Spatial extent of an outbreak in animal epidemics

In collaboration with E. Dumonteil, S. N. Majumdar, A. Zoia

PNAS 110, 4239 (2013)

SIR model for epidemics

Three species: susceptibles (S), infected (I), recovered (R)

$$\begin{aligned} \frac{dS}{dt} &= -\beta I S \\ \frac{dI}{dt} &= \beta I S - \gamma I \\ \frac{dR}{dt} &= \gamma I \end{aligned}$$

- mean field fully connected model
- β rate of infection transmission
- γ rate at which an infected recovers

$$I(t) + S(t) + R(t) = N$$

N being the total population

Outbreak of an epidemic

Initial condition : I(0) = 1, $S(0) = N - 1 \approx N$, R(0) = 0

Outbreak regime

$$\frac{dS}{dt} = -\beta I S \qquad t \approx 0, S \approx N$$

$$\frac{dI}{dt} = \beta I S - \gamma I \qquad \frac{dI}{dt} \simeq (\beta N - \gamma) I$$

$$\frac{dR}{dt} = \gamma I$$

Reproduction rate: $R_0 = \frac{\beta N}{\gamma}$

Deterministic and stochastic models

SIR is a deterministic model. In the outbreak fluctuations are important

- Stochastic process: Galton-Watson (mean field)
- each infected individual transmits the disease at rate $N\beta$
- each infected individual recovers at rate γ

Reproduction rate: $R_0 = \frac{\beta N}{\gamma}$

$$R_0 = \frac{\beta N}{\gamma}$$

- $R_0 < 1$ epidemics extinction
- $R_0 > 1$ epidemics invasion
- $R_0 = 1$ critical case

How far in space can an epidemic spread?

Problem 1: How to model the space?

The population is uniformly distributed

At time t = 0 an infected individual appears

... and moves in space

Brownian motion is the paradigm of animal migration

while human beings take the plane (even when they are sick)

The good candidate: Brownian process with branching and death In dt, each infected can:

- recovers with probability γdt
- infects with probability $\beta N dt = \gamma R_0 dt$
- otherwiese, it diffuses (D diffusion const.)

Diffusion $\Delta x \sim \sqrt{2Ddt}$, $\langle \Delta x \rangle = 0$, $\langle \Delta x^2 \rangle = \sqrt{2Ddt}$

Problem 2: How to quantify the area that needs to be quarantined?

Algorithms: Graham Scan (Nlog(N))

Monitoring the outbreak

Real applications

How to compute the convex hull of Branching processes?

Cauchy formulas

$$L = \int_0^{2\pi} M(\theta) \, d\theta$$

$$L = \int_0^{2\pi} M(\theta) d\theta$$
$$A = \frac{1}{2} \int_0^{2\pi} \left[M^2(\theta) - (M'(\theta))^2 \right] d\theta$$

Support Function

$$M(\theta) = \max_{0 \le \tau \le t} \left[x_{\tau} \cos \theta + y_{\tau} \sin \theta \right]$$

$$M(0) = x_{\tau = t_m} = x_m(t)$$

- $x_m(t)$ x-maximum up to time t
- t_m time location of the maximum

$$M'(\theta = 0) = -x_{t_m} \sin \theta + y_{t_m} \cos \theta|_{\theta = 0} = y_{t_m}$$

Dimensional reduction

$$L = \int_0^{2\pi} M(\theta) d\theta$$
$$A = \frac{1}{2} \int_0^{2\pi} \left[M^2(\theta) - (M'(\theta))^2 \right] d\theta$$

If the process is rotationally invariant any average is independent of θ

$$\langle L(t)\rangle = 2\pi \langle M(0)\rangle$$
$$\langle A(t)\rangle = \pi \left[\langle M^2(0)\rangle - \langle M'(0)^2\rangle \right]$$

$$\langle L(t) \rangle = 2\pi \langle x_m(t) \rangle$$
$$\langle A(t) \rangle = \pi \left[\langle x_m^2(t) \rangle - \langle y^2(t_m) \rangle \right]$$

This relation is valid ONLY in average

$$\langle L(t) \rangle = 2\pi \langle x_m(t) \rangle$$
$$\langle A(t) \rangle = \pi \left[\langle x_m^2(t) \rangle - \langle y^2(t_m) \rangle \right]$$

consider a 1d branching process evolving in (0, t)

- x_m is the global maximum
- t_m is the location of the maximum

$$\bullet \langle y^2(t_m) \rangle = \ldots = 2D t_m$$

Backward Fokker Planck equation

$$Q_t(x_m) = \text{Proba}[\text{global max up to } t < x_m]$$

$$Q_{t+dt}(x_m) = \gamma dt + R_0 \gamma dt Q_t^2(x_m) + [1 - \gamma(R_0 + 1)] dt \langle Q_t(x_m - \Delta x) \rangle$$

•
$$\langle Q_t(x_m - \Delta x) \rangle = Q_t(x_m) - \langle \Delta x \rangle Q_t'(x_m) + \langle \frac{\Delta x^2}{2} \rangle Q_t''(x_m) + \dots$$

- $|\bullet| \langle \Delta x \rangle = 0$
- $\bullet \ \langle \Delta x^2 \rangle = 2Ddt$

$$\langle Q_t(x_m - \Delta x) \rangle = Q_t(x_m) + Ddt \partial_x^2 Q_t(x_m) + \dots$$

$$\frac{\partial}{\partial t}Q = D\frac{\partial^2}{\partial x_m^2}Q - \gamma(R_0 + 1)Q + \gamma R_0 Q^2 + \gamma$$

- initial condition $Q_{t=0}(x_m) = \theta(x_m)$
- boundary condition $Q_t(x_m < 0) = 0$
- boundary condition $Q_t(x_m \to \infty) = 1$

$$\langle L(t)\rangle = 2\pi \int_0^\infty [1 - Q_t(x_m)] dx_m.$$

Similar calculations allows to express the mean area as:

$$\langle A(t)\rangle = \pi \int_0^\infty dx_m \left[2x_m(1 - Q_t(x_m)) - T_t(x_m)\right]$$

Where the evolution of $T_t(x_m)$ is governed by:

$$\frac{\partial}{\partial t}T_t + \partial_x Q_t(x_m) = \left[D\frac{\partial^2}{\partial x_m^2} + 2\gamma R_0 Q_t - \gamma (R_0 + 1)\right]T_t,$$

Both PDE can be integrated numerically and solved in some asymptotic limit

The critical case

When $t \to \infty$ the perimeter remains finite, but the area diverges!

How it is possible? ... Fluctuations

$$\operatorname{Prob}(A) \xrightarrow[A \to \infty]{} \frac{t = \infty}{5\gamma} A^{-2} \qquad \operatorname{Prob}(L) \xrightarrow[L \to \infty]{} L^{-3}$$

Out of criticality

When $R_0 \neq 1$, characteristic time $t^* \sim |R_0 - 1|^{-1}$.

For times $t < t^*$ the epidemic behaves as in the critical regime.

In the *subcritical* regime, for $t > t^*$ the epidemic goes to extinction.

In the *supercritical* regime, with probability $1 - 1/R_0$ epidemic explodes.

Supercritical

$$\langle L(t \gg t^*) \rangle = 4\pi \left(1 - \frac{1}{R_0} \right) \sqrt{D \gamma (R_0 - 1)} t$$

$$\langle A(t \gg t^*) \rangle = 4\pi \left(1 - \frac{1}{R_0} \right) D \gamma (R_0 - 1) t^2$$

$$t^* \sim |R_0 - 1|^{-1}$$

$$\frac{\partial}{\partial t}W = D\frac{\partial^2}{\partial x_m^2}W + \gamma(R_0 - 1)W - \gamma R_0 W^2$$

Traveling front solution

Conclusions:

- Branching Brownian motion with death as a model for the spatial extent of animal epidemics
- Using Cauchy Formulas we can map the convex hull problem in the extreme statistic of the Idimensional process
- Backward F-P equations for the extreme distributions
- Critical case has very large fluctuations
- Super Critical case: traveling front solution