytic analogue: $H_{\min} = Lim_{T_A \to 0}F(T_A)$

• Other analogues in other problems

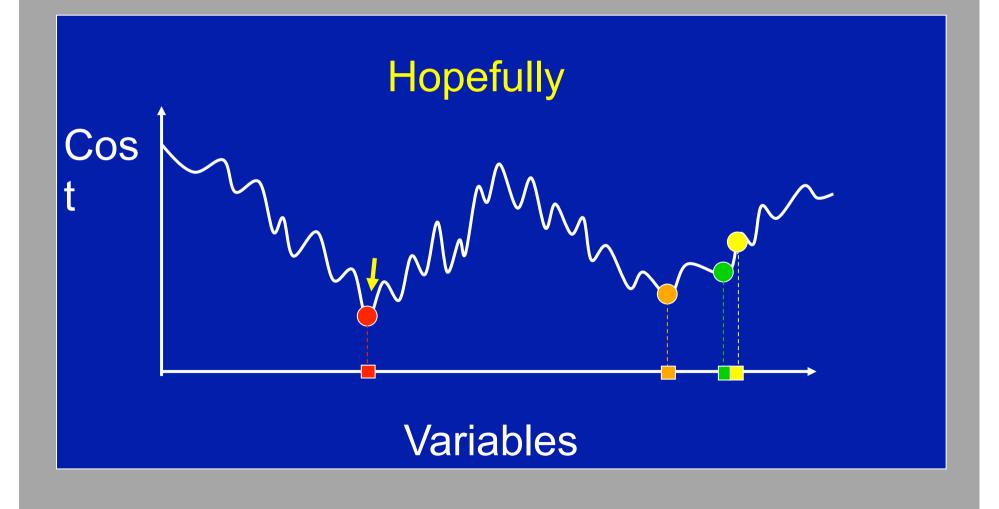
Landscape paradigm for hard optimization



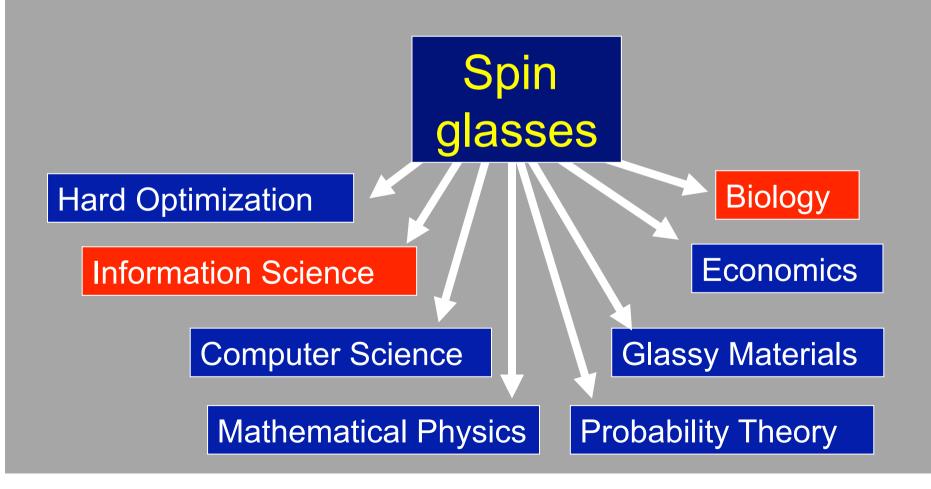


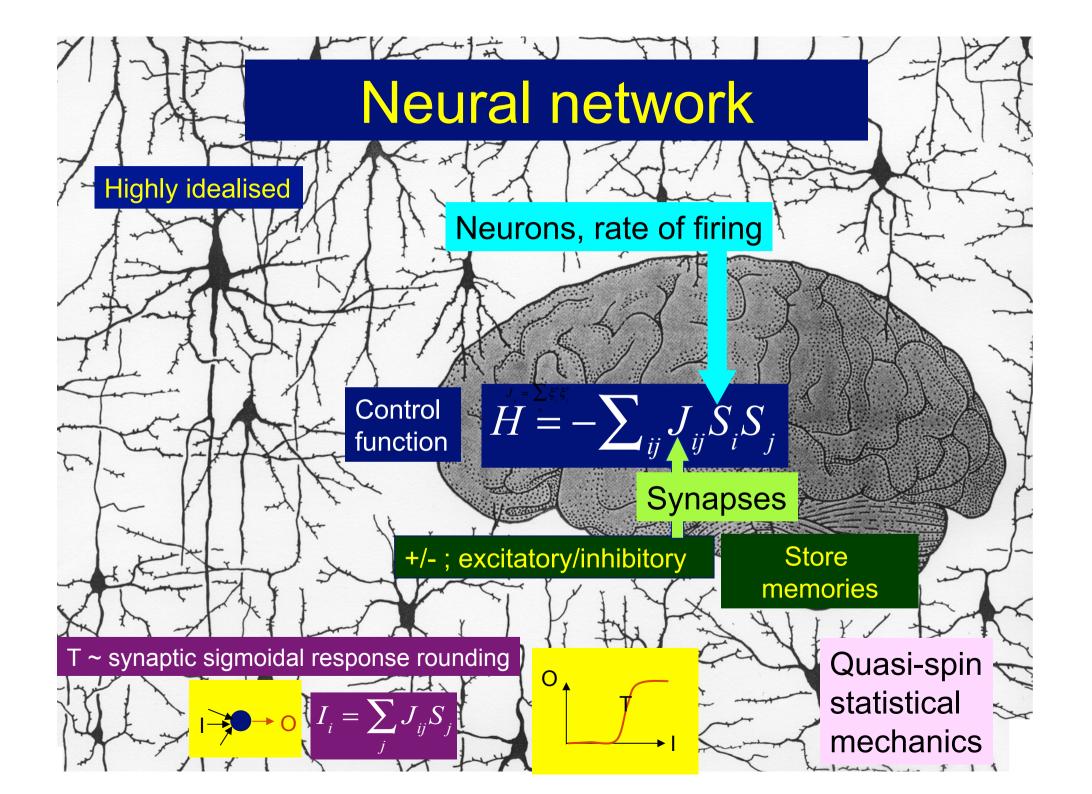


Simulated annealing



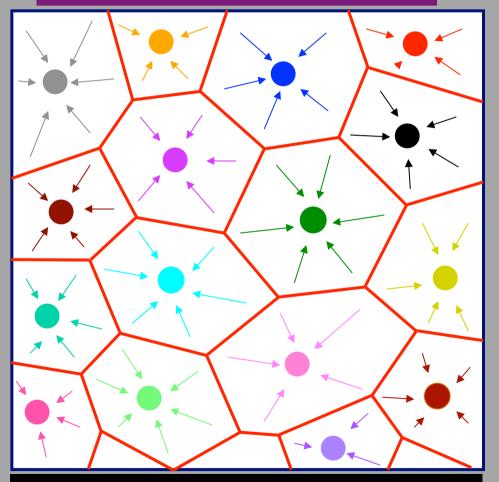
More examples





Attractors

Schematic illustration 1

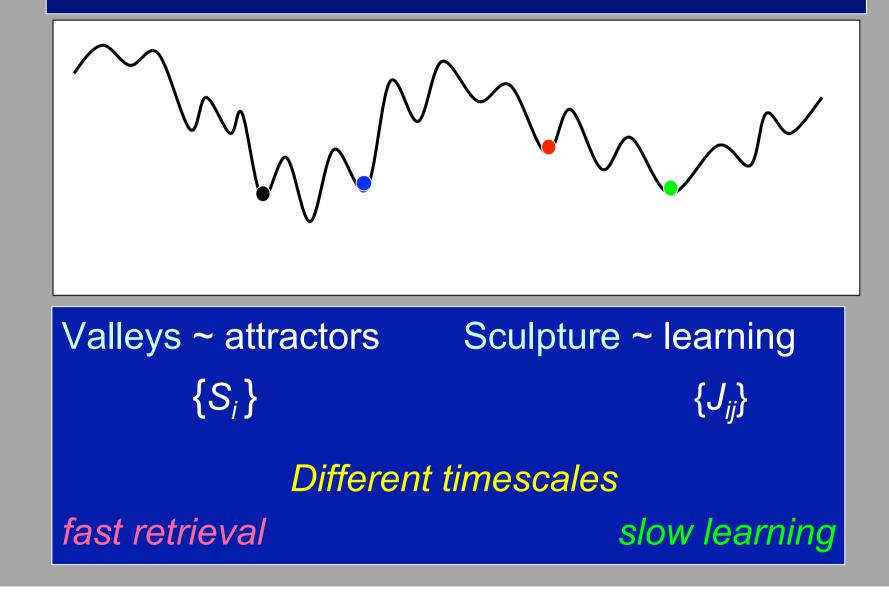


High-dimensional 'phase space' *

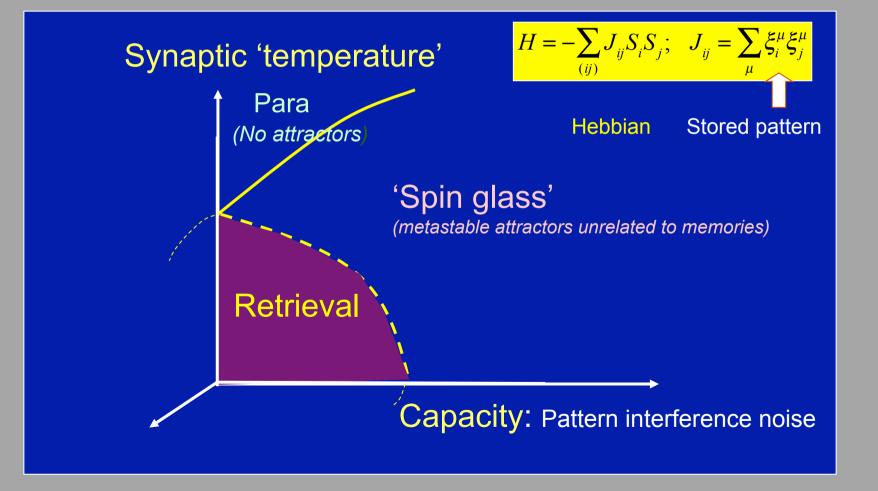
- Associative memory
 'attractors' memorized patterns
- Retrieval basins
- Many memories
 - many attractors
 require frustration
 Stored in {J}

Schematic illustration 2

Rugged landscape



'Phase diagram': Hopfield model



'Temperature'/ stochastic noise

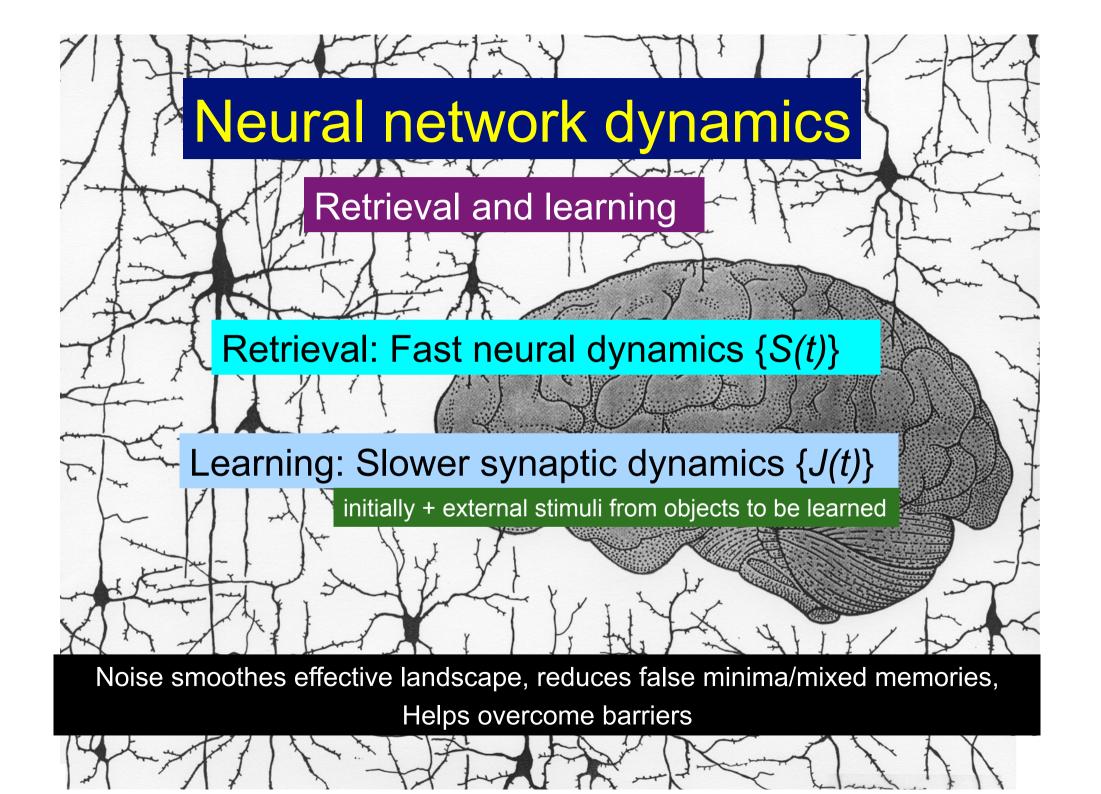
Stat. Mech. Energy → Free Energy

Temperature smoothes free energy

Reduces ruggedness

Neural networks

- Small noise reduces false minima in effective landscape
- Large noise prevents storage



Compromise

- Many minima imply frustration
- But too much gives no useful recall
 Many attractors unrelated to learned information
- Need compromise
 - Places limits on capacity

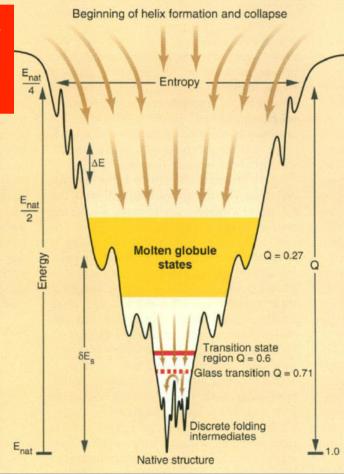
Minimal frustration

Proteins

Proteins: Heteropolymrers Many amino acids Frustrated interactions

Must fold fairly easily Minimal frustration

Folding funnel Wolynes et. al.



Random heteropolymers In general, very frustrated Fold poorly, glassy

Evolution: Initial random soup

Fast: attempt to fold

Slower time-scale: Reproduction/mutation Good folders selected

Analogies

Glassy/slow

More minimal frustration/faster

Spin glass SK

Random heteropolymer

Random Boolean network

LR full occ OK SR still ?

Neural network Hopfield

Protein Wolynes

Autocatalytic sets Kauffman Boolean Neural nets Aleksander; Wong & S

But still questions on best formulation and analysis

Theoretical methodology

Statics/thermodynamics:
 – Partition function

 $Z = Tr\{\exp[-\beta H]\}$

- Generating function introduce auxiliary generating fields

$$Z(\{\lambda\}) = Tr\{\exp[-\beta H - \sum_{i} \lambda_{i}\phi_{i}]\}$$
$$\left\langle \phi_{i} \right\rangle = Lim_{\lambda \to 0}\partial_{\lambda_{i}} \ln Z(\{\lambda\})$$

In practice often done implicitly, also spontaneous symmetry-breaking

Note: physical observables given by In Z

Disorder: average In Z

- Average {In Tr exp .. } difficult
- Average {Tr exp ...} easier

$$\ln Z = \lim_{n \to 0} Z^n$$
; *n* replicas

- Average over quenched disorder in interactions
 - Gives effective system with extra (replica) labels on variables

Theoretical methodology

• Dynamics:

-Generating functional

 $Z(\{\lambda\}) = \int D\vec{\phi}(t)\delta(\text{microscopic eqn. of motion}^{\star})\exp(\vec{\lambda}(t).\vec{\phi}(t))$ $\left\langle \phi_{i}(t)\phi_{j}(t')\right\rangle \sim Lim_{\{\lambda\}\to 0}\partial_{\lambda_{i}(t)}\partial_{\lambda_{j}(f')}Z(\{\lambda\}); \ Z(\{\lambda\}=0)=1$

• Disorder averaging gives effective nondisordered system with interacting epochs.

Either as given by nature, or by computer algorithm used

Theoretical methodology

• Dynamics:

-Generating functional

 $Z(\{\lambda\}) = \int D\vec{\phi}(t)\delta(\text{microscopic eqn. of motion})\exp(\vec{\lambda}(t).\vec{\phi}(t))$ $\left\langle \phi_i(t) \phi_j(t') \right\rangle \sim Lim_{\{\lambda\} \to 0} \partial_{\lambda_i(t)} \partial_{\lambda_j(f')} Z(\{\lambda\}); \ Z(\{\lambda\} = 0) = 1$

- Disorder averaging gives effective nondisordered system with interacting epochs.
 - Analyse using much exponentiation of delta functions

 $\delta(x) = \int dy \exp(ixy)$

- and re-parameterizations of unity

 $1 = \int dx \delta(x) = \int dx \, dy \exp(ixy)$

Corrⁿ & response functions

- Extremal domination
 - \rightarrow self-consistency eqns.

with memory not restricted to equilibrium nor stationarity

Reproduce replica results and go beyond

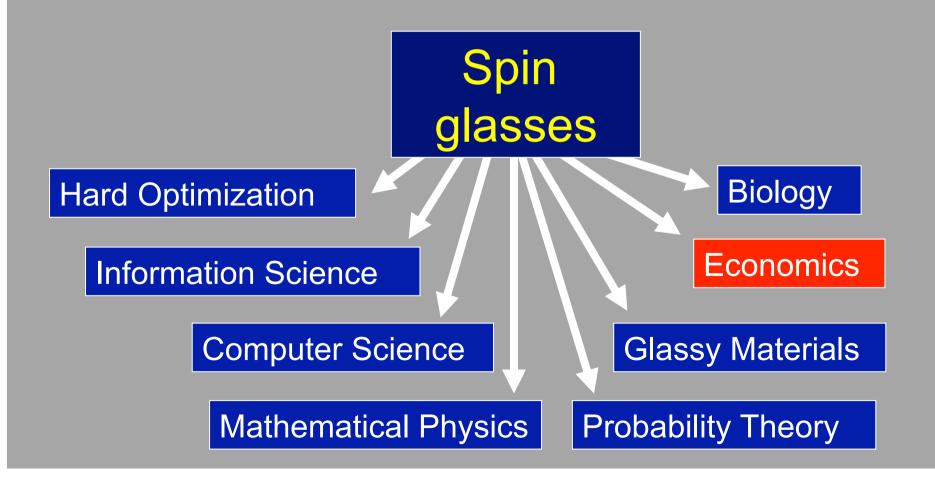
Another aside

- Fast neurons (spins), slow synapses (exchange)
- Hebbian synaptic dynamics + decay

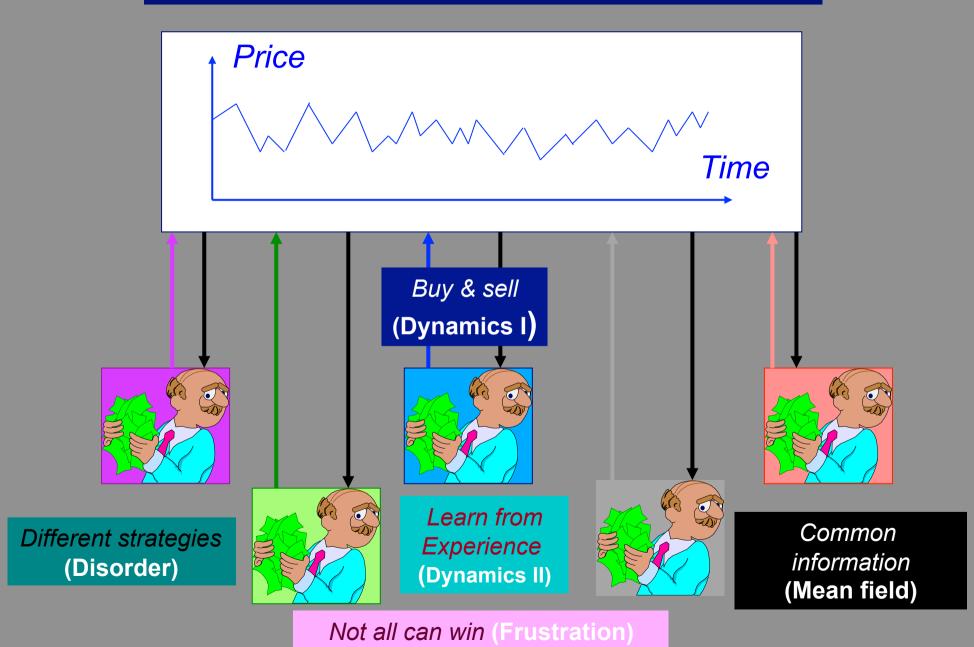
$$\tau \partial J_{ij} / \partial t = \lambda \left\langle S_i S_j \right\rangle - \mu J_{ij} + \eta_{ij}(t)$$

- Two stochastic temperatures: $T_s, T_J; T_s / T_J = n$
- Behaves like replica theory but with this *n*
 - Recall that Kondor showed critical mimimum *n* for complexity.

More examples



Stockmarket



Simple minimalist model

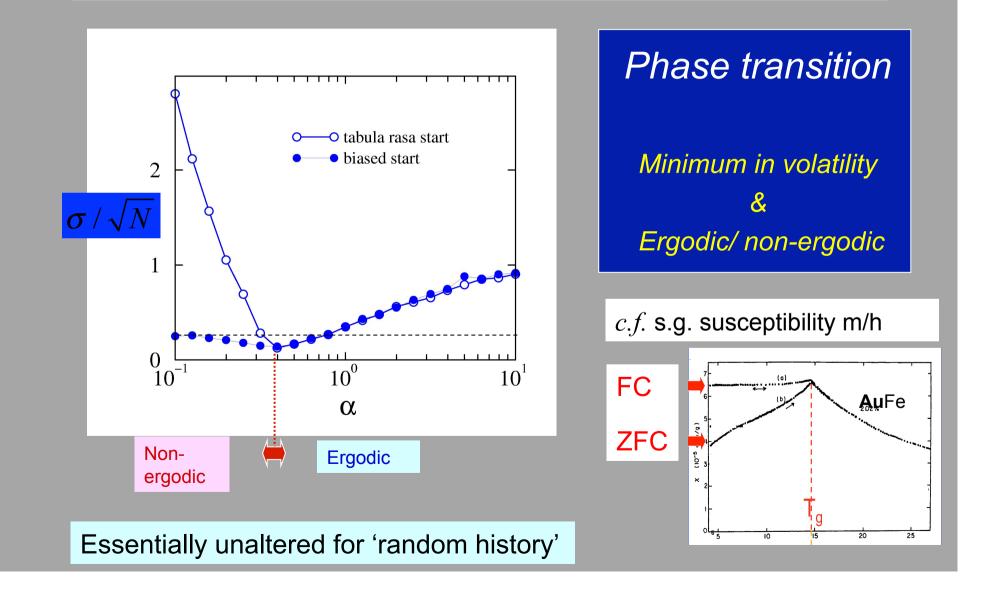
Minority game

N agents 2 choices Aim to be in minority

- act on common information (e.g. minority choice for last m steps)
- preferences modified by experience (keep point-score use highest)

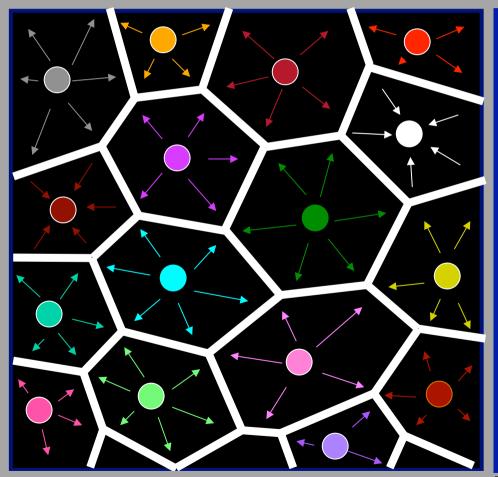
Correlated behaviour & phase transition

Volatility



Also analogy with Hopfield neural network but different

Minority game



One strategy/agent, random histories
D-dim vectors: {ξ^μ_i}; μ = 1,..D
Follow strategy instruction if point-score positive, otherwise do opposite
Integrate out histories

$$H = + \sum_{(ij)} J_{ij} S_i S_j$$
$$J_{ij} = \sum_{\mu} \xi^{\mu}_i \xi^{\mu}_j$$

Many repellors

c.f. attractors in neural network

Two different strategies/agent gives also 'random'field term

Non-Markovian stochastic process

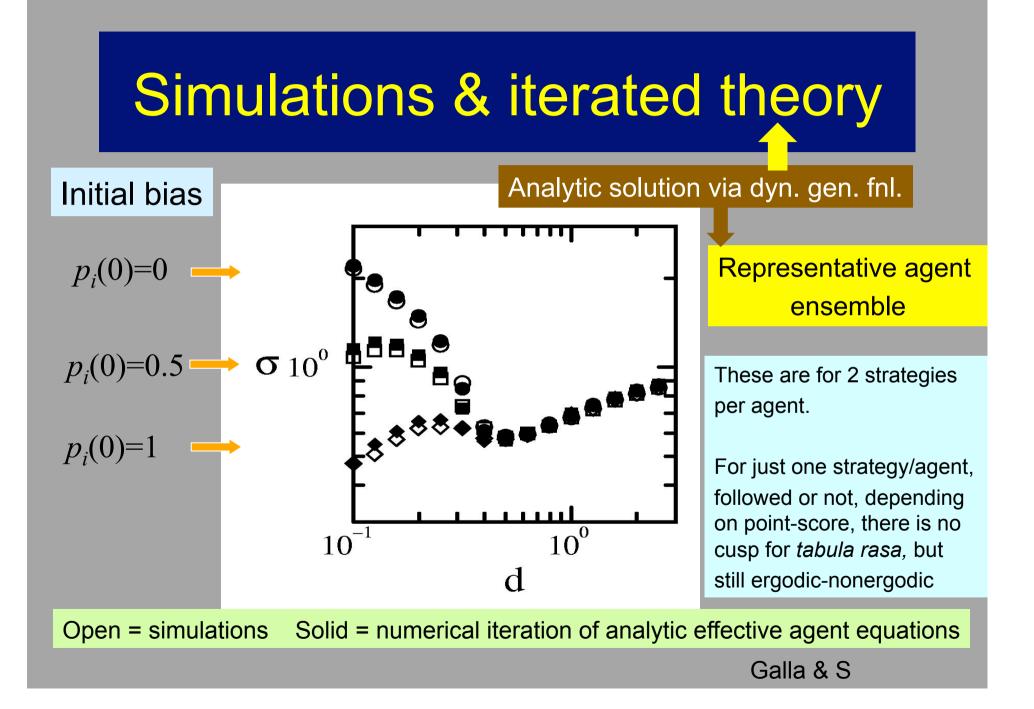
$$p(t+1) = p(t) - \alpha \sum_{t' \le t} (\mathbf{1} + \mathbf{G})_{tt'}^{-1} \operatorname{sgn} p(t') + \theta(t) + \sqrt{\alpha} \eta(t)$$

where $\langle \eta(t)\eta(t') \rangle = [(\mathbf{1} + \mathbf{G})^{-1}(1 + \mathbf{C})(\mathbf{1} + \mathbf{G}^{\mathrm{T}})^{-1}]_{tt'}$

with coloured noise, memory, self-consistent correlation & response functions

$$\begin{split} C_{tt'} &= \left\langle \operatorname{sgn} p(t) \operatorname{sgn} p(t') \right\rangle_* \equiv N^{-1} \sum_i \left\langle \operatorname{sgn} p_i(t) \operatorname{sgn} p_i(t') \right\rangle \\ G_{tt'} &= \frac{\partial}{\partial \theta(t')} \left\langle \operatorname{sgn} p(t) \right\rangle_* \equiv N^{-1} \sum_i \frac{\partial}{\partial \theta_i(t')} \left\langle \operatorname{sgn} p_i(t) \right\rangle \end{split}$$

where $\langle f \rangle_*$ is an effective average involving $P_0(p(0))$, G, C *Exact but non-trivial*



Infinite-range/range-free?

- Not real spin glasses
- Nor probably real biology
- But realistic
 - for many hard optimization problems
 - for neural networks?
 - for systems driven by information available to all; e.g. via internet, radio, TV
 - e.g. financial markets, some human behaviour

Conclusion

- Many examples of complex systems
 - Driven by frustrated interactions and disorder
 - Sometimes indirectly generated
 - Detailed balance or fundamentally out-of-equilibrium
 - Conceptual similarities despite different appearances
 - But also differences
- Many opportunities for conceptual and mathematical transfer from physics
- Offer the physicist challenges not present in conventional dictionary-definition "physics"

Recall

Very simple microscopic entities Very simple pairwise interactions

Rich complexity in collective behaviour due to frustration and disorder

`Complex' is different from `complicated'

Conclusion

Complexity Science

Spin glasses

Fascinating Physics

Transfers

Novel maths

Opportunities

Caveats & Cautions

This was only a broadbrush illustration

- Only range-free systems
 - Only average thermodynamic limit properties
 - There are differences as well as similarities
- For finite-range systems
 - There is still controversy about all transfers from range-free
- Real systems may not be equilibrium
 - And may have many complications (e.g. human society)
- For many issues one needs new/better algorithms
- In computer science there are many gegrees of hardness
 - ? Reflections in statistical/many-body physics?
- Even the best 'Rosetta Stone' is not a full dictionary

Thanks Teachers, collaborators, students, postdocs, friends

Tomaso Aste Jay Banavar Ludovic Berthier Stefan Boettcher Arnaud Buhot Andrea Cavagna Premla Chandra Tuck Choy Ton Coolen Dinah Cragg Lexie Davison Andrea De Martino Malcolm Dunlop Alex Duering David Elderfield Julio Fernandez Tobias Galla Juan Pedro Garrahan S.K.Ghatak Irene Giardina Peter Gillin Paul Goldbart Lev Ioffe Robert Jack Alexandre Lefevre Phil Anderson Sam Edwards Arvid Herzenberg Frank Jackson Harry Kelly Walter Kohn

all the set

Peter Kahn Scott Kirkpatrick Helmut Katzgraber Stephen Laughton Francesco Mancini Marc Mezard Esteban Moro Fuer Mottishaw Normand Mousseau Hidetoshi Nishimori Femando Nobre Dominic O'Kane

Turab Lookman

Reinhold Oppermann Giorgio Parisi **Richard Penney** Albrecht Rau Avadh Saxena Manuel Schmidt Hans-Juergen Sommers Nicolas Sourlas **Byron Southern** Mike Thorpe Tim Watkin Andreas Wendemuth Werner Wiethege Stephen Whitelam Peter Wolynes Michael Wong