Fractal dimension of domain walls in two-dimensional Ising spin glasses

O. Melchert, A.K. Hartmann

Institut für Physik Universität Oldenburg

13th July 2007

IntroductionTechniques

Results

Summary

- N = $L \times L$ Ising spins $\sigma_i = \pm 1$ on square lattice
- Periodic boundary conditions in one direction
- **Edwards-Anderson Hamiltonian:** $\mathcal{H}(\sigma) = -\sum_{\langle ij \rangle} J_{ij}\sigma_i\sigma_j$

interaction strength:

 $J_{ij} > 0$: - $J_{ij} < 0$: -

quenched disorder

frustration:

Always: global spin flip connects GS pairs, only: $P(J_{ij}) \propto \exp(-J_{ij}^2/2)$ $P(J_{ij}) \propto [\delta(J_{ij}+1)+\delta(J_{ij}-1)]$ trivial GS-degeneracy numerous degenerate GS

[A.K. Hartmann and H. Rieger, Optimization Algorithms in Physics]

- Defined relative to 2 spin configurations σ^{(1)/(2)}
 σ⁽¹⁾: σ⁽²⁾:
- Separates regions of agreeing/disagreeing spin config.

DW energy:

$$\Delta E = 2 \sum_{\langle ij \rangle \in \mathcal{D}} J_{ij} \sigma_i^{(1)} \sigma_j^{(1)}$$

 $\mathcal{D} \equiv$ bonds satisfied by only 1 config.

- Defined relative to 2 spin configurations $\sigma^{(1)/(2)}$
- $\sigma^{(1)}$: GS for periodic BCs $\sigma^{(2)}$:
- Separates regions of agreeing/disagreeing spin config.

DW energy:

$$\Delta E = 2 \sum_{\langle ij \rangle \in \mathcal{D}} J_{ij} \sigma_i^{(1)} \sigma_j^{(1)}$$

1

 $\mathcal{D} \equiv$ bonds satisfied by only 1 config. | \searrow

Defined relative to 2 spin configurations $\sigma^{(1)/(2)}$

- σ⁽¹⁾: GS for periodic BCs
 σ⁽²⁾: GS for antiperiodic BCs
- Separates regions of agreeing/disagreeing spin config.

DW energy:

$$\Delta E = 2 \sum_{\langle ij \rangle \in D} J_{ij} \sigma_i^{(1)} \sigma_j^{(1)}$$

 $\mathcal{D} \equiv$ bonds satisfied by only 1 config. $\langle \cdot \rangle \rightarrow \langle \cdot \rangle$

Defined relative to 2 spin configurations $\sigma^{(1)/(2)}$

- $\sigma^{(1)}$: GS for periodic BCs $\sigma^{(2)}$: GS for antiperiodic BCs
- Separates regions of agreeing/disagreeing spin config.

DW energy:

$$\Delta E = 2 \sum_{\langle ij \rangle \in D} J_{ij} \sigma_i^{(1)} \sigma_j^{(1)}$$

$$\Sigma = \text{banda activitied by only 1 coefficients}$$

Defined relative to 2 spin configurations $\sigma^{(1)/(2)}$

- σ⁽¹⁾: GS for periodic BCs
 σ⁽²⁾: GS for antiperiodic BCs
- Separates regions of agreeing/disagreeing spin config.

DW energy:

$$\Delta E = 2 \sum_{\langle ij \rangle \in \mathcal{D}} J_{ij} \sigma_i^{(1)} \sigma_j^{(1)}$$

 $\mathcal{D} \equiv$ bonds satisfied by only 1 config.

Defined relative to 2 spin configurations $\sigma^{(1)/(2)}$

- σ⁽¹⁾: GS for periodic BCs
 σ⁽²⁾: GS for antiperiodic BCs
- Separates regions of agreeing/disagreeing spin config.

DW energy:

$$\Delta E = 2 \sum_{\langle ij \rangle \in \mathcal{D}} J_{ij} \sigma_i^{(1)} \sigma_j^{(1)}$$

nfig.

 $\mathcal{D} \equiv$ bonds satisfied by only 1 config.

- Construct weighted graph $G = (V, E, \omega)$
 - V(G) elementary plaquettes (EP)
 - E(G) connect EP with common side
 - ω energy contribution to DW

Consider GS σ for periodic BCs: (i) Bond satisfied for σ , e.g. $\uparrow --- \uparrow : \omega \ge 0$ (ii) Bond not satisfied for σ , e.g. $\uparrow -\sqrt{-} \uparrow : \omega \le 0$

- Construct weighted graph $G = (V, E, \omega)$
 - V(G) elementary plaquettes (EP)
 - E(G) connect EP with common side
 - ω energy contribution to DW

Consider GS σ for periodic BCs: (i) Bond satisfied for σ , e.g. $\uparrow ---- \uparrow : \omega \ge 0$ (ii) Bond not satisfied for σ , e.g. $\uparrow -\sqrt{-} \uparrow : \omega \le 0$

- Construct weighted graph $G = (V, E, \omega)$
 - V(G) elementary plaquettes (EP)
 - E(G) connect EP with common side
 - ω energy contribution to DW

Consider GS σ for periodic BCs: (i) Bond satisfied for σ , e.g. $\uparrow ---- \uparrow : \omega \ge 0$ (ii) Bond not satisfied for σ , e.g. $\uparrow -\sqrt{-} \uparrow : \omega \le 0$

- Construct weighted graph $G = (V, E, \omega)$
 - V(G) elementary plaquettes (EP)
 - E(G) connect EP with common side
 - ω energy contribution to DW

no loops with negative weight:

$$\omega(\mathcal{C}) = \sum_{\langle ij \rangle \in \mathcal{C}} J_{ij} \sigma_i \sigma_j \geq 0$$

- Construct weighted graph $G = (V, E, \omega)$
 - V(G) elementary plaquettes (EP)
 - E(G) connect EP with common side
 - ω energy contribution to DW

no loops with negative weight:

$$\omega(\mathcal{C}) = \sum_{\langle ij \rangle \in \mathcal{C}} J_{ij} \sigma_i \sigma_j \geq 0$$

DW: minimum-weight (top, bottom) path

Minimum-Weight Paths

- G: undirected graph, allowing for negative edge weights
- Here: standard minimum-weight path algorithms, e.g. Bellman-Ford, Floyd-Warshall, don't work
- Minimum-weight path problem on dual requires matching techniques
 - i) Dual graph \rightarrow auxiliary graph
 - ii) Find minimum-weighted perfect matching (MWPM)
 - iii) Interpret MWPM as min.-weight path

[R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Network flows]

Degeneracy

- \bullet $\omega(e) \rightarrow \omega(e) + \epsilon$ minimal length DWs ($\pm J^{\min}$)
- $\omega(e) \rightarrow \omega(e) \epsilon$ maximal length DWs (± J^{max} , only lower bound)
- allow to change GS to yield true minimum length DWs (±J^{min2})

[OM and A.K. Hartmann, arXiv:0704.2004]

Fractal dimension of domain walls

Scaling of DW length: $\langle \ell \rangle \sim L^{d_f}$, with $1 \le d_f \le 2$

	d _f
Gaussian	1.274(1)
$\pm J^{\min}$	1.095(1)
$\pm J^{\min 2}$	1.080(5)
$\pm J^{\max}$	1.395(1)

Gaussian: $d_f = 1.28(1)$ [D. Bernard *et al*, cond-mat/0611433]

Gaussian: Conformal field-theory: relation $d_f - 1 = 3/[4(3 + \theta)]$ between d_f and stiffness exp. $\Delta E \sim L^{\theta}$ in the context of stochastic Loewner evolution (SLE) processes [C. Amoruso *et al*, PRL 2006]

 $d_f^{ ext{SLE}}=1.276(1), ext{ with } heta=-0.287(4)$ [A.K. Hartmann et al, PRB 2002]

Fractal dimension of domain walls

L Scaling of DW roughness:
$$\langle r \rangle \sim L^{d_r}$$
, with $d_r = 1$

	dr
Gaussian	1.008(3)
$\pm J^{\min}$	1.006(2)
$\pm J^{\min 2}$	1.101(15)
$\pm J^{\max}$	0.993(2)

- Distribution $P_L(\ell)$ of DW lengths for gaussian disorder.
- One parameter scaling with $d_f = 1.274(1)$.
- Gaussian disorder: compares well with lognormal distribution.

- Groundstate study on 2D Ising spin glasses with short ranged interactions
- Minimum-weight path approach to the problem of finding DWs
- Fractal dimension of DWs for different types of disorder distributions
- Open: scaling of typical DWs for $\pm J$ disorder
- More details: OM and A.K. Hartmann, arXiv:0704.2004

- Background in computational/statistical physics?
- Interested in a position in our Group:

Computational Theroretical Physics universität University Oldenburg

- 1 Phd position, apply now
- 1 Postdoc position, apply until 01.10.07
- For more information contact:

Prof. Dr. Alexander Hartmann e-mail: a.hartmann@uni-oldenburg.de http://www.physik.uni-oldenburg.de/institut/index.html