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Wealth of Applications

technical

food processing
random close packing

Chaikin et al. 2004

and in nature

ring of Saturn



... of Fundamental Interest

nonequilbrium model system

I grain of sand of diameter d at room temperature: kBT
mgd ∼ 10−12

I interactions between macroscopic bodies are dissipative

I Grains left to themselves settle into static packing

I decay of an initially agitated state: cooling

I Dynamics due to driving, e.g. gravity, shear, fluidized beds,...

rheology of dense granular matter
How do these materials flow in response to an applied shear



Rheology of dense granular matter

How do these materials flow in response to an applied shear?

apply a stress (force/area) and measure the velocity or strain rate

γ̇ = ∂yvx

apply a velocity or displacement and measure the stress



Rheology of dense granular matter

What is the relation between stress and strainrate?

σ(γ̇) = η(γ̇)γ̇

Newtonian fluid or colloidal suspension: η(γ̇)→ γ̇ as γ̇ → 0

fluid of athermal, hard spheres (dry granular medium):

Bagnold scaling: η(γ̇)→ γ̇ σ ∝ γ̇2 as γ̇ → 0

Large strainrates

shear thickening: η(γ̇) increases with γ̇

frictional granular fluid

shear thinning: η(γ̇) decreases with γ̇

frictionless granular fluid

E. Brown and H. Jäger, Rep. Prog. Phys. 77



Frictionless Jamming

I jamming: a material becomes rigid
with increasing packing fraction φ

I control parameters for the fluid to
solid transition:

ä shear stress σ
ä packing fraction φ

I jamming transition is studied by
monitoring flow curves

Frictionless spheres:



Rheology of Frictional Grains
I Jamming of frictional particles

jammed
jammed

D. Bi et al., Nature 480 (2011)

phase diagram: first order phase transition and finite stress critical point in

contrast to frictionless particles M. Grob, C. Heussinger and AZ, Phys. Rev. E 89, 2014

I chaotic regime

Rheo-Chaos

Aradian and Cates, Phys.Rev. E73 (2005)

hydrodynamic model

M. Grob, AZ and C. Heussinger, Phys.Rev. E93, (2016)



Grains with Friction

translational velocities v and rotational velocities ω

Newton‘s equations of motion

interactions only when the particles are in contact

model of soft spheres: normal and tangential forces

Fn = −knδn − ζnvn and Ft = −ktδt − ζtvt

spring constants kn = kt = 1, damping constants ζn = ζt = 1

tangential overlap: δt =
∫ t

t0
dt‘vt(t‘) as long as |Ft | < µ|Fn|

|Ft | = µ|Fn| → sliding contact; no loading of the tangential spring
Coulomb friction coefficient µ = 2→ strong friction

polydisperse mixture

strain controlled simulations (Lees Edwards boundary conditions)

stress controlled simulations with rigid walls

critical discussion: S. Schäfer et al., J. Phys. I6, 5, 1996



Deforming the System - Strain Controlled Simulation

impose strain rate γ̇ and measure stress σ

different regimes:

I Bagnold: σ ∝ γ̇2

I Plastic: σ ∝ γ̇1/2

I φ > φc stress jumps,
hyteresis observable

I still larger φ: finite yield
stress

discontinuous transition;
hyteresis can be observed



Proposing a Constitutive Relation - a Simple Model

I Bagnold: σ ∝ γ̇2 ⇔ γ̇ ∝ σ1/2

I Plastic: σ ∝ γ̇1/2 ⇔ γ̇ ∝ σ2

I metastable: γ̇(σ) not monotonic

γ̇(σ) = aσ1/2 − bσ + cσ2

a(φ = φη) = 0; b > 0, c > 0 const.

predictions:
I discontinuous transition with a critical point

I critical point φc : vertical inflection point

I φ > φc : unstable region → stress jumps in the simulation

I φ = φσ > φc : finite yield stress

I divergence of the viscosity at φη > φσ > φc



Phase Diagram I

unstable

inertial flow

plastic flow

unstable

inertial flow

plastic flow

What happens in the unstable region? Phase separation?



Phase Coexistence?

shear banding

vorticity banding

x

y

z

needs third dimension and pressure has to

be balenced across the interface



The Unstable Region - Stress Controlled Simulation

vary stress σ1 < σ2 < σ3 < σ4 < σ5 at fixed φmonitor γ̇σi (t)

average over transient flow

S-shaped flow curve is observed

in transient behaviour



Phase Diagram II

no shear or vorticity banding
shear controlled simulations
unstable region: jamming
metastable region: transient flow
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How can we understand reentrance?
reduce σ → reduction in normal load
contacts which are blocked by the Coulomb
criterion: |Ft | < µ|Fn|
|Ft | = µ|Fn| become free to slide →
grains can flow → unjamming
number of sliding contacts

Florian Spreckelse
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Conclusion I

I re-entrant flow

I generic feature of friction

I non-zero stress critical point

I van-der-Waals-like phenomenology

γ̇(σ) = aσ1/2 − bσ + cσ2

I 3 critical densities
(Otsuki and Hayakawa, PRE 2011)

I can reproduce all features of the
phase diagram

I model includes (b = 0) the

frictionless case µ = 0
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Hydrodynamic Model

increase system size →
no stationary solution
for a range of σ and Φ

momentum conservation

∂tvx = ∂yσxy → ∂t γ̇ = ∂2
yσ

microstructure characterized by scalar field w(y , t);

I reduces strain rate as compared to the frictionless case:
γ̇ = γ̇0 − w ; γ̇0 = a

√
σ + cσ2

I relaxes to a stationary value: ∂tw = −(w − w∗)/τ

I stationary value w∗ = bσ; 1/τ ∝ γ̇
Olmsted, Rheol. Acta 47, 283 (2008); Nakanishi et al., PRE 85, 011401 (2012)



Hydrodynamic Model

∂t γ̇ = ∂2
yσ

γ̇ = γ̇0 − w

∂tw = −γ̇(w − w∗)

stationary flow:
γ̇ = a

√
σ−bσ+cσ2, w = w∗, σ = σ0

jamming:
γ̇ = 0, w = γ̇0, σ = σ0

linear stability analysis: δσ, δw ∼ eΩte iky

stationary flow is unstable: ∂γ̇
∂σ < 0

jammed state is stable for negative γ̇
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Phase diagram III
predictions of the hydrodynamic model

Simulations:



How to characterize heterogeneous, chaotic states?

anisotropic and long ranged stress
fluctuations in dilation direction

length scale ∼ system size

spectrum of strainrate fluctuations

in stress controlled simulations
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Conclusions II

I re-entrant flow, nonzero stress critical point

I van der Waals like phenomenology

I spatio-temporal chaos besides stationary flow and jamming

I observable only for sufficiently large system size

I complex frequency dependent spectra and spatial correlations on
scales of system size

I Hydrodynamic model: coupled dynamics of stress and microstructure

I stability analysis: time dependent states

I microstructure → γ̇(σ) = aσ1/2 − bσ + cσ2



Microscopic picture of friction induced shear thickening

Shear Thickening: Ubiquitous Phenomenon

shear thickening observed in colloidal

and non-Brownian suspensions
possible mechanisms:

I formation of hydroclusters

I shear induced glass transition

I viscosity of frictional system
diverges at lower φ; friction
becomes effective for f > f ∗ ;
sharp crossover for σ > σ∗

I enforced flow → dilation;
constant volume → large normal
stresses → large shear resistance

E. Brown and H. Jäger, Rep. Prog. Phys. 77, 2012; R. Seto et al. PRL 111, 2013; C. Heussinger PRE 88, 2013;

N. Fernandez et al. PRL 111, 2013; Z. Pan et al. PRE 92, 2014 ; E. DeGulie et al. arXiv:1509.03512



Microscopic picture of friction induced shear thickening

Frictionless granular media shear thin
Frictional granular media shear thicken

dense suspensions: frictional contact
forces and viscous drag

σ = ηγ̇
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2 particles in contact:
frictional forces reduce relative motion at the contact point:

g = v t
1 − v t

2 +
1

2
(d1ω1 + d2ω2)→ 0

2 extreme cases:

rotations adapt without generating
relative translational motion

v t
1 ∼ v t

2 ; d1ω1 ∼ −d2ω2

exchange of translational and
rotational velocities such that

v ∼ dω

extend 2-particle picture to patch of size ξ

ball bearing state with no relative
slip and weak shear resistance

Aström et al. PRL 84, 638 (2000)
Alonso-Marroquin et al.
PRE 74, 031306 (2006)
Tordesillas et al.
PRE 81, 011302 (2010)
PRE 86, 011306 (2012)

packing with highest density: all
particles in frustrated loops



1 2 3 4 5
r

-0.8

-0.6

-0.4

-0.2

0

<
d
w

(r
)d

w
(0

)>
/d

e
v
ia

ti
o
n

0.77
0.7925
0.7935

rate = 10
-6

clockwise: red
anti-clockwise: blue

mosaique structure: solid
like patches coexisting
with clusters of strongly
rotating particles

lines: nonaffine velocities;
only large ω are shown

see also Henkes et al.
→ rigidity percolation

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

σ

0.1

0.15

0.2

0.25

0.3

n
o
. 
o
f 

n
o
rm

al
iz

ed
 t

h
re

e 
lo

o
p
s 

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

σ

2.4

2.6

2.8

3

3.2

z

0.77

0.78

0.79

0.7925

0.7935

0.795

strongly increasing
number of 3-loops in the
ST regime; solidlike
vortices



Conclusions III

I re-entrant flow, nonzero stress critical point

I van der Waals like phenomenology

I spatio-temporal chaos besides stationary flow and jamming

I observable only for sufficiently large system size

I complex frequency dependent spectra and spatial correlations on
scales of system size

I Hydrodynamic model: coupled dynamics of stress and microstructure

I stability analysis: time dependent states

I microstructure → γ̇(σ) = aσ1/2 − bσ + cσ2

I microscopic picture: mosaique structure of solid like (frustrated)
patches and clusters of strongly rotating particles
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