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Physics 

Dictionary definition:  
 Branch of science concerned with the nature 
and properties of matter and energy 

But today I want to use it as  
    a mind-set with valuable methodologies 
and to show application 

 to complex systems in many different arenas 



Complexity 

•  Many body systems 

•  Cooperative behaviour 
– not simply anticipatable from microscopics 

•  occurs even with simple individual units  
                       and simple interaction rules 

– but with surprising conceptual similarities  
•  among superficially different systems 



Aim today 

Illustrate use of statistical physics methodology 
to understand complexity and its ubiquity 

via simple models, pictures  
and comparisons 

Give flavour of concepts 



Typical approach 

•  Essentials? 
– Minimal models  
– Comparisons/checks: e.g. simulation/expt. 
– Analysis: maths & ansätze 

•  Important consequences? 
•  Transfers, similarities & differences? 

•  Conceptualization 
•  Generalization 

•   Application 

Build 

Lead to 



Methodology 
Symbiosis 

•  Theoretical physics 
–  Minimalist modelling 
–  Sophisticated mathematical analysis 
–  Conceptualization 

•  Computer simulation 
–  Compare models with (more complicated) real world 
–  Experiments for which no real analogue 

•  Real experiment 
+ 
+ 
+ 

Interdisciplinary 

But only a broad brush picture today 



 Key ingredients 

Frustration  
Conflicts 

 Disorder 
Frozen / self-induced / time-dependent 



The Dean’s Problem 

•  Dean to allocate N students to two dorms 

•  Some students like one another; prefer same dorm 
•  Others dislike one another; prefer different dorms 

•  Cannot satisfy all → 

•  Best compromise for whole student body? 

- 
Frustration or or A 

A A 

A 

A B 



J: Inter-student friendship: +/- 

The Dean’s Problem as 
combinatorial optimization 

   
H = + JijSiS j

( ij )
∑

Dorm A/B 

Maximise+ a Happiness function* 

Students, i,j 

* alias “fitness” + w.r.t. the choice of {Si} 



J: Inter-student friendship: +/- 

The Dean’s Problem as 
combinatorial optimization 

   
H = + JijSiS j

( ij )
∑

Dorm A/B 

Maximise a Happiness function 

Students, i,j 

Very difficult for general {J} with both positive & negative Jij  ; 2N choices; NP-complete 

N students: N large 



J: Inter-student friendship: +/- 

The Dean’s Problem as 
combinatorial optimization 

   
H = + JijSiS j

( ij )
∑

Dorm A/B 

Maximise a Happiness function 

Students, i,j 

Very difficult for general {J} with both positive & negative Jij  ; 2N choices; NP-complete 

N students: N large 

RANDOM DEAN’S PROBLEM:  Characterize  by probability distribution P(J) 



Typical statistical physics 

•  Large N limit 
•  Disorder chosen randomly and 

independently from intensive distribution 
•  Interest in typical behaviour 

– Often self-averaging 
– But not always 

•  Complex systems show non-self-averaging  
 in some observables 



Dean’s model equivalent to 
Range-free Spin Glass Model (SK) 

.SSS 

  
H = − JijSiS j

( ij )
∑

Hamiltonian Exchange interactions Spin orientation 

Unhappiness Friendship  Dorm allocation 

A 
B 

Dean’s 
problem 

Spin 
glass 

P({J})

Note: physicists minimize energies, biologists maximize fitnesses 
Equivalent through minus sign!  



Spin glasses 

•  Experiment: e.g. AuFe 

•  Edwards-Anderson: 

•  SK: 

   
H = − Jij Si


.S j


( ij )∑ ;   finite-range Psep (Jij )

  
H = − Jij( ij )∑ σ iσ j ;  σ= ±1; P∞ (Jij )

 
H = − cicj J(Rij )Si


.Sj


ij∑ ;   ci = 0,1;  J(R) sign osc. 

Not exactly soluble 



Dean’s Problem/Spin Glass Model 

. 

  
H = − JijSiS j

( ij )
∑

 Statistical physics: equilibrium 

           T= temperature or Dean’s impatience 

A 
B 

P{J} ({S}) ~ exp(−H{J} ({S}) /T )



Paradigmic cartoon for complex many body system 

Rugged Landscape 

Many metastable states 

                                                  Hierarchy 
                                             Valleys within valleys 

Hard to minimise/maximize: sticks: glassy  

Cost 
to minimise 

Microscopic coordinates  

Simple 
algorithms 

Smooth 
local 

motion 

c.f.  
Fitness 
to maximise 



Where does this cartoon come from? 

Simulations, analytic calculations, anzätze 

  
qSS '

= N −1 σ i
i
∑ S

σ i

S '

  
P(q) = WSWS 'δ (q − qSS ' )

SS '
∑

qαδ = qβδ ≤ qβδ

Conventional system: single δ fn 
Complex system: structure 

e.g. SK: ultrametric  
phylogenetic tree 

Overlap 

Overlap distribution 

Hierarchy             Parisi ansatz 



Phase diagrams  

No freezing 

“Simple”  
ferromagnet 

Temperature/noise/uncertainty/Dean’s impatience 

Attractive bias 
Many metastable states 

 ‘Rugged’ landscape, slow dynamics, non-ergodic 

Ergodic/ 
Easy to 
equilibrate 

Non-ergodic/ 
Hard to 
equilibrate 

Spin 
glass Glassy 

Ferromagnet 

Dean’s problem/spin glass 



Many further results and subtleties 

•  But probably not time today 

•  Rather, I shall concentrate on transfers 
between apparently physically different 
systems 
–  Technical and conceptual 



Spin glasses 

Hard Optimization 

Information Science 

Computer Science 

Biology 

Economics 

Glassy Materials 

Mathematical Physics Probability Theory 

Transfers/extensions 

Physics 



Physics 

Spin glasses 

Hard Optimization 

Information Science 

Computer Science 

Biology 

Economics 

Glassy Materials 

Mathematical Physics Probability Theory 

Two-way 



Control functions 

 Statics:              Fixed       Variable  
                                             (variable) 

 Dynamics:        Slow               Fast 

    External influences/                                                                    
Intensive control parameters       

  
F({Jij....k},{Sij..},{T})

General theoretical structure 



Control functions, but who controls? 

•  Physics: nature/physical laws  
•  Biology: nature but not necess. equilibrium 
•  Hard optimization: we choose algorithms 
•  Information science: we have choice 
•  Markets: supervisors, government bodies 
•  Society: governments can change rules 



Spin 
glasses 

Hard Optimization 

Information Science 

Computer Science 

Biology 

Economics 

Glassy Materials 

Mathematical Physics Probability Theory 

Examples 



Examples 

•  Minimizing a cost 
– e.g. distribution of tasks 

•  Satisfiability 
– Simultaneous satisfaction of ‘clauses’ 

•  Error correcting codes 
– Capacity and accuracy 



Two issues 

•  What is achievable in principle? 
– Analogue in stat. physics:  

•  thermodynamics (“statics”)/equilibrium 
•  e.g. Dean’s best expected happiness 

•  How to achieve it? 
– Needs algorithms ~ dynamics  

•  But glassiness can badly hinder efficacy 
•  Equilibrium may not be practically achievable 



Two issues 

•  What is achievable in principle? 
– Analogue in stat. physics:  

•  thermodynamics (“statics”)/equilibrium 
•  May still be hard to find 

•  How to achieve it? 
– Needs algorithms ~ dynamics  

•  But glassiness can badly hinder efficacy 
•  Equilibrium may not be practically achievable 



Optimization 
1.  Dean’s problem = SK spin glass 

2.  Graph equi-partitioning: cost to minimise 

   Examples: 

   Erdos-Renyi graph = Viana-Bray spin glass 

   Random graph with uniform local valence/connectivity 
 (generalizable to distribution of nodes of different valence) 

  
C = − Jijσ iσ j ;  σ i = 0;  Jij = 1 if edge, 0 otherwise

i∑( ij )∑



Aside 
•  Usually interesting (for theoretical physicist) to employ as 

few parameters as possible to specify a system, including 
disorder  

•  Sometimes easy analytically and simulationally 
•  Sometimes not – one or other or neither 

–  E.g. random graphs of fixed distribution of vertex connectivities; see 
Klein-Hennig & Hartmann arXiv: 1107.5734 (simulations  bias) 

–  Or amorphous network 
•  I know of no simple analytic specification 
•  ? Simulationally use Monte-Carlo at finite T with WWW (c.f. T1) moves ? 

•  Some problems difficult to pose analytically as minimization of a cost function – 
see your ‘neighbour’ Stefan Mertens + his new book with Moore 



K-satisfiability 
simultaneous satisfiability  

of many ‘clauses’ of length K 

Phase transition(α): SAT / UNSAT 
    
α≡

M
N

=
# of clauses

# of variables

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

  
(xi1

 or xi2
 or.. xiK

) and (x j1
 or x j2

 or.. x jK
) and ...

  

x = 1,   true

x = 0,  falseEspecially 
Random K-SAT 



Random K-SAT 

HARD-SAT 

N/M 

0 

UNSAT 

SAT 

αc
-1 

α d-1 
Simple algorithms stick 
Theoretically achievable 
limit 

Physicists recognised this subtlety through comparison with K-spin glass  

Phase transitions 



K (>2) -spin glass 

1RSB 

T 

0 

Td 
Ts 

RS 

Dynamical transition 
Thermodynamical transition 

Where the idea came from 

RSB=Glassy 1RSB 

Originally looked at as a purely intellectually interesting extension of SK 

  
H = − Ji1i2 ..iK

Si1
i1 ,i2 ..iK

∑ Si2
..SiK

1RSB = all macrostates 
            equally orthogonal 

Random 

2 transitions 

Extension  
of SK s.g. 



Similarly: error-correcting codes 

Redundancy 

0 

UNRETRIEVABLE 

RETRIEVABLE 

Shannon limit 

RETRIEVABLE 

Normal 
algorithms 

stick 
HARD TO RETRIEVE 



Generic phase transitions 
T/TS 

0 

Td/TS 
1 

RS 

FRSB 
TFRSB/TS 

1RSB 

p-1, m-1, h 

Potts, quadrupolar, p-spin in field 

C 

D 

SK is more  
like 

Disc, marginal stab 

Disc , thermodyn 

Cont thermodyn 

Different evolutions of overlap  P(q) 



RS, RSB and onset 
(via overlap distributions) 

RS 
P(q) 

q                                     

C1RSB 
P(q) 
                 separate continuously 

q 

1RSB 
P(q) 

q 

D1RSB 
P(q)         discontinuous onset of q1 
                peak grows continuously  

q 

q0 q0 q1 

q0 q1 q0          q1 

FRSB  
Has wt. 
In between 



Clustering: Random K-SAT 

c 

α α* αd αc αs 

SAT UNSAT EASY HARD 

In fact, more regimes 

Kzakala et. al. (2007)  

Cartoon of satistiability space 



Understanding brings opportunities 

•  Normal physics 
– Nature gives dynamics  

•  Artificial and model systems 
– Ensemble thermal-weighting or optimization 
– We can design dynamics 
–  Computational algorithms  & Simulational expts. 

•  Simulated annealling 
•  Parallel tempering 
•  Belief/survey propagation 

•  Controlled systems 
•  New probes 



Temperature 
•  Natural for real physics 
•  Characterise stochastic noise or uncertainty also in 

other scenarios; e.g. Dean’s impatience 

•  Often useful for practical optimization by algorithmic 
dynamics to introduce an artificial ‘temperature’ TA : 

   and reduce slowly (simulated annealing).  
          Or analytic analogue: 

•  Other analogues in other problems 

P(S) ~ exp(-H{J}(S)/TA) 

Hmin = LimTA→0F(TA )



Landscape paradigm for  
hard optimization 

Cost 

Peaks are 
obstacles 

Steepest descent gets stuck 



Simulated annealing 

Probabilistic hill-climbing 
Add ‘temperature’ 

Variables 

Cost 
TA 

Annealing 
temperature 

  P(move) ~ exp(−ΔC / TA )



Simulated annealing 

Gradually reduce TA 

Variables 

Cost 
TA 

Annealing 
temperature 



Simulated annealing 

Variables 

Cos
t 

Hopefully 



Hard Optimization 

Information Science 

Computer Science 

Biology 

Economics 

Glassy Materials 

Mathematical Physics Probability Theory 

More examples 

Spin 
glasses 



 
H = − JijSiS jij∑

+/- ; excitatory/inhibitory 

Neural network 

Quasi-spin 
statistical 
mechanics  

Neurons, rate of firing  

Store 
memories 

T ~ synaptic sigmoidal response rounding 

T 
O 

I 
I O

Synapses 

 
Ii = Jij

j
∑ S j

Control 
function 

  
 J

ij
= ξ

i

µ

µ

∑ ξ
j

µ

Highly idealised 



Attractors 

•  Associative 
memory 

                        ‘attractors’ 
                 memorized patterns 

•  Retrieval basins 

•  Many memories 
      ~ many attractors 

    require frustration 
    Stored in {J} 

High-dimensional ‘phase space’ * 

Schematic illustration 1 



Rugged landscape  

Valleys ~ attractors        Sculpture ~ learning 
           {Si }                                                 {Jij}  

 Different timescales 
fast retrieval                                  slow learning 

Schematic illustration 2 



‘Phase diagram’: Hopfield model 

Retrieva
l 

‘Spin glass’  
(metastable attractors unrelated to memories) 

Para 

Synaptic ‘temperature’ 

(c.f. ferromagnet) 

(No attractors) 

Retrieval  

Capacity: Pattern interference noise 

  
H = − JijSiS j

( ij )
∑ ;    Jij = ξi

µ

µ
∑ ξ j

µ

Hebbian      Stored pattern 



‘Temperature’/ stochastic noise 

Stat. Mech.  
Energy  Free Energy 

– Temperature smoothes free energy 
•  Reduces ruggedness 

– Neural networks 
•  Small noise reduces false minima in effective 

landscape 
•  Large noise prevents storage 



Neural network dynamics 

Retrieval: Fast neural dynamics {S(t)} 

Learning: Slower synaptic dynamics {J(t)} 

Retrieval and learning 

Noise smoothes effective landscape, reduces false minima/mixed memories, 
Helps overcome barriers 

initially + external stimuli from objects to be learned 



Compromise 

•  Many minima imply frustration 

•  But too much gives no useful recall 
•  Many attractors unrelated to learned information 

•  Need compromise 
•  Places limits on capacity 



Proteins 

Must fold fairly easily 
Minimal frustration 

Proteins: Heteropolymrers 
Many amino acids 
Frustrated interactions 

Random heteropolymers 
In general, very frustrated 

 Fold poorly, glassy 

Evolution: 
Initial random soup 

Fast: attempt to fold 

Slower time-scale: 
Reproduction/mutation 
Good folders selected 

Folding funnel 
Wolynes et. al. 

Minimal frustration 



Analogies 
Glassy/slow                                 More minimal frustration/faster  

Spin glass                                            Neural network 
     SK                                                       Hopfield 

Random heteropolymer                       Protein 
                                                                Wolynes 

Random Boolean network                   Autocatalytic sets 
                                                               Kauffman 

                          Boolean Neural nets 
                 Aleksander; Wong & S 

  LR full occ OK           But still questions on best formulation  
  SR still ?                        and analysis   



Theoretical methodology 

•  Statics/thermodynamics: 
– Partition function  

– Generating function introduce auxiliary generating fields 

In practice often done implicitly, also spontaneous symmetry-breaking 

Note: physical observables given by ln Z 

  

Z({λ}) = Tr{exp[−βH − λiφi
i
∑ ]}

φi = Limλ→0∂λi
ln Z({λ})



Disorder: average ln Z 

•  Average {ln Tr exp .. } difficult 
•  Average {Tr exp ...} easier 

•  Average over quenched disorder in interactions 
–  Gives effective system with extra (replica) labels on variables 

lnZ = limn→0 Z
n;  n replicas

φi {J} ≡ Limn→0 φ i
α

eff
;    φi {J}

2 ≡ Limn→0 φi
αφi

β ;α ≠ β

              m                                       qαβ

→ q(x);0 ≤ x ≤ 1       P(q) = dxδ (q − q(x))∫



Theoretical methodology 

•  Dynamics: 
– Generating functional 

•  Disorder averaging gives effective non-
disordered system with interacting epochs. 

* Either as given by nature, or by computer algorithm used 

    

Z({λ}) = Dφ

(t)∫ δ (microscopic eqn. of motion*)exp(λ


(t).φ

(t))

φi (t))φ j (t ') ~ Lim{λ}→0∂λi (t )∂λ j ( f ')Z({λ});   Z({λ}= 0) = 1



Theoretical methodology 

•  Dynamics: 
– Generating functional 

•  Disorder averaging gives effective non-
disordered system with interacting epochs. 

–  Analyse using much exponentiation of delta functions                        

–  and re-parameterizations of unity 

    

Z({λ}) = Dφ

(t)∫ δ (microscopic eqn. of motion)exp(λ


(t).φ

(t))

φi (t))φ j (t ') ~ Lim{λ}→0∂λi (t )∂λ j ( f ')Z({λ});   Z({λ}= 0) = 1

δ (x) = dyexp(ixy)∫

1 = dxδ (x) = dxdyexp(ixy)∫∫



 Macrodynamics 

•   Extremal domination  
      self-consistency  eqns.  
          with memory 
            not restricted to equilibrium nor stationarity 

          Reproduce replica results and go beyond           

#

Corrn & response functions 



Another aside 
•  Fast neurons (spins), slow synapses (exchange) 
•  Hebbian synaptic dynamics + decay 

                                               
                              Assume adiabaticity  

•  Two stochastic temperatures: 

•  Behaves like replica theory but with this n 
–  Recall that Kondor showed critical mimimum n for complexity. 

  
τ∂Jij / ∂t = λ SiS j − µJij +ηij (t)

TS ,TJ ;  TS /TJ = n



Hard Optimization 

Information Science 

Computer Science 

Biology 

Economics 

Glassy Materials 

Mathematical Physics Probability Theory 

More examples 

Spin 
glasses 



Price 

Time 

Different strategies 
(Disorder) 

Common 
information 

(Mean field) 

Learn from 
Experience  
(Dynamics II) 

Not all can win (Frustration) 

Buy & sell 
(Dynamics I) 

Stockmarket  



Minority game 

 N agents          2 choices  
Aim to be in minority 

 Individual strategies   Collective consequence 
•   act on common information (e.g. minority choice for last m steps) 
•   preferences modified by experience (keep point-score – use highest) 

Correlated behaviour & phase transition 

 Simple minimalist model  



Volatility 

Phase transition 

Minimum in volatility 
& 

 Ergodic/ non-ergodic 

Random 

Non-
ergodic 

Ergodic 

c.f. s.g. susceptibility m/h 

FC 

ZFC 

Essentially unaltered for ‘random history’ 

AuFe 



r 

Minority game 
. 

Phase space 

  

H = + JijSiS j( ij )∑  

  J
ij
= ξ

i

µ

µ

∑ ξ
j

µ

Many repellors 

Also analogy with Hopfield neural network but different 

c.f. attractors in neural network 

• One strategy/agent, random histories 
• D-dim vectors:  
• Follow strategy instruction if point-score  
positive, otherwise do opposite  
•  Integrate out histories 

{ξi
µ};  µ = 1,..D

Two different strategies/agent gives also 
‘random’field term 



Effective single-agent ensemble 

Non-Markovian stochastic process 

with coloured noise, memory, self-consistent correlation & response functions 
   

p(t +1) = p(t) −α (1 + G
t '≤t
∑ )−1

tt ' sgn p(t ') +θ(t) + αη(t)

where η(t)η(t ') = [(1 + G)−1(1+ C)(1 + GT )−1]tt '

  

Ctt ' = sgn p(t)sgn p(t ')
*
≡ N −1 sgn pi (t)sgn pi (t ')

i∑
Gtt ' =

∂
∂θ(t ')

sgn p(t)
*
≡ N −1 ∂

∂θi (t ')
sgn pi (t)i∑

Exact but non-trivial  
where < f  >* is an effective average involving P0(p(0)), G, C 

Dynamics 
after averaging, re-parametrizing, integrating out microscopic variables, extremizing etc. 



Simulations & iterated theory 

pi(0)=0 

pi(0)=1 

Open = simulations    Solid = numerical iteration of analytic effective agent equations 

pi(0)=0.5 

Initial bias 

Galla & S 

Analytic solution via dyn. gen. fnl. 

Representative agent  
ensemble 

These are for 2 strategies 
per agent. 

For just one strategy/agent, 
followed or not, depending 
on point-score, there is no 
cusp for tabula rasa, but 
still ergodic-nonergodic 



Infinite-range/range-free? 

•  Not real spin glasses 
•  Nor probably real biology 

•  But realistic  
–  for many hard optimization problems 
–  for neural networks? 
–  for systems driven by information available 

to all; e.g. via internet, radio, TV 
•  e.g. financial markets, some human behaviour 



Conclusion  

•  Many examples of complex systems 
–  Driven by frustrated interactions and disorder 

•  Sometimes indirectly generated 
•  Detailed balance or fundamentally out-of-equilibrium 
•  Conceptual similarities despite different appearances 
•  But also differences 

•  Many opportunities for conceptual and 
mathematical transfer from physics 

•  Offer the physicist challenges not present in 
conventional dictionary-definition “physics” 



Recall 

 `Complex’ is different from `complicated’ 

Very simple microscopic entities 
Very simple pairwise interactions 

Rich complexity in collective behaviour 
due to frustration and disorder 



Fascinating Physics                                      Novel maths                       
Complexity Science 

Transfers Opportunities 

. 

Conclusion 



Caveats & Cautions 

•  This was only a broadbrush illustration 
–  Only range-free systems 

•  Only average thermodynamic limit properties 
•  There are differences as well as similarities 

–  For finite-range systems  
•  There is still controversy about all transfers from range-free 

–  Real systems may not be equilibrium 
•  And may have many complications (e.g. human society) 

–  For many issues one needs new/better algorithms 
–  In computer science there are many gegrees of hardness 

•  ? Reflections in statistical/many-body physics? 

–  Even the best ‘Rosetta Stone’ is not a full dictionary  
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