#### Dense Granular Flow

#### Annette Zippelius

Institute for Theoretical Physics, University of Göttingen

May 2017



## Wealth of Applications

#### technical



food processing

#### and in nature



random close packing Chaikin et al. 2004









ring of Saturn

## ... of Fundamental Interest

#### nonequilbrium model system

- grain of sand of diameter d at room temperature:  $\frac{k_B T}{med} \sim 10^{-12}$
- interactions between macroscopic bodies are dissipative
- Grains left to themselves settle into static packing
- decay of an initially agitated state: cooling
- Dynamics due to driving, e.g. gravity, shear, fluidized beds,...

#### rheology of dense granular matter

How do these materials flow in response to an applied shear

#### Rheology of dense granular matter

How do these materials flow in response to an applied shear?



apply a stress (force/area) and measure the velocity or strain rate

$$\dot{\gamma} = \partial_y v_x$$

apply a velocity or displacement and measure the stress

#### Rheology of dense granular matter

What is the relation between stress and strainrate?

$$\sigma(\dot{\gamma}) = \eta(\dot{\gamma})\dot{\gamma}$$

Newtonian fluid or colloidal suspension:  $\eta(\dot{\gamma}) \rightarrow \dot{\gamma}$  as  $\dot{\gamma} \rightarrow 0$  fluid of athermal, hard spheres (dry granular medium):

Bagnold scaling:
$$\eta(\dot{\gamma}) \rightarrow \dot{\gamma}$$
 $\sigma \propto \dot{\gamma}^2$ as  $\dot{\gamma} \rightarrow 0$ 

Large strainrates

shear thickening:  $\eta(\dot{\gamma})$  increases with  $\dot{\gamma}$  frictional granular fluid shear thinning:  $\eta(\dot{\gamma})$  decreases with  $\dot{\gamma}$  frictionless granular fluid



## Frictionless Jamming

- ▶ jamming: a material becomes rigid with increasing packing fraction φ
- control parameters for the fluid to solid transition:
  - $\blacktriangleright$  shear stress  $\sigma$
  - $\blacktriangleright$  packing fraction  $\phi$
- jamming transition is studied by monitoring flow curves





## Rheology of Frictional Grains

Jamming of frictional particles



D. Bi et al., Nature 480 (2011)

phase diagram: first order phase transition and finite stress critical point in contrast to frictionless particles M. Grob, C. Heussinger and AZ, Phys. Rev. E **89**, 2014

chaotic regime



#### Rheo-Chaos

Aradian and Cates, Phys.Rev. E73 (2005) hydrodynamic model

M. Grob, AZ and C. Heussinger, Phys.Rev. E93, (2016)

## Grains with Friction

translational velocities  $\mathbf{v}$  and rotational velocities  $\boldsymbol{\omega}$ Newton's equations of motion interactions only when the particles are in contact model of soft spheres: normal and tangential forces

$$F_n = -k_n \delta_n - \zeta_n v_n$$
 and  $F_t = -k_t \delta_t - \zeta_t v_t$ 

spring constants  $k_n = k_t = 1$ , damping constants  $\zeta_n = \zeta_t = 1$ tangential overlap:  $\delta_t = \int_{t_0}^t dt' v_t(t')$  as long as  $|F_t| < \mu |F_n|$ 

 $|F_t| = \mu |F_n| \rightarrow \text{sliding contact; no loading of the tangential spring Coulomb friction coefficient <math>\mu = 2 \rightarrow \text{strong friction}$ 

polydisperse mixture

strain controlled simulations (Lees Edwards boundary conditions) stress controlled simulations with rigid walls critical discussion: S. Schäfer et al., J. Phys. 16, 5, 1996



## Deforming the System - Strain Controlled Simulation

impose strain rate  $\dot{\gamma}$  and measure stress  $\sigma$ 

different regimes:

- Bagnold:  $\sigma \propto \dot{\gamma}^2$
- Plastic:  $\sigma \propto \dot{\gamma}^{1/2}$
- φ > φ<sub>c</sub> stress jumps, hyteresis observable
- ► still larger φ: finite yield stress

discontinuous transition; hyteresis can be observed



#### Proposing a Constitutive Relation - a Simple Model

• Bagnold: 
$$\sigma \propto \dot{\gamma}^2 \Leftrightarrow \dot{\gamma} \propto \sigma^{1/2}$$

- Plastic: 
$$\sigma \propto \dot{\gamma}^{1/2} \Leftrightarrow \dot{\gamma} \propto \sigma^2$$

• metastable:  $\dot{\gamma}(\sigma)$  not monotonic

$$\dot{\gamma}(\sigma) = a\sigma^{1/2} - b\sigma + c\sigma^2$$

$$a(\phi=\phi_\eta)=$$
0;  $b>0, c>0$  const.

predictions:

- discontinuous transition with a critical point
- critical point  $\phi_c$ : vertical inflection point
- ▶  $\phi > \phi_c$ : unstable region → stress jumps in the simulation
- $\phi = \phi_{\sigma} > \phi_c$ : finite yield stress
- divergence of the viscosity at  $\phi_{\eta} > \phi_{\sigma} > \phi_{c}$



## Phase Diagram I



What happens in the unstable region? Phase separation?

## Phase Coexistence?

#### vorticity banding

shear banding





needs third dimension and pressure has to be balenced across the interface

#### The Unstable Region - Stress Controlled Simulation

vary stress  $\sigma_1 < \sigma_2 < \sigma_3 < \sigma_4 < \sigma_5$  at fixed  $\phi$ monitor  $\dot{\gamma}_{\sigma_i}(t)$ 



average over transient flow S-shaped flow curve is observed in transient behaviour



## Phase Diagram II

no shear or vorticity banding shear controlled simulations unstable region: jamming metastable region: transient flow

How can we understand reentrance? reduce  $\sigma \rightarrow$  reduction in normal load contacts which are blocked by the Coulomb criterion:  $|F_t| < \mu |F_n|$  $|F_t| = \mu |F_n|$  become free to slide  $\rightarrow$ grains can flow  $\rightarrow$  unjamming number of sliding contacts

Florian Spreckelse





## Conclusion I

- re-entrant flow
- generic feature of friction
- non-zero stress critical point
- van-der-Waals-like phenomenology

$$\dot{\gamma}(\sigma) = a\sigma^{1/2} - b\sigma + c\sigma^2$$

- 3 critical densities (Otsuki and Hayakawa, PRE 2011)
- can reproduce all features of the phase diagram
- model includes (b = 0) the frictionless case µ = 0





momentum conservation

$$\partial_t v_x = \partial_y \sigma_{xy} \to \partial_t \dot{\gamma} = \partial_y^2 \sigma$$

microstructure characterized by scalar field w(y, t);

- ► reduces strain rate as compared to the frictionless case:  $\dot{\gamma} = \dot{\gamma}_0 - w$ ;  $\dot{\gamma}_0 = a\sqrt{\sigma} + c\sigma^2$
- relaxes to a stationary value:  $\partial_t w = -(w w^*)/\tau$
- stationary value  $w^* = b\sigma;$   $1/ au \propto \dot{\gamma}$

Olmsted, Rheol. Acta 47, 283 (2008); Nakanishi et al., PRE 85, 011401 (2012)

## Hydrodynamic Model

$$\begin{array}{rcl} \partial_t \dot{\gamma} &=& \partial_y^2 \sigma \\ \dot{\gamma} &=& \dot{\gamma}_0 - w \\ \partial_t w &=& -\dot{\gamma} (w - w^*) \end{array}$$

stationary flow:  $\dot{\gamma} = a\sqrt{\sigma} - b\sigma + c\sigma^2, w = w^*, \sigma = \sigma_0$ jamming:  $\dot{\gamma} = 0, w = \dot{\gamma}_0, \sigma = \sigma_0$ 

linear stability analysis:  $\delta\sigma, \delta w \sim e^{\Omega t} e^{iky}$ 

stationary flow is unstable:  $\frac{\partial \dot{\gamma}}{\partial \sigma} < 0$ 

jammed state is stable for negative  $\dot{\gamma}$ 



## Phase diagram III

predictions of the hydrodynamic model





Simulations:





#### How to characterize heterogeneous, chaotic states?

anisotropic and long ranged stress fluctuations in dilation direction length scale  $\sim$  system size



spectrum of strainrate fluctuations in stress controlled simulations



 $4\times 10^{-7} \le \sigma \le 2, 5\times 10^{-2}$ 

## Conclusions II

- re-entrant flow, nonzero stress critical point
- van der Waals like phenomenology
- spatio-temporal chaos besides stationary flow and jamming
- observable only for sufficiently large system size
- complex frequency dependent spectra and spatial correlations on scales of system size
- ► Hydrodynamic model: coupled dynamics of stress and microstructure
- stability analysis: time dependent states
- microstructure  $\rightarrow \dot{\gamma}(\sigma) = a\sigma^{1/2} b\sigma + c\sigma^2$





#### Microscopic picture of friction induced shear thickening

Shear Thickening: Ubiquitous Phenomenon

shear thickening observed in colloidal and non-Brownian suspensions



possible mechanisms:

- formation of hydroclusters
- shear induced glass transition
- viscosity of frictional system diverges at lower φ; friction becomes effective for f > f\*; sharp crossover for σ > σ\*
- ► enforced flow → dilation; constant volume → large normal stresses → large shear resistance

E. Brown and H. Jäger, Rep. Prog. Phys. 77, 2012; R. Seto et al. PRL 111, 2013; C. Heussinger PRE 88, 2013;
 N. Fernandez et al. PRL 111, 2013; Z. Pan et al. PRE 92, 2014; E. DeGulie et al. arXiv:1509.03512

Microscopic picture of friction induced shear thickening

Frictionless granular media shear thin Frictional granular media shear thicken

dense suspensions: frictional contact forces and viscous drag



# Growing length scale in shear thickening regime

#### C. Heussinger PRE 2013



FIG. 4. Velocity correlation function  $C_v(x) = \langle v_y(x)v_y(0) \rangle$  for different strain rates and  $\phi = 0.7935$ .

2 particles in contact:

frictional forces reduce relative motion at the contact point:

$$g=v_1^t-v_2^t+rac{1}{2}(d_1\omega_1+d_2\omega_2)
ightarrow 0$$

2 extreme cases:

rotations adapt without generating relative translational motion

exchange of translational and rotational velocities such that

$$v_1^t \sim v_2^t; \quad d_1 \omega_1 \sim -d_2 \omega_2$$

 $\mathbf{v}\sim\mathbf{d}\omega$ 

extend 2-particle picture to patch of size  $\boldsymbol{\xi}$ 

ball bearing state with no relative slip and weak shear resistance



Aström et al. PRL **84**, 638 (2000) Alonso-Marroquin et al. PRE **74**, 031306 (2006) Tordesillas et al. PRE **81**, 011302 (2010) PRE **86**, 011306 (2012) packing with highest density: all particles in frustrated loops







clockwise: red anti-clockwise: blue

mosaique structure: solid like patches coexisting with clusters of strongly rotating particles



lines: nonaffine velocities; only large  $\omega$  are shown

see also Henkes et al.  $\rightarrow$  rigidity percolation



strongly increasing number of 3-loops in the ST regime; solidlike vortices

## Conclusions III

- re-entrant flow, nonzero stress critical point
- van der Waals like phenomenology
- spatio-temporal chaos besides stationary flow and jamming
- observable only for sufficiently large system size
- complex frequency dependent spectra and spatial correlations on scales of system size
- ► Hydrodynamic model: coupled dynamics of stress and microstructure
- stability analysis: time dependent states
- microstructure  $\rightarrow \dot{\gamma}(\sigma) = a\sigma^{1/2} b\sigma + c\sigma^2$
- microscopic picture: mosaique structure of solid like (frustrated) patches and clusters of strongly rotating particles







#### Thanks to:







Claus Heussinger (Emmy-Noether)

Matthias Grob (PhD)

Moumita Maiti (Postdoc)

Florian Spreckelsen (Master thesis)