Scaling behavior of domain walls at the T'=0
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Ising spin glasses (ISGs)

Disordered model systems, governed by
Edwards-Anderson Hamiltonian for Ising
spins g; ==+1:

H(o) = — Z Jijoio;  Frustration:
(1,9)

—7
Quenched disorder: | |
Jij >0 —
Jj,j <0 : —\/\— ﬂ V Q

Here: “Gaussian-like” distributed bonds
P()=1-p) e 2\2r + p 5(J-1)

p=0: SG with Gaussian disorder
p=1: Ferromagnet

Ground states (GSs)

Spin configuration with minimal energy.

Always:
Global spin flip connects GS paits.
Gaussian disorder — unique GS pair.

Calculation of GSs:

In 2d with periodic boundary conditions
(BCs) in one direction:  solvable in
polynomial time through mapping to mini-
mum weight perfect matching problem [1].

Domain walls (DWs)

Defined using two spin configurations:

o : GS for periodic BCs

0@ : GS for anti periodic BCs
Comparison of spin configurations:
DW separates regions of agree-
ing/disagreeing spin orientations.
DW energy: §E = E() — E®2)

Here: Determine DWs as shortest
paths on dual of spin lattice [2]. —

Sample DWs for system size L=064:

0=0.66 p=0.71

Schramm-Loewner evolutions

Schramm-—Loewner evolutions (SLEs) [5]:

Stochastic differential equation driven by
1d Brownian motion.

Describe continuum limit of random
curves for 2d systems, applies e.g. to
percolation, loop-erased random walks.

Geometric properties of SLEs —
statistics of critical interfaces.
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be(p) = bl(p — pe) L]
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DW is shortest (¢, b)—path on dual graph:

Here: undirected and negative edge
weights — more complicated than usual
shortest path problems.

Results [3]

Previous results at p=0:
Excitation energy of DWs [4]:
AE=(|0E|) ~ L%, 6;=-0.287(4)
o(3B) = \/{FET—PEP~ 1%
Scaling behavior of DWs [2]:

(6) ~ L%, dp=1.274(2)
(ry ~ L%, d,.=1.008(11)

DWs can be described by SLEs [6],
possibility to relate exponents via

df =1+ 3/[4(3 +0)]

Does SLE scaling relation also
hold for values p>0 7
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DW length yields data collapse under the
scaling assumption:

(€~ L% ](p — pe) LMY],

d5 = 1.222(1)
How does this relate to the values of ds7

Probability that DW roughness is O(L),
curves intersect at pe:

pi(p)~Bl(p — pe)LVY]
Spin glass phase up to p close to p,:

Scaling behavior of DW energy and DW
length consistent with scaling relation
derived from SLE processes.



