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Abstract Using advanced numerical approaches based on optimization al-
gorithms, much progress has been achieved for the study of the ground-state
and low-temperature behavior of two-dimensional Ising spin glasses. Recent
results led to a rather good understanding of these systems in the framework
of the droplet-scaling theory. In this work, a pedagogical description of such
an optimization-based approach is given and a short review of corresponding
recent results is presented.

Furthermore, original results are presented for a special type of system
which combines a ferromagnetic sub lattice with a spin-glass sub lattice.
Results for exact ground-state calculations up to system size N = 1448 ×
1448 are given. Past results of similar systems gave evidence that such a
system might exhibit a spin-glass phase at finite temperatures. Nevertheless,
the present results do not support this notion. But, for a suitable balance
between ferromagnetic and ±J spin-glass couplings, extremely large finite-
size effects occur, which make the system look as if it orders if one studied just
intermediate system sizes. Furthermore, although the system exhibits only
a discrete set of interactions, a power-law behavior for the stiffness energy
can be observed clearly for a large range of system sizes, in contrast to past
systems with discrete sets of bond values.

key word: spin glasses; ground states; optimization algorithms;

matching algorithms; domain walls; droplets; SLE processes

1 Introduction

During the last four decades, spin glasses (SGs) [15,65,35] have been one
of the major research areas in condensed matter and statistical physics. Al-
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though much progress has been achieved, there exist still many unsolved
questions regarding the low-temperature behavior of SGs, in particular in
finite dimensions [69]. Analytically, only few models can be treated, hence
much effort has been put into numerical approaches [45], in particular Monte
Carlo simulations [70,57]. Nevertheless, due to the issue of equilibration,
only systems with a moderate number of spins can be treated. During the
last decade, several mappings of the spin-glass ground state (GS) problem to
combinatorial optimization problems [50] have been developed, which has
allowed to study much larger systems. Here, it is explained for the par-
ticular case of two-dimensional Ising spin glasses, how GS and low-energy
excited configurations can be obtained using so-called matching algorithms

from graph theory. This allows to treat much larger samples compared to
Monte Carlo simulations, even if Monte Carlo methods are combined with
advanced techniques [83].

The SG model considered here [31,86] consist of N Ising spins σi = ±1
placed on a regular lattice or, in general, on the sites of a graph. The Hamilton
function is given by

H ≡ −
∑

〈i,j〉

Jijσiσj . (1)

The sum 〈i, j〉 runs over all pairs of interacting spins, i.e., the edges of the
graph, and Jij denotes the strength of the bond connecting spins i and j.
For each realization of the disorder, the values Jij of the bonds are drawn
according to a given probability distribution. Very common are the Gaus-
sian distribution and the bimodal ±J distribution, which have the following
probability densities, respectively:

pG(J) =
1√
2π

exp

(

−J
2

2

)

(2)

pbm(J) = 0.5δ(J − 1) + 0.5δ(J + 1) (3)

Once the values of the bonds are fixed for a realization, they keep their
values throughout the whole calculation or simulation, this is called quenched

disorder .
If the underlying interaction graph is regular, one speaks of the Edwards-

Anderson (EA) model [31]. On the other hand, the mean-field (MF) version
of the model, involving interactions between all pairs of spins, was introduced
by Sherrington and Kirkpatrick (SK) [86]. For a Gaussian distribution of the
interactions, the SK model has been solved analytically through the use of
several enhanced techniques by Parisi in the 1980s [65]. The main property
of the solution is that a complicated energy landscape is obtained which
organizes in the thermodynamic limit the state-space hierarchically using
infinitely many levels. In particular, there are many low-energy states which
are mutually very different from each other.

One of the great unsolved questions in spin-glass physics is, whether, or
to what extent, the properties of the MF model are present also for finite-
dimensional SGs. There is an opposing theory, the so called droplet picture
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[60,22,36,37,19]. The droplet picture assumes that the low-temperature be-
havior is governed by droplet-like excitations. A droplet consists of a compact
area of spins which are reversed with respect to a GS. Typical excitations of
linear spatial extent l are assumed to cost an energy

∆E ∼ lθ , (4)

θ being a characteristic exponent. Note that typical here means that they
dominate the thermodynamic behavior. This means, at finite temperature,
that a droplet has minimum free energy for a given length scale l of the
droplet. For T = 0, the minimum free energy requirement translates to a
minimum-energy condition. The surface of a droplet is assumed to have a
fractal dimension ds < d, where d is the space dimension. Note that the
surface of the droplet is at the same time a domain wall (DW) in the system,
separating the spins having one ground-state orientation from the domain of
spins having the opposite orientation. Furthermore it is usually assumed that
the scaling behavior of the energy ∆E of different types of excitations, e.g.
droplets and other domain walls, which can e.g. be induced by changing the
boundary conditions, are described by the same exponent θ. The similarity
and simplicity of all excitations means that the energy landscape is dominated
by two large valleys, with the two GSs at the bottoms of these valleys.

In this work, results are reviewed for the two-dimensional (d = 2) model,
obtained during the last decade using exact GS matching algorithms. These
results strongly support the droplet picture for two-dimensional SGs. Note
that results from finite-temperature simulations are not covered here. Through-
out this work, systems with periodic boundary conditions in one direction
will be considered. The paper is organized as follows: In section 2, some
algorithms used to obtained exact GSs as well as domain-wall and droplet
excitations are explained in a pedagogical stile. In section 3, the main results
from these calculations will be exposed. In the fourth section, new results
for a system with a mixture of a regular ferromagnetic sub system with a
spin-glass sub system are shown. In the last section, a summary is given.

2 Algorithms

In general, the calculation of a spin-glass GS is an NP-complete problem
[7]. Thus, so for only worst-case exponential-time algorithms are known. For
GSs, the fastest known approach is the Branch-and-Cut algorithm [87,88].

Nevertheless, to calculate exact ground states and corresponding excita-
tions of two-dimensional Ising SGs, polynomial-time algorithms [14,30,8,75,
67,50,91,76,64] are available, which allows to treat large system sizes. Here,
a standard approach is explained, which is based on a direct mapping to a
matching problem. This approach works for planar spin glasses and was used
to obtain many of the recent results supporting the droplet picture. To ex-
plain the algorithms, some notions from graph theory [89] are needed, which
will be given first. Next, the algorithm to obtain ground states is presented.
Finally, the extensions of the algorithm needed to calculate excitations are
exhibited. The presentation in this section is a concise but still pedagogical
version of the extensive presentation of Ref. [43].
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2.1 Graphs

A finite undirected graph G = (V,E) is a finite set V of vertices (or nodes)
connected by a set E ⊂ V (2) of undirected edges (or links). Hence, each edge
{i, j} is a set of exactly two vertices.

A path from v1 to vk is a sequence (ordered set) of vertices v1, v2, . . . , vk
which are connected by edges in the graph: {vi, vi+1} ∈ E ∀i = 1, 2, . . . , k−1.
If no node except the first and the last one appears twice in a closed path
(v1 = vk) it is called a cycle. A matching is a subset M ⊂ E of edges such
that each vertex is contained in at most one edge. For a perfect matching,
each vertex is contained in exactly one edge of M .

A weighted graph G = (V,E, ω) is a graph with edge weights ω : E → R.
The weight of a subset of edges, like a path S or matching M , is the sum of
the weights of the edges contained in the subset. Hence, a minimum-weight

path (also called shortest path) connecting v1, vk is the path connecting v1
and vk which has minimum weight. In the same way, a minimum-weight

(perfect) matching is a (perfect) matching of minimum weight

2.2 Ground states

Now, we turn back to the planar two-dimensional spin glasses and show step-
by-step how the calculation of GSs of (1) can be mapped on the minimum-
weight perfect matching problem [14]. Note that the following explanation
is given by considering a square lattice, but in fact the algorithms can be
applied to general planar lattices. Thus, also systems with honeycomb or
triangular lattices can be treated in the same way. We start with the two-
dimensional SG with free boundary conditions in all directions, shown in Fig.
1.

We assume a configuration where all spins are ”up”, i.e., σi = +1 ∀i ∈
V . This means all ferromagnetic bonds will be satisfied, since all pairs of
interacting spins exhibit in the same orientation, while all antiferromagnetic
bonds are not satisfied. Since there are 25 ferromagnetic bonds with Jij =
+J and 15 antiferromagnetic bonds with Jij = −J , the total energy of
the configuration is E = −25J + 15J = −10J . Now we draw dashed lines
perpendicular to all non-satisfied bonds, the result is shown in Fig. 1.

This set of perpendicular dashed lines can be seen as a subset of edges in a
new dual graph G′ = (V ′, E′), which is now defined. The vertices of G′ consist
of the set of all elementary cycles p with four edges, i.e., of length four. These
cycles are called plaquettes. As we will see below, of particular importance are
frustrated plaquettes, which are defined as those plaquettes which contain an
odd number of negative bonds. In general a set of plaquettes is defined as a
(non-unique) subset P of all cycles of a graph such that each possible cycle
can be composed from a symmetric difference (i.e. A∆B = (A∪B) \ (A∩B)
for sets A,B) of members from P . One can show [14], that a set L ⊂ E of
unsatisfied bonds is physical, i.e., corresponds to a spin configuration, if each
frustrated (unfrustrated) plaquette contains an odd (even) number of edges
in L. In case of free boundary conditions in all directions, as in the graph
in Fig. 1, also the “large” cycle surrounding the system, i.e. consisting of
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Fig. 1 The two-dimensional spin glass, having free boundary conditions in all
directions. Empty circles represent spins. The solid lines represent ferromagnetic
bonds, the jagged lines antiferromagnetic bonds. All spins are assumed to be “up”
σi = 1. Dashed lines are drawn perpendicular to unsatisfied edges, which are the
antiferromagnetic edges in this case.

the boundary spins of the full system, is a member of V ′, while for periodic
boundary conditions only in the x direction, also the two cycles containing
all spins at the top and all spins at the bottom, respectively, are added. By
adding these one or two “extra” plaquettes, each bond of the original graph
is contained in exactly two cycles of V ′. This allows to choose the edges in
E′ as those elements {p1, p2} where in the original graph G, the plaquettes
p1 and p2 have exactly one bond in common (denoted as J(p1, p2)) i.e. all
neighboring plaquettes. Since each edge {p1, p2} in G′ corresponds exactly
to the bond J(p1, p2) crossed in G, we can assign also weights to the edges
of G′ by choosing w′({p1, p2}) = |J(p1, p2)|. It will be shown below that this
choice is useful. As an example, in the left of Fig. 2, the resulting graph G′

for G from Fig. 1 is shown (without edge weights). Note that for the ±J
model, we have the weight w′({p1, p2}) = J for all edges. In the right of Fig.
2 a dual graph G′ for a graph similar to the graph Fig. 1 is shown, except
that it has periodic boundary conditions in the x direction.

In Fig. 3, the graph from Fig. 1 is repeated, but now the vertices of G′

are also shown. In addition, the frustrated plaquettes are marked by capital
letters. Note that also the large plaquette A surrounding the system is frus-
trated. Hence, the set of dashed lines represents a subset L of edges from E′.
Since they cross the bonds of G which are unsatisfied in configuration {σi},
we can rewrite the energy H({σi}) as

H({σi}) =
∑

e′∈L

w′(e′) −
∑

e′∈E′\L

w′(e′)

= 2
∑

e′∈L

w′(e′) −
∑

e′∈E′

w′(e′) (5)

= 2w′(L) − w′(E′)
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Fig. 2 Dual graphs G′ for the spin glass. The plaquettes p are represented by filled
circles inside the elementary cycles. The edges of the dual G′ are denoted by dashed
lines. Note that we draw the bonds of G here just as thin lines, irrespectively of
their sign and magnitude. Left: for the graph from Fig. 1 (free boundary conditions
in all directions). The large plaquette surrounding the system is represented by a
circle outside the graph G. Right: for the case G had periodic boundary conditions
in the x direction: two extra plaquettes are added, represented by the third filled
circles from the top and from the bottom, respectively.

Therefore, in this expression each unsatisfied bond {i, j} of the original
graph G, corresponding to an edge e′ ∈ L, contributes a positive energy
w′(e′) = |Jij | and each satisfied bond, corresponding to an edge e′ ∈ E′ \ L
contributes a negative energy −w′(e′) = −|Jij |. Note that in the second line,
the second term is a constant which does not depend on the spin configura-
tion.

If we now take a closer look at Fig. 3, we observe that all edges from
L either are contained in paths joining frustrated plaquettes or they are
contained in cycles. Here, we have paths from A to B, from C to E and from
D to F, and a cycle of length 6 (shaded area). Note that this way to describe
L via cycles and paths is not unique. Nevertheless, it is only important that
different descriptions exhibit the same set L, hence the same energy.

This description via cycles an paths joining frustrated plaquettes is not
only valid for this special configuration σi = 1, but it is valid for all possible
spin configurations. If we for example flip the second spin in the top row, we
change the state of all neighboring bonds satisfied ↔ unsatisfied. This means
that the path connecting the frustrated plaquette B in the upper left corner
with the frustrated plaquette A is just redirected, see upper right of Fig. 3.
Previously, the weight of the path from A to B contributed two edges to L
and a value 2J to w(L), now it contributes just one edge and the weight J .
Therefore, the total energy is decreased to E = −26+14 = −12. In a similar
way the configuration changes, when in the third and fourth row the second
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Fig. 3 The two-dimensional spin glass with free boundary conditions from Fig. 1.
In the top left, all spins are assumed to be “up” σi = 1. Dashed lines indicate the
edges present in the set L of the dual graph G′ = (V ′, E′) (see text). All edges in E′

are either contained in paths connecting frustrated plaquettes (denoted by capital
letters) or in cycles (shaded area). In the top right, the situation is shown, which
arises, when the second spin in the top row is flipped. In the lower left, in addition
the second spins of the third and fourth row are flipped. In the lower right, a GS
is shown.

spin is flipped, respectively, see lower left of Fig. 3. The resulting energy is
E = −28 + 12 = −16

We are finally interested in obtaining a GS. Looking at (5), one observes
that minimizing the energy is equivalent to minimizing the total weight w(L)
of edges in L. We have already decreased the total weight by the spin flips
shown before. Also, we can decrease the total energy always by removing
all cycles in L. This is achieved by just flipping all spins surrounded by
each cycle. Here, when we flip the two spins in the shaded area, we remove
6 edges from L, hence decreasing the energy to E = −34 + 6 = −28. It
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becomes obvious that in a GS no cycle will exist. Hence, a ground-state
configuration can be described by a set L of edges from E′ which form paths
connecting frustrated plaquettes. Each frustrated plaquette is connected to
exactly one other frustrated plaquette. Finally, to minimize (5), these paths
will be of minimum weight. If one calls the weights “distances”, this means
that the frustrated plaquettes are connected by shortest paths in the GS.
We see that in the lower left Fig. 3, E and F are connected by a path of
weight (distance) 3J . This can be further decreased by flipping all spins on
the bottom row, leading to a path of weight 2J from E to F. Note that the
path now includes plaquette A. We observe that one has again alternative
but equivalent descriptions of the situation, e.g. one could say that A to
E and B to F are connected by paths in G′. The ground-state energy is
E = −35 + 5 = −30.
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Fig. 4 The complete graph G′′ of frustrated plaquettes obtained from G′. Each
edge {f1, f2} carries a weight w′′ which is the minimum weight (shown in units of
J) among all paths from f1 to f2 in G′. The edges are drawn in a way, that they
cross the edges of G corresponding to a minimum weight. When interpreting the
weights as distances, this is the length of a shortest path from f1 to f2. Note that
for G′, where all edge weights have value J , the length weight is just the number
of edges.

To conclude, to obtain a GS, we just have to consider the frustrated pla-
quettes, and we have to look for paths connecting the frustrated plaquettes
pairwise. Each frustrated plaquette is connected to exactly another frustrated
plaquette. This means, we are looking for a perfect matching of frustrated
plaquettes. Since the energy directly corresponds to the weight of the match-
ing, we are looking for a minimum-weight perfect matching to obtain a GS.
To formalize this, the graph G′′ = (F ′, F ′ × F ′) is defined. The set F ′ of
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vertices just contains the frustrated plaquettes from V ′, hence F ′ ⊂ V ′. The
graph G′′ is a complete graph, because in F ′ × F ′ all possible edges {f1, f2}
(f1, f2 ∈ F ′) are contained. We assign weights by choosing w′′({f1, f2}) as
the weight of the minimum-weight (shortest) path from f1 to f2 in G′. Hence,
to obtain the GS of the two-dimensional spin glass, two optimizations have
to be performed.

– First, the calculation of all minimum-weight (shortest) paths in G′ be-
tween all pairs of frustrated plaquettes. For this purpose a standard
polynomial-time shortest-path algorithm, e.g. the Dijkstra algorithm can
be used from the literature [85,29]. As example, in Fig. 4 the graph G′′

obtained from G′ for our example is shown.
– Second, a selection of the minimum-weight perfect matching of frustrated

plaquettes, where the edge weights of the complete graph G′′ are the
minimum-weights of the paths obtained in the first step. The calculation
of minimum-weight perfect matchings is a problem which can be solved
quickly on a computer, meaning that the running time increases also only
polynomially with the system size in the worst case. Again standard al-
gorithms from computer science can be applied here [28,56]. Since these
algorithms are rather complicated, at least in case of efficient implemen-
tations, we recommend to use existing computer programs from scientific
libraries, e.g. the LEDA library [61] or the blossom4 implementation
within the Concorde library [27]. These algorithms have a running time
O(nm log n) for a graph with n vertices (here n = |F ′|) and m edges (here
m = |F ′ × F ′| = |F ′|2).
Finally, a ground-state configuration can be obtained from the minimum-

weight perfect matching. Exactly those bonds are not satisfied (in G), which
are crossed by the minimum-weight paths in G′ connecting the matched frus-
trated plaquettes (in G′′). Note that due to the connection to shortest paths,
due to the fact that each frustrated plaquette cannot be matched to more
than one other plaquette and due to the minimality of the matching, it is
impossible that more than one of the selected paths crosses a bond. The
spins are then obtained, by first selecting (say) the upper-left spin either
up or down. This corresponds to the trivial degeneracy due to the spin-flip
symmetry of the Hamiltonian. Then one runs systematically through the
lattice and sets neighbors of already set spins either to the same (if the
connecting bond is satisfied ferromagnetic or unsatisfied antiferromagnetic)
or the opposite (if the connecting bond is unsatisfied ferromagnetic or sat-
isfied antiferromagnetic) orientation. Note that the minimum-weight paths
are sometimes not unique. For example the path connecting plaquettes E
to F can go through the bonds to the left or below of E, also either to
the right or below of F . Hence, the ground-state spin configuration can also
be non-trivially degenerate. Another source of degeneracy is that multiple
minimum-weight matchings might exist, but not all different matchings lead
to different spin configurations, see e.g. the lower right part of Fig. 3. More
on how to treat degeneracy, you can find in Ref. [58]. Here, we are interested
mainly in energetic aspects, where the spin configurations are not important.

Finally, a technical note is given. For a system of site N = L × L, there
are O(N) = O(L2) frustrated plaquettes. Since the graph G′′ is complete,
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it exhibits m ∈ O(L4) edges. This leads to a rather strongly increasing run-
ning time of O(L6 logL4), although it is still bounded by a polynomial. For
the minimum-weight perfect matchings, one observes that for random sam-
ples, there are “almost never” edges in G′′ with “large” weight contained in
matchings. For thousands of samples of the ±J model, never a sample with
a weight larger than 6J was observed in our studies. Hence, one can safely
remove all edges from G′′ with a weight larger than some wmax even while
calculating the shortest paths. From numerical experiments, testing whether
the result depends on wmax, one finds that wmax = 6J is a safe value for the
±J and wmax = 8J for the Gaussian SG.1

2.3 Domain walls and droplets

As already indicated in the introduction, not only obtaining true ground
states is interesting, but the calculation of excited states using GS algorithms
is one major task to understand the behavior of two-dimensional spin glasses.
One possible general approach consists of these three steps:

1. Calculate the GS {σ(0)
i } of a given realization and the GS energy E0.

2. Modify some of the couplings.

3. Calculate the GS {σ(m)
i } of the modified system, which is usually a low-

lying excited state of the original realization. The ground-state energy of

the modified sytsem is denoted by E
(m)
0 . The energy with the original

bonds of the configuration {σ(m)
i } is denoted by E

(m)
1 .

Note that the algorithm presented in the last chapter breaks the spin-
flip symmetry by choosing the upper left spin “up”, hence indeed a unique
GS can be assumed here. Here, we will consider two types of excited states,
domain walls and droplets, which play a major role in the theoretical study of
SGs. Other types of excitations, which can be generated using ground-state
algorithms in the same spirit, are discussed in the literature [67,74,52,49].

A DW spanning the whole system can be generated, e.g. by switching
the boundary conditions from periodic to antiperiodic in one direction. This
is done by taking one column of bonds, e. g., those which “wrap around the
system boundaries”, and by then inverting the signs of all bonds in this
column, see Fig. 5.

After calculating the GS with the modified system, the pairs of spins
touching most2 of the modified bonds will have a relative orientation to
each other, which is different from the GS obtained with the original bonds
previously. In this way two domains are generated; one, where the spins
have their GS orientation; another, where the spins have opposite sign with
respect to the GS. Note that inside the domains, all pairs of adjacent spins

1 that there are more general models, e.g. the ±J random bond model, where
the fraction of ferromagnetic and antiferromagnetic bonds is not equal. For those
models, usually wmax must be a bit higher.

2 The DW generated might cross the modified bonds. At these few positions, the
adjacent spins have still the relative GS orientation.
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Fig. 5 Method used to generate DWs. After calculating the GS, the signs of all
bonds connecting the pairs of spins in the first and last column (represented here
by the thick broken line) are inverted. In this way two domains are generated;
one, where the spins still have their GS orientations (indicated by the light area);
another, where the spins have opposite sign with respect to the GS (dark area).
Note that the DW separating the two domains runs not necessarily “in the middle”
of the system. Hence for some realizations, the DW might even cross the line of
inverted bonds.

still have the relative GS orientation to each other. The two domains are
separated by the DW 3, which will adjust in a manner that the total energy is
minimized. Hence, the GS energy of the modified system is locally everywhere

the same as in {σ(0)
i }, except at the DW. Thus, when calculating the energy

difference between the GS energies E0 of the original GS configuration and

E
(m)
0 of the modified configuration, one obtains exactly the energy of the

DW: ∆E ≡ E
(m)
0 − E0.

Now we turn to the second kind of excitation discussed here, i. e., droplets.
As mentioned in Sec. 1, droplets are connected clusters of spins, which are
reversed with respect to the GS, and which are of minimum free energy.
For T = 0, the minimum free energy requirement translates to a minimum-
energy condition. This allows us to verify the scaling assumption (4) of the
droplet scaling theory by GS calculations. We will consider two-dimensional
spin glasses with free boundary conditions for the rest of this chapter.

A traditional approach of generating droplets was used by Kawashima
and Aoki within a Monte Carlo simulation [54]. They first calculated the
GS heuristically with an algorithm based on gradually “cooling” the system.
Then they recalculated the GS with the constraints that the spins on the
boundary keep their GS orientation, while a central spin is flipped, see Fig.
6. Fixing the spins can be achieved by introducing strong local fields act-
ing on the spins, with the direction of the fields chosen to point along the
desired direction, hence one has to apply a Hamiltonian with a linear field

3 Formally, when comparing with the original GS, the two domains are also sep-
arated by a second DW which is just a straight line along the modified bonds, but
this DW does not contribute to the energy change.
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Fig. 6 Left: Basic method to generate a droplet. After calculating the GS, fix the
spins at the boundary in their GS orientation and fix one central spin in opposite GS
orientation. A GS calculation with the fixed spins results in a droplet (black/grey
area), consisting of spins opposite to the original GS orientations (white/shaded
area). Right: Method used to generate the cross droplets. After calculating the
GS, several hard bonds (thick lines) are introduced, one hard bond is inverted (see
triangle), leading to the appearance of an excitation (dark inner area).

term.4 Since the droplet energy decreases with droplet size (since θ < 0),
for each given system the droplets become typically as large as possible at
small temperature. Hence, this approach generates droplets of the order of
the system size, i. e., l ∼ L. Using this approach, small systems up to L = 50
with a Gaussian distribution of the interactions could be studied, and a scal-
ing ∆E ∼ Lθ

′

of the droplet energy with θ′ = −0.45(1) was found, which
is significantly different from θ ≈ −0.28 obtained for domain walls, see next
section.

Since the range of system sizes in the work of Kawashima and Aoki is
limited to L ≤ 50, their result might have been an artifact of too-small sizes.
Using matching algorithms, one can study much larger sizes. Unfortunately,
it is not possible to treat local magnetic fields, i. e., one cannot fix a spin
in some orientation. But it is possible to mimic this kind of generation of
droplets in the following way. After obtaining the GS, several hard bonds

are introduced. A hard bond is a bond with a high value of the absolute
strength (one can imagine Jbig ∼ 105J or Jbig = 2N × max〈i,j〉{Jij}). The
strength of a hard bond is so large such that the bond will be satisfied in all

subsequent GS calculations.5 Most of the hard bonds are used to ensure that

neighboring spins i0, j0 have the same relative orientation as in the GS {σ(0)
i },

i. e., one replaces bond Ji0j0 by a bond with the value J ′
i0j0

= Jbigσ
(0)
i0
σ

(0)
j0

.
An inverted hard bond has the opposite sign, i. e., it forces two neighboring
spins to take orientations, which are different relative to their GS orientations.
This means in a GS calculation with the inverted hard bond, one of the two

spins will flip with respect to {σ(0)
i }, the other spin will keep its previous GS

orientation. Note that the subsystem of all hard bonds together must not

4 Alternatively, one can just ignore the fixed spins in the second GS calculation
and leave their current orientations. Then the fixed spins act as local fields to their
neighbors.

5 When working with a maximum weight wmax of the edges in the graph G′′ of
frustrated plaquettes, see end of last section, it is sufficient to chose Jbig > wmax.
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exhibit frustration, because no hard bond should be broken when a new GS
is calculated.

Now we describe in detail which hard bonds are introduced to obtain
droplets. First, all boundary spins are fixed relative to each other by intro-
ducing hard bonds around the border, see Fig. 6. The signs of these hard
bonds are chosen such that they are compatible with the GS orientations
of the spins they connect. This keeps the spins on the boundary in their
GS orientations. Another line of hard bonds is created which runs from the
middle of (say) the left border to a pre-chosen center spin, again fixing the
bond’s spins in their relative GS orientations. Next, the sign of exactly one

hard bond on this line is inverted. Now a GS of the modified realization is
calculated. With respect to the original GS, the result is a minimum energy
excitation, fulfilling the constraints that it contains the center spin, does not
run beyond the boundary and that it has a surface which runs through the
hard bond which has been inverted. Hence, it will be a constrained droplet.

Note that this procedure alone does not generate the droplets as defined
above, because the border of the droplet is constrained to run through the
inverted hard bond, while it can fluctuate freely for the original droplets.
Therefore, for each realization, this procedure is iterated over all the bonds
which are located on the line from the boundary to the center, when in each
case exactly one hard bond is inverted. Among all L/2 excitations generated

in this way, the one exhibiting the lowest energy E
(m)
1 −E0 (i.e., both E

(m)
1

and E0 calculated with the original bonds) is selected as the minimum energy
droplet. Hence, the DW of a such defined droplet must cross the imaginary
line between the left boundary and the center spins exactly once, and may
fluctuate freely everywhere else. Therefore, to introduce even more flexibility
of the DW, the full procedure is iterated over all four choices of lines of
bonds running from the left, right, top and bottom boundary to the center
spin. This means, for each realization finally the true minimum droplet is
selected as that one having the minimum energy among all 2L−2 excitations
generated in this way. This approach generates droplets, called cross droplets,
which are very similar to the droplets of Kawashima and Aoki, except that
no droplets can be generated, where the boundary fluctuates freely in all
four directions at the same time. However, it was found that these strongly
fluctuating droplets play a minor role [48], their influence on the final result
is smaller than the fluctuations resulting from the statistics.

Note that one can study also other types of excitations [52], which are ob-
tained, e.g., by just slightly changing the bonds after the first GS calculation.
Furthermore, one can use the concept of hard bonds and GS calculation, by
iterating the algorithms in a hierarchical way, to obtain a low-energy path
from a ground state to its inverted counterpart [3]. For details, please consult
the cited references.

3 Review of main recent results

In the following, results of GS calculations concerning scaling behavior of
energy, domain walls, and droplets are reviewed. Also results for other types
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of excitations, energy barriers and test concerning Schramm-Loewner evolu-
tion (SLE) behavior [25] are mentioned. Throughout this work, systems with
periodic boundary conditions in one direction will be considered, except for
the droplet calculations, where the boundary conditions are free.

First, one is interested in domain walls, because their creation roughly
corresponds to a real-space renormalization [39,24] of the system [20]. By
averaging over this renormalization one obtains a renormalized distribution of
coupling strengths. A measure for the strength of the interaction distribution
will be the width of the distribution ∆ =

√

Var(∆E), called stiffness here.
From simple scaling arguments by Bray/Moore and McMillan [20,60] and in
numerical experiments one finds a power-law behavior ∆ ∼ Lθ, where θ is the
droplet exponent, also called stiffness exponent in this context. Hence, the
scaling is the same as for the droplet scaling Eq. (4), but with the droplet size
replaced by the system size. If θ < 0, then the interactions become weaker
with increasing size of the renormalized region. This means, in the limit of
an infinitely large region, the spins are effectively no longer coupled, hence
the system behaves paramagnetically at any finite temperature, i.e. Tc = 0.
This is indeed the case, as we will see next. Note that there is also analytical
evidence obtained by Ohzeki and Nishimori [71], that Tc = 0 for d = 2 SGs.

1 10 100 1000
L

0.5

1

∆

+-J
 Gaussian

Fig. 7 Width of the stiffness-energy distribution for the standard spin glass with
Gaussian and bimodal distribution of the bonds, respectively. The solid lines show
fits to functions ∆(L) ∼ ∆∞+bLθ with ∆∞ = 0.95(2), b = 0.93(24), θ = −0.59(15)
(±J) and ∆∞ ≡ 0, b = 1.58(1), θ = −0.282(2) (Gaussian). See also Ref. [51].

A couple of results to obtain the stiffness exponent were published, us-
ing exact transfer-matrix approaches by Bray/Moore and McMillan [20,59]
or Branch-and-Cut algorithms by Rieger et al. [80], but restricted to small
system sizes. By using the matching approach much larger systems can be
treated. In Fig. 7 the resulting stiffness ∆ is shown as a function of system
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size L for the Gaussian distribution Eq. (2) and the ±J distribution Eq.
(3). The data is from Ref. [51]. For the Gaussian case, a clear power law
with exponent θG = −0.282(2) is visible, while for the ±J case the stiffness
saturates at a value around 1, leading to θbm = 0. These results indicat-
ing a non-universality between Gaussian and bimodal ±J distribution were
supported later on by Amoruso et al. [4] via detailed calculations for Migdal-
Kadanoff lattices. They showed that for this type of lattice the lower critical
dimension is different for the two kinds of distributions. In Ref. [51] a slightly
different value for θG was obtained for a different type of boundary condi-
tions, when the boundary conditions were switched from free/free (x/y) to
antiperiodic/free. The aspect-ratio approach, as introduced for spin glasses
by Carter, Bray and Moore [26], consists of performing calculations for sys-
tems of various aspect ratios Lx/Ly. Using this approach it was shown [46]
that the apparent boundary-condition dependence is a finite-size artifact. As
a result, the boundary-condition independent value of θG = −0.287(4) was
determined. When studying [17] exact GSs of diluted lattices, which allows
in combination with a reduction method introduced by Boettcher [16] to go
in principle to even larger system sizes, a value θG = −0.281(1) was found.

Several authors addressed the fractal properties of domain walls. In early
works [21,80,73], using exact transfer-matrix and Branch-and-Cut approaches,
only small system sizes could be treated, resulting in estimates ds

G ≈ 1.26(3)
. . . 1.34(10). Later on matching algorithms were used [62], resulting in a
higher accuracy: For the Gaussian model, a fractal surface dimension of
ds
G = 1.274(2) was obtained. This is compatible with other results [54,68,

12] which were also obtained by using matching algorithms but with some-
how lower accuracy. Basically the same value ds

G = 1.273(3) was found also
for large systems sizes independently by Weigel and Johnston [92]. Due to the
degeneracy of the GS, determining the fractal properties is more difficult for
the bimodal model. Here, using extensions of the algorithm which favor short
and long domain wall, limits 1.095(2) ≤ ds

bm ≤ 1.395(3) where found. An esti-
mate ds

bm = 1.30(1) for the bimodal model was obtained for sizes L ≤ 100 by
Romá et al. [82] by using a matching approach, which unfortunately suffers
from non-uniform sampling. Later Risau-Gusman and Romá [81] refined this
value for small systems by using either Monte Carlo (ds

bm = 1.33(1)), which
seems to sample uniformly, or again by a non-uniform-sampling matching ap-
proach for sizes L ≤ 300 (ds

bm = 1.323(3)). Hence, the authors concluded that
the value of the fractal dimension seems to not be significantly affected from
non-unifrom sampling. Anyway, recently a new approach was proposed by
Thomas and Middleton [91], which enables the true sampling of degenerate
ground states. So far it has been used to determine GS energies. Nevertheless,
this algorithm could be used in the future to determine accurately the frac-
tal surface dimension for the bimodal model. Furthermore, the degeneracy
of the bimodal d = 2 SG has be explored partially [84] by calculating bonds,
which have in all GSs the same state satisfied/unsatisfied, respectively. For
this study an algorithm [9,79] to calculate the backbone of a system was ap-
plied, but in conjunction with Monte Carlo approach for the GS calculations.
Therefore, this the study was limited to rather small system sizes. Neverthe-
less, the method [9] could easily be used within the matching approach. Note
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that Atisattapong and Poulter [6] studied an Ising spin glass on a special
lattice, the brickwork lattice with spin-coordination number three, where the
degeneracy seems to be finite.

Note that similar and consistent results on the behavior of domain walls,
but not to that extent, were obtained in several studies [72,55,1,34,63] for
the two-dimensional Ising random-bond model. For this model, one studies
systems with a variable fraction of negative bonds, such that one can tune
the system between an (anti-) ferromagnetic and a (T = 0) spin-glass region.
Note that for the random-bond model also triangular lattices [10,11,64] were
studied. Hence, the T = 0 behavior of two-dimensional Ising SGs seems to be
universal with respect to the actual concentration of frustrated plaquettes,
as long as spin-glass behavior emerges.

Interestingly, θ shows up within even simpler calculations: The most sim-
ple thing one can do when calculating spin-glass ground states is to study
the dependence of the average GS energy e(L) per spin on the system size
L. It was argued by Bouchaud, Krzakala and Martin [18] that the behavior
should be governed by the droplet exponent θ. Indeed, in Ref. [23], for the
Gaussian system Eq. (2), a behavior was found which is compatible with

e(L) = e∞

(

1 − L−(2−θG,e)
)

, (6)

as predicted. The best-fit values are e∞ ≈ −1.31479 and θG,e = 0.281(7),
which is compatible with the numerical results for the domain-wall calcu-
lations. The reason that θ appears in this equation, although no excitation
seem to be created, is the presence of periodic boundary conditions in (at
least) one direction. The same system with fully free boundary conditions
would have a lower energy and a different ground-state configuration. The
periodic boundary conditins introduce additional boundary-induced frustra-
tion which leads to the (hidden) appearance of domain-walls, compared to
the system with fully free boundary conditions. Hence, for a very simple set
up, already the droplet-scaling exponent can be observed, as it will be obvi-
ous by comparing with the results presented below. For the ±J model Eq.
(3), a behavior according Eq. (6) with θbm,e ≈ 0 was found, also compatible
with the domain-wall result for this system. Nevertheless, the data matched
to the function less well, which indicates that stronger finite-size corrections
were present. This is also certainly the case for droplets, which are discussed
next.

The average droplet energy data obtained using the matching approach
[49,48,44] is shown in Fig. 8. For the Gaussian case, for small system sizes,

a rather step decrease following a power law Lθ
′

G,d with θ′G,d = −0.47 is
observed. This is compatible with previous results by Kawashima and Aoki
and with the results of Picco, Ritort and Sales [77], both for droplet-type
excitations of limited system sizes. Consequently, these authors claimed that
domain walls and droplets behave differently. Nevertheless, when going to
larger sizes one can observe a crossover to a behavior LθG,d with θG,d =
−0.29, compatible with the above state value θG = −0.287(4). Hence, one
needs large system sizes to observe the true limiting behavior. Nevertheless,
for droplets with volume constraints, compatible results were obtained by
Berthier and Young [13] for even smaller system sizes L ≤ 64.
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Fig. 8 Average droplet energy for bimodal ±J (squares) and Gaussian (circles)
systems. The lines show different types of functions, see figure, with θ′

bm,d = −0.25,
θ′

G,d = −0.47, θG,d = −0.29, ω = −1, a1 = 6.86, a2 = 3.69.

Interestingly, although the stiffness exponent θbm = 0 for the bimodal ±J
case is different than from the value for the Gaussian system, droplets seem
the be governed by the same power law: As Fig. 8 shows, the raw data for

the bimodal model exhibits a Lθ
′

bm,d (θ′bm,d = −0.25) behavior. Kawashima

showed [53] than one has to take into account that these droplets have a
volume fractal structure with a fractal exponent [44] DV ≈ 1.81 < 2 =
d. This value is only an estimate, since the algorithms used so far are not
able to handle the exponential degeneracy of the GS for the bimodal model
correctly (i.e., via sampling uniformly). Note that for the Gaussian system the
droplets are compact (DV = 2). Using Kawashima’s correction for the fractal
structure one obtains a value which is also compatible with the Gaussian
value: θbm,d = θ′bm,dd/DV ≈ −0.28. The fact that for the bimodal case
droplets and domain walls are characterized by different exponents θbm,d ≈
−0.29/θbm = 0 can be understood by simple scaling arguments [44], where
the probability that a zero-energy droplet exists is related to the probability
of a zero-energy domain wall. The main point is that for a droplet to have non-
zero energy, (closed) domain walls containing the center spin on all lengths
scales must have non-zero energy.

Also the surface fractal properties of the droplets for the Gaussian model
were determined [48] and a value of dsG,d = 1.1(1) was found. This is a bit
lower than the result found for the domain walls, but not out of reach given
the error bar. The reason for the difference is probably that for the droplets
only smaller systems could be considered, due to the higher computational
complexity. Hence, finite-size effects are likely to be stronger. For the bimodal
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model, due to the degeneracy, no accurate surface fractal exponent of droplets
could be determined so far.

The droplets discussed so far correspond basically to the assumptions
made in the droplet theory. But, as mentioned at the end of section 2.3,
other ways to create droplet excitations exist. For the Gaussian model Eq.
(2) for three different types of these droplets the stiffness exponent θ and the
fractal dimension ds was determined [52]. For the stiffness exponent, values
slightly lower than the value of θG ≈ −0.287 were obtained (around −0.34),
which was probably due to the limited range of system sizes considered in Ref.
[52]. For the fractal surface dimension ds ≈ 1.33 was found, slightly above
the values found for domain walls of much larger systems. Also it should be
mentioned that a fundamentally different type of “excitation” can be studied
when performing repeated GS calculations for window subsystems, as, e.g.,
done for triangular lattices [67].

To summarize, the so far reviewed results show that indeed the droplet
theory seems to hold for two-dimensional Ising spin glasses: The energy
landscape is rather simple. The low temperature behavior is dominated by
droplet-type excitations above the ground state. Different types of excita-
tions like domain walls and various kinds of droplets are, for the Gaussian
distribution, universally described by the same stiffness exponent θ ≈ −0.287
and they have the same fractal surface dimensions. For the bimodal distri-
bution (and likely other discrete distributions), large scale domain walls and
droplets are described by different stiffness exponents, which can be under-
stood by simple scaling arguments. Nevertheless, droplet excitations, which
are responsible for the thermodynamic low-temperature behavior, exhibit the
same properties for Gaussian and bimodal distribution.

By using matching algorithms, also much more complex studies were per-
formed. For example, the scaling of the energy Ebarrier of lowest energy barrier
separating a ground state and its inverted counterpart was studied [3]. Using
this approach, lower and upper bounds for the energy barriers of systems
up to size L = 40 could be obtained. For the two bounds, respectively, a
power law Ebarrier ∼ Lψ was found with ψlower = 0.25 and ψupper = 0.54.
Note that an exact treatment of such systems sizes is impossible with current
algorithms since the barrier problem is NP-complete [66].

Matching algorithms were also used in several studies [2,12,81] to ob-
tain evidence whether domain walls in two-dimensional SGs are SLE pro-
cesses. These are, see the introduction by Cardy [25], domain-wall generat-
ing stochastic processes which are obtained via conformal mappings from
random walks. Using this connection to conformal-field theory a relation be-
tween fractal dimension ds of domain walls and stiffness exponent θ could be
proposed [2]:

ds − 1 = 3/[4(3 + θ)] , (7)

which is compatible with the so-far obtained results for Gaussian disorder,
also with the corresponding random-bond model [63]. Note that for the bi-
modal ±J model with θbm = 0 one obtains ds = 1.25 which is compati-
ble with the lower and upper bounds [62]. Nevertheless, it was argued by
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Fisch [33], that the derivation of Eq. (7) are based of non-vanishing spin-
correlations, which is not the case for the bimodal model. An indeed, a direct
test by Risau-Gusman and Romá [81], based on the (somehow less certain)
value for the fractal dimension (ds

bm ≈ 1.33), indicated that the domain walls
of the bimodal model may not be SLE processes.

Finally, some interesting GS quantities have been obtained exactly, which
are not directly accessible to the matching approach. For example, the GS
and domain-wall entropy of the bimodal model could be calculated by Fisch
[32,33] using an exact Pfaffian approach, which was introduced by Galluccio
et al. [38]. The same quantities were also exactly addressed by Aromsawa and
Poulter [5] through applying a mapping to a fermion problem for reasonable
system sizes L ≤ 256. Within the same approach, the algebraic R−η decrease
of the spin-correlation function could be obtained by Poulter and Blackman
[78], leading to η = 0.12. Note that within the matching approach, only an
estimate η = 0.22 could be given from studying droplet excitations [44].

4 Regular ferromagnet mixed with spin glass

The two-dimensional randomly-coupled ferromagnet (RCF) consists of ferro-
magnetic second-neighbor bonds of strength J and random nearest-neighbor
bonds (±λJ) [47]. Previous results from ground-state calculations indicate
that this system might exhibit an ordered spin-glass phase at low but non-
zero temperature, i.e., Tc > 0. Nevertheless, the RCF is not a planar system,
hence it cannot be studied using fast exact algorithms. The previous results
were obtained for systems of limited size using a heuristic algorithm [40,41].

Here, a similar system is studied, which has the advantage that it is pla-
nar. Hence, the exact GS matching algorithms can be applied. Nevertheless
it contains also two percolating sublattices, one ferromagnetic, and one with
random bonds. The lattice consist of a quadratic sublattice with random
bonds of magnitude λJ , with a fraction p of antiferromagnetic bonds and a
fraction (1−p) of ferromagnetic bonds. Furthermore, for each square plaque-
tte, exactly on nearest neighbor ferromagnetic bond (strength J), connecting
opposite corners of the plaquette, is present. The ferromagnetic bonds are
arranged in an “alternating” way, such that a ferromagnetic square sublattice
(with lattice constant

√
2 compared to the spin-glass sublattice) is created. In

fact, the resulting lattice is a triangular lattice, with a special arrangement,
see Fig. 9.

In the top of Fig. 10, the disorder average value of the stiffness energy
is displayed for different values the relative strength λ of the SG bonds,
for the case of antiferromagnetic and ferromagnetic bonds having the same
probability p = 1 − p = 0.5. The average was performed for each consid-
ered combination of (L, λ) for at least 1000 independent realizations of the
disorder. Obviously, for λ < 1, the stiffness increases, the ferromagnetic or-
der dominates. For λ ≥ 1, the stiffness decreases for large system sizes, no
ferromagnetic order will be present at any nonzero temperature. Hence, this
parameter range could be a candidate for a SG phase. Nevertheless, as the
lower part of Fig. 10 shows, also the variance of the stiffness energies de-
creases for large enough system sizes in this case. In particular for λ = 1 this
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Fig. 9 A sample realization (L = 16). Thin diagonal (second-neighbor) bonds are
ferromagnetic, the horizontal and vertical thick lines are either ferromagnetic (solid)
or antiferromagnetic (dotted). The black and white squares in the background
denote the result of a GS domain-wall calculation: black squares indicate spins
which did not change by inverting the boundary conditions, while white squares
indicate those spins which flipped.

finite-size effect appears particular strong. As a result, in the thermodynamic
limit, no SG order seems to be present whenever no ferromagnetic order is
present. This is on contrast to the result [47] for the RCF. Therefore, the
model presented here, does not allow for an numerically efficient study of
a system exhibiting SG order at some nonzero temperature. Recently, for
another planar random Isign model, which was proposed to exhibit a stable
SG phase, it could be shown [42] that Tc = 0 holds as well.

Nevertheless, the model is studied here in further detail for λ = 1.0, up
to quite large systems sizes. For L ≤ 1024 at least 4000 realizations were
considered for each system size, 500 realizations for L = 1448. In Fig. 11 the
variance of the stiffness energy is shown. Interestingly, for intermediate and
large sizes, a power law behavior can be observed. From fitting the data in a
range L ∈ [40, 724] to a power law aL−b, values a = 29.3(9) and b = 0.294(6)
were obtained. In the present range, no crossover to a constant stiffness can be
observed. If one expects that this takes place when Var(∆E) ≈ 1 is reached,
like for the standard bimodal spin glass, then one has to reach system sizes
of about L = 106, far out of reach of any known algorithm. Also the more
efficient direct calculation of the partition function [90] does not allow to
study such large system sizes. Hence, for this type of system, the finite-size
effects are really huge.

We have seen that for the particular choice of p = 0.5 near λ = 1.0
no ferromagnetic as well as spin-glass order can be present at any nonzero
temperature. This “critical” value of λ will probably depend on the value
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Fig. 10 Disorder average and empirical variance of the stiffness energy for p = 0.5
and different values of the relative strength λ of the SG bonds as a function of
system size L ∈ [6, 128]. The lines are guides to the eyes only.

of p. Therefore, further simulations for different value of p were performed.
In Fig. 12 λc(p) is exposed. Note the λc(p) is symmetric: If one performs a
gauge transformation which multiplies every second spin in a checker-board
manner by −1, then all diagonal ferromagnetic bonds remain ferromagnetic,
but all random bonds switch sign. Hence, the situations at p and 1 − p
are really equivalent, as for the original random-bond model: It exhibits for
p < pc ≈ 0.103 only a ferromagnetic phase (and an antiferromagnetic phase
for p > 1 − pc) [55,1]. Hence, in about this region, where the concentration
of frustrated plaquettes is small, also for the present model only the (anti-)
ferromagnetic ordered phases should exist. Correspondingly, the value of λc
strongly increasing, when approaching pc and 1 − pc from the intermediate
region, respectively. Note that for p > 1 − pc a ferromagnet-antiferromagnet
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Fig. 11 Variance of the stiffness energy for λ = 1.0, p = 0.5 as a function of system
size. The line shows a power law aL−b with a = 29.3, b = 0.286.

transition should occur at some value of λ, which is not visible when calcu-
lating the stiffness energy.

5 Summary

The matching approach to the numerical calculation of spin-glass ground
states for two-dimensional Ising spin glasses has been presented. This ap-
proach allows to calculate GSs of large samples exactly. A pedagogical in-
troduction to these algorithms has been given here. Recently Pardella and
Liers introduced modifications of the algorithms [76] which are able to handle
systems of N = 30002 spins. The running time of the new approach seems to
be comparable to the approach presented here, but maybe it consumes less
memory. Nevertheless, the new approach has for sure the advantage that no
weight limit wmax is necessary. Whether it is useful to calculate, e.g., droplet
excitations, where the running time is the limit, is not clear. Nevertheless,
since no extensive application to a physical problem has been published so
far, the full potential of the new approach is still to be determined. Further-
more, Thomas and Middleton have presented [91] an approach which is able
to treat systems with periodic boundary conditions of reasonable sizes up to
L = 400.

Independently of the algorithm to actually calculate the GSs, using so-
phisticated extensions based on modifications of the samples after a first GS
calculation, also various excitations like domain walls and droplets can be
calculated. It is even possible to obtain low-energy paths in configuration
space.
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Fig. 12 Critical strength λc of the random interactions above which the order
is destroyed as a function of the probability p for a antiferromagnetic bond. the
dashed lines indicate the ferromagnet spin-glass transition points pc and 1 − pc,
respectively, of the standard random-bond model. Solid lines are guides to the eyes
only. The inset shows the variance of the variance of stiffness energy for the case
p = 0.25 for different values of λ, supporting the result λc(0.25) = 1.6(1).

In recent years many predictions of the droplet theory could be verified for
two-dimensional Ising spin glasses by applying these algorithms. In particular
the low-energy behavior is basically determined by one single exponent θ.
Therefore, one can say, the two-dimensional SG is understood well so far.
Also the scaling of energy barriers and SLE properties of the model have
been evaluated.

Finally, in the current work, also a mixture of a ferromagnet with a spin
glass has been examined, which seemed to offer the possibility for a stable
low-temperature spin-glass phase. Nevertheless, only for intermediate system
sizes the results support this notion. One has to study fairly large system,
which is necessary here due to very strong finite-site effects. This is indeed
possible using the matching approach. By considering these results it appears
likely that also for this model only at T = 0 spin-glass order exists.
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