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Abstract

Cox-Thompson inverse scattering method at fixed energy has been generalized to

treat complex phase shifts derived from experiments. New formulas for relating phase

shifts to shifted angular momenta are derived. The method is applied to phase shifts

of known potentials in order to test its quality and stability and further, it is used to

invert experimental n-α and n-12C phase shifts.
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1. Introduction

Since its discovery in the fifties of the last century, inverse quantum scattering

theory [1] attracts a constant interest. For the case of inverse scattering at fixed energy,

there exist different schemes giving rise to potentials of different families. For example,

the rational expansion of the S-matrix (due to Jost) results in an analytical form of

inverse potentials, studied in detail by Lipperheide and Fiedeldey [2]. An alternative

formulation of fixed energy inverse quantum scattering theory has been developed by

Newton and Sabatier [3] (NS) and this theory was modified and applied to practical

problems by Münchow and Scheid [4] (mNS). The NS inversion theory leads to a

potential family with zero first momentum (
∫∞

0
U(r) r dr = 0) if a finite set of phase

shifts is used. This is an obvious severe restriction on the sphere of validity of the

resulting inversion potentials. Moreover, the NS inversion potential also possesses an

unavoidable singularity of the type α/r near the origin, with α being a free parameter

characterizing the infinity of phase equivalent inversion potentials of the NS scheme. A

more recent review about the quantum mechanical inversion problem and its application

to nuclear scattering has been given by Kukulin and Mackintosh [5] where further

references related with this problem can be found.

In this paper we investigate and develop further a particular nonlinear type of inverse

quantum scattering procedure at fixed energy. This theory has been originally proposed

by Cox and Thompson [6] (CT) and applied recently in Ref. [7] to invert finite sets

of real phase shifts generated from known model potentials. The CT inversion scheme

yields an inversion potential which has a finite first momentum and may possess a finite

value at the origin [6,7].

We shall extend the CT method to the inversion of complex phase shifts. In

particular, we shall demonstrate the quality of the inversion method on examples
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with given potentials and on data from neutron(n)-nucleus scattering. In order to use

complex phase shifts we continue the non-physical (shifted) angular momenta {L} of the

CT method to the complex plane from the real values (−1
2
,∞) as originally proposed

by Cox and Thompson [6]. We also present a simpler version of the non-linear equations

than that given in Ref. [7], which has to be solved for complex angular momenta

{L} with complex input phase shifts {δ}. For the solution we apply various non-

linear solvers, both direct (as e.g. Newton-Raphson) and stochastic (as e.g. simulated

annealing) ones.

In section 2 a short formulation of the CT method generalized to complex phase

shifts is outlined. In section 3 we compare the CT method with the modified

NS method by using complex phase shifts of given potentials and apply the CT

method by inverting elastic phase shifts of the n-α and n-12C scattering derived from

experimental differential cross sections. Section 4 concludes about the necessity of a

further development of the CT method to enable its application to Coulomb systems.

Some calculational details are given in the Appendix.

2. Theory

The new step in this paper is that we consider the inversion of complex phase shifts

to a complex potential by using the CT method which has been up to now developed

for real phases only. We define the CT inverse potential, which is assumed to be

complex-valued, as

V (r) = −2

r

d

dr

K(r, r)

r
= − 2

r2

(

dK(r, r)

dr
− K(r, r)

r

)

(1)
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with the diagonal transformation kernel [6]

K(r, r) =
∑

L∈T

AL(r)uL(r). (2)

Now we have to introduce complex indices L ∈ T which are taken from a set T of

generalized (shifted) angular momentum quantum numbers being disjunct with the set

{l} ≡ S of real integer physical angular momenta: T
⋂

S = {}.

In Eq. (2), the function uL(r) denotes the regular Riccati-Bessel function which

satisfies the free Schrödinger equation

−u′′
L(r) +

L(L + 1)

r2
uL(r) = k2uL(r) (3)

with the behavior uL ∼ rL+1 at the origin, and k is the wave number corresponding to

the fixed energy E = h̄2k2/2µ, where µ is the reduced mass of the scattering system.

It is obvious that uL depends only on the dimensionless quantity x = kr, and we can

choose throughout k = 1. For the case k 6= 1 we get the potentials as U(r) = E · V (x).

All information on the potential is encoded into the functions AL(r) of Eq. (2), and

the generalized angular momentum quantum numbers {L}. The functions AL(r) can be

determined by starting with the Gel’fand-Levitan-Marchenko–type integral equation for

the transformation kernel

K(r, ρ) = g(r, ρ) −
∫ r

0

ds s−2 K(r, s)g(s, ρ), r > ρ (4)

and then applying the CT ansatz [6] for the symmetric kernel

g(r, ρ) =
∑

l∈S

γlul(r<)vl(r>) = g(ρ, r), r{<

>
} =

{

min

max

}

(r, ρ), (5)

where vl is the irregular Neumann function which satisfies Eq. (3) with the behavior

r−l at the origin and γl denotes expansion coefficients to be determined. Inserting
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expansions (2) and (5) into Eq. (4) one obtains a system of linear equations for the

functions AL(r) as

∑

L∈T

AL(r)W [uL(r), vl(r)]/[l(l + 1) − L(L + 1)] = vl(r), l ∈ S (6)

where the set T is, as yet, unknown. In equation (6) the usual notation for the

Wronskian W [a, b] = ab′ − a′b has been adopted.

In Ref. [7] two systems of nonlinear equations have been set up which contain the

real scattering phase shifts {δl} as input quantities and yield, upon solution, the set T

of real shifted angular momenta. The derivation of the main equation which determines

the complex L-values from the complex {δl} input quantities proceeds quite similarly as

given in Ref. [7]. The final result can be written in the remarkably simple form

Sl =
1 + iK+

l

1 − iK−
l

, l ∈ S (7)

with the (non unitary) scattering matrix elements Sl = exp(2iδl) as input, and the

”shifted” reactance matrix elements which are defined as

K±
l =

∑

L∈T,l′∈S

NlL

(

M−1
)

Ll′
e±i(l−l′)π/2, l ∈ S (8)

where the square matrices

{

N

M

}

lL

=
1

L(L + 1) − l(l + 1)

{

sin
(

(l − L)π/2
)

cos
(

(l − L)π/2
)

}

, l ∈ S, L ∈ T, S
⋂

T = {} (9)

contain, in a highly nonlinear way, the unknown complex L-values.

The system of nonlinear equations (7) can be cast into an equivalent form

tan δl =
K+

l + K−
l

2 + i(K+
l −K−

l )
, l ∈ S (10)

which proves useful during the solution processes.
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Once the L-values are found by solving Eqs. (7) or (10) the expansion coefficients γl

can be calculated from the expression

γl =

∏

L∈T [l(l + 1) − L(L + 1)]
∏

l′∈S,l′ 6=l[l(l + 1) − l′(l′ + 1)]
, l ∈ S. (11)

The search for complex L-values resulting from complex phase shifts is mathematically

more complex than that for real L-values and needs advanced numerical methods like

the Newton-Raphson or simulated annealing methods.
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3. Results

First, we discuss the quality and stability of the CT inversion method with

given complex potentials. For real short-ranged potentials these studies were partly

carried out in Ref. [7]. Then in order to show the applicability of the CT method

for experimental phases, we consider n-α inversion potentials at energies where the

experimental phase shifts are real, and n-12C inversion potentials at energies above the

threshold where the experimental phase shifts are complex.

3.1 Inversion of synthetic complex phase shifts

The application of inversion methods has two sources of errors, namely the quality

of the phase shift analysis of the measured differential cross section and the quality of

the inversion method from the phase shifts to the potential. Here, we will concentrate

our discussion on the second source of errors. As shown by Airapetyan et al. [8] and

Ramm and Gutman [9], an inversion is very sensitive to very small changes in the

phase shifts of piece-wise constant potentials. However, the Newton-Sabatier- and the

Cox-Thompson-methods have these only to a minor extend if the searched potentials

are expanded in terms of Bessel functions with smooth coefficients AL(r) (see equations

(1) and (2)). The resulting potentials have oscillations around the true potential with a

wave length of the order of 2π/k = h/
√

2µE. This effect can be most clearly recognized

when we invert phase shifts of given complex box potentials as demonstrated for the

CT- and mNS-methods in Fig. 1. Here one recognizes the advantage of the CT-method:

The inversion leads to a finite value of the potential at the origin. For a Woods-Saxon

potential the inverted potentials are smoother as shown in Fig. 2.

The amplitude of the oscillations depends on the maximum angular momentum lmax
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and on the precision of the phase shifts and of the calculation. For a fixed precision

of the calculation (double precision in the FORTRAN programme) we find a maximal

lmax above which the inverted potential does not change anymore since the additional

coupled equations fall below the precision of our calculation. In the case of higher

incident energies the phase shifts drop slower down with angular momentum and,

therefore, the inversion procedure has a higher quantity of information about the

searched potential at a given precision of the programme and leads to a higher quality of

the inverted potential. It is very difficult to formulate this numerical experience, which

we found with our calculations, in an analytical form since the NS-and CT-equations

are nonlinear. Such mathematical investigations on the stability and precision of the

CT method are needed for a future advance of this ill-conditioned inversion problem.
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Fig. 1. Complex box potential: Results for the inversion of 11 phase shifts at Ecm = 22

MeV using the CT- and mNS-method. The masses of the scattered particles were

chosen as M1 = M and M2 = 20 · M , where M is the nucleon mass.
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Fig. 2. Complex Woods-Saxon potential: Results for the inversion of 14 phase shifts at

Ecm = 25 MeV using the CT- and mNS-method. The masses of the scattered particles

were chosen as M1 = M and M2 = 20 · M , where M is the nucleon mass. Because of

the good agreement of the CT inversion potential with the original

Woods-Saxon-potential, the latter one is not shown in the figure.

3.2 Inversion of real n-α phase shifts derived from experiment

As an example for phase shifts related to experimental differential cross sections let

us consider the elastic n-α scattering below the inelastic treshold n + α → d + T at

En = 22.06 MeV. An extended search for phase shifts is published by Arndt and Roper

[10], the n-α scattering is reviewed by Ali et al. [11] and a theoretical summary of the

inversion problem is presented by Kukulin and Mackintosh [5] where further references
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can be found. Since the CT method presented in Section 2 assumes a local central

potential, we have to simplify the actual problem considerably. Being aware of the

spin of the neutron connected with a spin-orbit potential, of the parity-dependence of

the potential, and of several theoretical treatments (see [5]) of the n-α-interaction, we

restrict ourselves here to a simplified set of phase shifts obtained by Lun et al. [12]

from experimental differential cross section data of [13]. Lun et al. [12] assumed the

n-α-scattering as a scattering of two spin-less particles and derived the phase shifts

δ
(orig)
l given in Table 1 by using Newton’s iteration method.

With the CT method we calculated the potentials from the phase shifts δ
(orig)
l . They

are shown in Fig. 3 together with published potentials [14] re-calculated with the

modified NS method and the same phase shifts. The NS method results in a nonphysical

singularity near the origin whereas the CT method yields a finite potential value there.

However, the potential at the origin has only a negligible effect to the re-calculated

phase shifts (see Table 1) and differential elastic cross sections. We conclude that the

CT and modified NS methods are nearly equivalent in the quality of inverted potentials

besides the singularity of the NS method at the origin. As one can recognize in Fig. 3,

the potential at the origin calculated with the CT method has an increasing deepness

with energy in the investigated energy interval. This fact disagrees with microscopically

and phenomenologically derived local potentials which show a decreasing deepness with

energy [5,11,15]. However all the latter potentials include at least a spin-orbit potential

in addition to the central potential. The shape of the obtained potentials can be

nicely fitted by a Woods-Saxon form U(r) = Ufit
0 /[1 + exp (r − R)/a] or a Gauss form

U(r) = Ufit
0 exp−r2/σ2. The parameters of these fits are listed in Table 2.
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Fig. 3. Comparison of potentials inverted from real phase shifts by a CT- and

mNS-calculation for n-α scattering at different energies.
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Table 1: The n − α scattering. Entries from left to right: neutron energies
in the lab and c.m. system, input angular momenta (l), calculated angular
momenta (L), expansion coefficients (γl) [see eq. (11)], input n − α phase

shifts (δ
(orig)
l ), phase shifts (δ

(CT)
l ) and (δ

(mNS)
l ) calculated with the CT and

mNS inverted potentials, respectively.

Elab (MeV) Ec.m. (MeV) l L γl δ
(orig)
l δ

(CT)
l δ

(mNS)
l

0 -1.616 -0.302 1.824 1.809 1.823
1 0.455 0.586 1.180 1.169 1.164

14.9 11.92 2 1.888 0.619 0.286 0.300 0.296
3 3.002 -0.015 0.109 0.093 0.101
4 4.019 -0.176 0.000 0.012 0.020

0 -1.797 -0.357 1.846 1.844 1.845
1 0.403 0.334 1.423 1.407 1.404

16.4 13.12 2 1.848 0.766 0.361 0.366 0.360
3 3.005 -0.040 0.122 0.120 0.143
4 4.001 -0.009 0.034 0.033 0.030

0 -1.712 -0.346 1.742 1.745 1.739
1 0.434 0.464 1.360 1.346 1.345

20.0 16.00 2 1.876 0.666 0.315 0.321 0.311
3 3.019 -0.150 0.096 0.096 0.101
4 4.008 -0.070 0.022 0.024 0.023

0 -1.665 -0.327 1.733 1.736 1.727
1 0.446 0.528 1.287 1.269 1.286

23.7 18.95 2 1.886 0.621 0.301 0.301 0.296
3 3.028 -0.220 0.075 0.076 0.099
4 3.986 0.130 0.053 0.050 0.044
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Table 2: Fitted n − α potentials. Entries from left to right: Neutron energy
Ec.m. in the c.m. system, inversion potential depth UCT

0 , fitted potential
depth Ufit

0 , Woods-Saxon-fit parameters R, a, Gauss-fit parameter σ and
standard χ2-test for the fitted potentials χ2

WS, χ2
G.

Ec.m. (MeV) UCT
0 (MeV) Ufit

0 (MeV) R (fm) a (fm) σ (fm) χ2
WS χ2

G

11.92 -60.2 -60.0 1.4 0.60 1.66 1.5 1.8
13.12 -59.6 -59.8 1.5 0.65 1.85 0.8 1.3
16.00 -65.8 -65.4 1.5 0.59 1.77 0.9 0.8
18.95 -80.0 -80.0 1.3 0.54 1.55 1.5 1.8

3.3 Inversion of the central and spin-orbit potentials from complex n − 12C

phase shifts derived from experiment

Complex valued phase shifts describing the n − 12C scattering have been derived by

Chen and Tornow [16] for different energies in the region 7 MeV ≤ Elab
n ≤ 24 MeV using

a phase shift analysis of the measured elastic cross section data. The scattering process

can be described, in each partial wave l, by two phase shifts δ+
l and δ−l which contain

information on both the central potential and the spin-orbit one. The central potential

U(r) can be determined from approximate phases given by

δl =
1

2l + 1
[(l + 1)δ+

l + lδ−l ] . (13)

This expression was derived by Leeb at al. [17] and is based upon an expansion of

the phase shifts where the effect of the spin-orbit potential is taken into account via a

distorted wave approximation.

In order to get information on the dominating central potential we have inverted all

the 88 sets of complex scattering phase shifts at different scattering energies as given

by Chen and Tornow [16]. Because the potentials exhibit similar properties, only three
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of them are depicted in Figure 4 and the corresponding generalized angular momenta

{L}, expansion coefficients γl, and re-calculated phase shifts δ
(CT)
l and elasticities η

(CT)
l

are listed in Table 3. If we compare the original and re-calculated quantities, we note a

larger discrepancy than in the case of inversions with real phase shifts listed in Table 1.

Here, we have |δ(orig)
l − δ

(CT)
l | ≤ 0.11 and |η(orig)

l − η
(CT)
l | ≤ 0.12. Taking these deviations

in mind, one should not worry about an reflection coefficient η
(CT)
l=4 (En = 10.0 MeV)

slightly larger than unity.

The spin-orbit potential can be determined in the same approximation [17] as above by

using the phase shifts

δ′l =
1

2l + 1
[lδ+

l + (l + 1)δ−l ] . (14)

These phase shifts lead to U(r)− 1
2
Vsl(r) from which the spin-orbit potential is extracted.

In Fig. 5 we present the complex spin-orbit potential for a neutron energy of En = 10.0

MeV. Here, further work will be done in order to include spin-orbit potentials directly

into the Cox-Thompson method.
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Fig. 4. Real and imaginary central potentials inverted from phase shifts of n − 12C

differential cross sections at the neutron energies Elab
n = 9.2, 10 and 12 MeV.
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Fig. 5. Real and imaginary spin-orbital potentials inverted from phase shifts of n− 12C

differential cross section at the neutron energy En = 10.0 MeV.

In general, one can see in Figure 4 that the 12C nucleus exerts a strong attractive

force on the impinging nucleon. The real part of the central potential exhibits a strong

minimum at zero relative distance inside the carbon nucleus. Then a characteristic

maximum of about 5 MeV height follows in the region 4 ≤ r ≤ 5 fm. Finally, one can

observe also a shallow attraction around 8 fm.

The imaginary part of the central potential is usually weaker than the real part. It

may take both negative and positive values corresponding to absorption and back-flow

processes to/from the excited channels.

We remark that these model-independent features of the central potentials just

derived can serve as a guide for any theoretical model study on the system n − 12C.
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Table 3: Generalized angular momenta L, expansion coefficients γl for the
symmetric kernel and original input phase shifts δ

(orig)
l = Re δl, η

(orig)
l = |Sl|

for the n−12C scattering at different energies compared to δ
(CT)
l and η

(CT)
l

arising from the Cox-Thompson inversion potential.

En l Re(L) Im(L) Re(γl) Im(γl) δ
(orig)
l η

(orig)
l δ

(CT)
l η

(CT)
l

0 -0.628 -0.018 0.400 -0.112 0.857 0.700 0.848 0.670
1 1.211 0.005 -1.086 0.340 -0.563 0.740 -0.589 0.676

9.2 2 2.409 -0.221 -1.491 1.357 -0.380 0.472 -0.320 0.523
3 2.925 -0.122 0.209 0.610 0.098 0.744 0.049 0.670
4 4.010 -0.072 -0.192 0.546 0.010 0.971 0.067 0.995

0 -0.581 -0.085 0.433 -0.117 0.827 0.580 0.811 0.582
1 1.226 0.001 -1.165 0.320 -0.562 0.723 -0.580 0.686

10.0 2 2.349 -0.192 -1.407 1.111 -0.365 0.526 -0.326 0.579
3 2.981 -0.073 0.027 0.361 0.057 0.846 0.028 0.775
4 4.010 -0.062 -0.142 0.463 0.021 0.959 0.058 1.015

0 -0.615 -0.068 0.452 -0.136 0.522 0.580 0.548 0.607
1 1.152 0.011 -0.981 0.213 -0.737 1.0 -0.779 0.882

12.0 2 2.905 -0.338 -2.882 1.395 -0.689 0.560 -0.583 0.570
3 2.613 0.037 0.611 0.955 0.172 0.643 0.087 0.598
4 4.099 -0.146 -0.980 0.932 0.021 0.831 0.113 0.826
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4. Summary and conclusions

We have generalized the Cox-Thompson inverse scattering method at fixed energy

to derive complex inverse potentials from phase shifts. Corresponding basic formulas,

Eqs. (7) and (10), have been presented relating input phase shifts and shifted angular

momentum quantum numbers from which the inverse potentials can been calculated via

Eqs. (2) and (6).

The first application of the CT method to experimental n − α phase shifts resulted

in inversion potentials which can be fitted by Woods-Saxon and Gauss forms within

the energy range considered. For the complex n−12C data we have derived model-

independent complex central and spin orbital potentials.

Interesting phase shift data of rich complexity are derived for heavy-ion scattering.

Therefore, we can conclude from the results obtained above for the n-nucleus scattering

that the CT inverse method deserves to be extended further to be able to treat phase

shift data originated from charged particle collisions, too.

Appendix

The first term in the parenthesis of the rhs of Eq. (1) can be written as

K ′(r, r) =
∑

L

(A′
L(r)uL(r) + AL(r)u′

L(r)). (A1)
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After solution for the set T of one of the basic equations (7) or (10), the coefficient

functions can be determined from Eq. (6) as

AL(r) =
∑

l∈S

(

W̃−1
)

Ll
(r)vl(r) (A2)

with the inverse of the square matrix

W̃lL(r) = W [uL, vl]/[l(l + 1) − L(L + 1)] (A3)

where W is the Wronskian of the independent solutions uL∈T and vl∈S.

Differentiating Eq. (6) yields the second unknown quantity of interest in Eq. (A1),

namely A′
L(r), which can be calculated from the Wronskian and the pre-determined

AL’s as:

A′
L(r) =

∑

l∈S

(

W̃−1
)

Ll
(r)

(

v′
l(r) −

∑

L′∈T

W̃ ′
lL′(r)AL′(r)

)

(A4)

with

W̃ ′
lL(r) = uL(r)vl(r)/r

2. (A5)

Then, the inverse potential can easily be calculated by using Eqs. (1), (2), and (A1).

We have also to evaluate the regular Riccati-Bessel function

uL(r) =

√

rπ

2
JL+

1

2

(r) (A6)

with complex indices L. This we can accomplish by using the ascending series

representation

Jν(r) =
(r

2

)ν
∞
∑

k=0

(

−r2

4

)k

k!Γ(ν + k + 1)
(A7)

for the Bessel-J function of complex order ν. All we need is thus to calculate the

gamma function for complex argument which can easily be accomplished using the

Euler formula which represents it as an infinite product of rapid convergence.
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