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Abstract We study numerically the maximum z-matching problems on ensembles of bipartite random graphs. The z-
matching problems describes the matching between two types of nodes, users and servers, where each server may serve
up to z users at the same time. By using a mapping to standard maximum-cardinality matching, and because for the latter
there exists a polynomial-time exact algorithm, we can study large system sizes of up to 106 nodes. We measure the capacity
and the energy of the resulting optimum matchings. First, we confirm previous analytical results for bipartite regular graphs.
Next, we study the finite-size behaviour of the matching capacity and find the same scaling behaviour as before for standard
matching, which indicates the universality of the problem. Finally, we investigate for bipartite Erdős-Rényi random graphs
the saturability as a function of the average degree, i.e., whether the network allows as many customers as possible to be
served, i.e. exploiting the servers in an optimal way. We find phase transitions between unsaturable and saturable phases.
These coincide with a strong change of the running time of the exact matching algorithm, as well with the point where a
minimum-degree heuristic algorithm starts to fail.

1 Introduction

Phase transitions in combinatorial optimisation or in con-
straint-satisfaction problems [1–4] have been an active area
of research at the interface of statistical mechanics and com-
puter science since more than two decades. Usually, non-
deterministically polynomial (NP) complete [5] or NP-hard
problems are studied, i.e., problems for which so far no al-
gorithm is known which runs in the worst case in poly-
nomial time as a function of the system size. Thus, so far
only worst-case exponential-time algorithms are available,
i.e., the problems are hard. One the other hand, problems
running in polynomial (P) time are often termed easy. But
since it is not known, i.e., proven, whether P forms a proper
subclass of NP, or whether maybe P=NP, one has been in-
terested since almost the beginning of computer science in
finding out what makes a problem hard. Among many other
approaches, also numerical experiments and statistical-mecha-
nics calculations have been performed. For this purpose, en-
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sembles of random problems have been considered, which
are hard in the worst case but for some regions in parame-
ter space typically require only a polynomial running time,
meaning they are typically easy there. Here in particular
phase transitions [1, 6], e.g., with respect to the solvability
have been observed when varying suitable ensemble param-
eters. These phase transitions often coincide with changes
of the typical complexity from easy to hard. Thus, the struc-
ture of problems from such ensembles, in particular near
phase transitions, may teach us about the source of com-
putational hardness. Such phase transitions have been stud-
ied, e.g., for constraint satisfaction problems like satisfiabil-
ity (SAT) [7, 8] or colouring [9]. Also optimisation prob-
lems like the travelling salesperson [10–13], vertex cover
[14–17] or number partitioning [18, 19] have been inves-
tigated. Beyond delivering insight into the structure of prob-
lems, this reserach performed at the interface of physics and
computer science has also led to algorithmic advances like
the development of efficient message-passing algorithms as
Belief Propagation or Survey Propagation [20].

Nevertheless, not only hard optimisation or constraint-
satisfaction problems may exhibit changes of problem space
structure and corresponding changes of the computational
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complexity. Also ensembles of polynomially-solvable prob-
lems like shortest paths, maximum flows or graph match-
ing may be of interest and show corresponding phase tran-
sitions. Usually, in physics such algorithms are used to in-
vestigate models like random magnets [21, 22]. Here, we
want to perform a fundamental study of such a phase tran-
sitions for a generalisation of the graph matching problem.
As we will see here, we observe changes of the algorith-
mic behaviour related to this phase transition. This shows
that such a coincidence of the change of a suitably defined
solvability and of algorithmic complexity exists also for a
polynomially-solvable problem and can therefore easier be
studied numerically.

For a given graph, the maximum-cardinality matching
problem, also just called matching, considers subsets of edges,
such that each node is incident to at most one edge in the
subset and such that the cardinality of matching is maxi-
mum. This problem is widely studied in computer science
usually from the algorithmic point of view [23] with the aim
to find efficient algorithms. But also in the field of statisti-
cal mechanics it has already played its role, as it was among
the first optimisation problems studied, and therefore it has
inspired the field a lot. First, the model was solved analyt-
ically using a replica-symmetric approach [24, 25] on bi-
partite random graphs with random edge weights, i.e., for
the maximum-weight matching instead of the maximum-
cardinality matching. This suitability of a replica-symmetric
calculation means that the thermodynamic behaviour of match-
ing for this ensemble is not very complex, similar to a ferro-
magnet. Later, the solution was extended to arbitrary graphs
and the finite-size behaviour of the matching capacity, i.e.,
the sum of the weights of the edges in the matching, was
obtained [26]. Also studied were Euclidean variants [27–
29]. The case where more than two nodes are connected
per matching element was also considered with a statisti-
cal mechanics approach [30]. Furthermore, so called dimer
coverings, i.e., perfect matchings involving all nodes, on d-
dimensional lattices without edge weights were studied [31].
Since no energy is involved, the number of matchings, i.e.,
the entropy, was mainly studied [32–34]. Such studies of en-
tropies of dimer coverings were extended also to include en-
ergy for the edges [35], or to mixtures of dimers and single
atoms [36]. Also, entropies of the matchings [37] or dimer
coverings [38] were considered for various more general
random graph structures.

In this work, we study a phase transition of the satisfiable-
unsatisfiable type for the z-matching problem, which is a
generalisation of the standard matching. The model describes
a set of N users and a set of S servers, possible user-server
connections are described by a bipartite graph. Each user
shall be served by one server, while each server may serve
up to z users at the same time. The system is characterised by
its capacity, i.e., the number of users which can be served si-

multaneously . An example for the application of z-matching
are wireless communication networks [39, 40]. Our study
is motivated by a previous work of Kreačıć and Bianconi
[41], who have studied, to our knowledge for the first time
in statistical mechanics, the z-matching problem analytically
with the approximate cavity approach and numerically with
a message-passing algorithm. They have obtained the capac-
ity of the system for two ensembles, namely for fixed de-
gree and Poissonian bipartite graphs. They showed that for
both cases, parameter combinations exists, where the capac-
ity converges to its maximum possible value, i.e., a saturable
phase, when increasing the average node degree.

Here, we expand on this work by using an exact numeri-
cal matching algorithm. Since this algorithm allows for cal-
culating exact optimum matchings in polynomial time, we
are able to solve exactly very large graphs of up to N =

500000 users. To start, we confirm with our exact numeri-
cal approach the previously obtained analytical results from
Ref. [41]. Also, we find the same finite-size scaling behaviour
of the capacity as for standard matching [26]. In the main
part of our work, for the case of the Poissonian random
graphs with average user degree k, we investigate the model
with respect to the phase transition between saturability and
unsaturability for some typical parameter combinations of
z and the ratio N/S. We determine with high precision the
phase-transition point kc using finite-size scaling techniques.
In addition, we obtain the critical exponent ν characterising
the phase transition. By analysing the run-time of the exact
algorithm and furthermore studying an approximation algo-
rithm, we are able to show that the phase transition coincides
with remarkable changes of the algorithmic performance.

The remainder of the paper is organised as follows: Next,
we define the z-matching problem and the measurable quan-
tities we have evaluated, together with the ensemble of ran-
dom graphs we have studied. In the third section, we present
the methods we have applied. In the main section, we present
our results and finally, we summarise our work and outline
further research directions.

2 Model

2.1 z-matching

We consider bipartite graphs G = (V,E) with vertices i ∈
V = A∪B consisting of N = |A| users and S = |B| servers.
We denote the ratio of number of users and servers by

η = N/S . (1)

Since the graph is bipartite, each edge connects a user and a
server. This means that the average degree k of the users and
the average degree q of the severs are related by

Nk = Sq. (2)
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When inserting Equation 1, it follows that q = ηk.
A z-matching Mz is a subset of E in with each user is

adjacent to at most one server and each server is adjacent to
at most z users. For each edge in Mz we say that the adja-
cent user and server are matched. Thus, one server can be
matched to at most z users. The capacity C of the matching
is defined as the number |Mz| of edges in the matching, i.e.,
its cardinality. In accordance with previous work [41], the
energy H is defined as

H = zS+N−2C. (3)

Hence, H is equal to the number of unmatched users plus the
number of users that all servers can still host. A low value
of the energy means that the given resources are well used,
such that many, or all users are served and at the same time
not too many, possibly no, servers exhibit unused serving
capacities.

For the maximum z-matching problem one wants find a
z-matching Mz which maximises the capacity C. This will
usually depend on the edges in the graph. For any graph,
the capacity C is bounded by a theoretical capacity which is
obtained, when all users are matched to servers or when all
servers are matched to z users. This leads to the maximum
theoretical capacity

Cmax = min(N,zS) = min{1,z/η}N . (4)

Note that Cmax does not at all depend on the edges, i.e., the
actual topology of the graphs. But it depends on the given
graph G whether this maximum can actually be reached.
Naturally, the more edges exist, the more likely it is that a
given graph reaches Cmax. For numerical reasons, we do not
require that Cmax is 100% reached. Instead, we call a graph
saturated if the actual capacity reaches γCmax with γ ≤ 1
being a suitable threshold. Correspondingly, when studying
an ensemble of random graphs, the saturation probability is
defined as

psat = Prob(C ≥ γ Cmax) . (5)

We use psat as an order parameter. If psat is close to zero,
few graphs reach the capacity γCmax. We call this the unsat-
urated phase. But if psat is close to one, almost all graphs
have a high capacity. This describes the saturated phase. As
our results will show below, we are indeed able to observe
phase transitions between these two phases.

In principle one could use γ = 1, but for large random
graphs, for most ensembles, it can be anticipated that it is
exponentially unlikely that all demands can be matched ex-
actly to all resources. We confirmed this in our numerical
experiments. Thus, we used a value of γ close to 1, i.e.,
γ = 0.9, hence we call a network saturated if there is an al-
most complete balance between demand and resources. We
also verified by tests that our results did not change signifi-
cantly when we used other values like γ = 0.95 or γ = 0.85.

Note that the variance of psat is given simply by σ2
psat =

psat (1− psat). We used it to calculate our error bars and to
obtain more conventiently the positions of the phase transi-
tions, see subsection 4.3.

2.2 Random graphs

We consider the same two different networks ensembles as
previously studied [41]. The first networks ensemble consist
of (k,q)-regular graphs were all users have the same fixed
integer degree k and all servers have integer degree q, sat-
isfying Equation 2. To generate such random graphs for the
numerical studies, the configuration model [42, 43] can be
used. In our case for (k,q)-regular graphs we did the follow-
ing: k stubs are assigned to each user and q stubs to each
server. Then iteratively one stub from a user and one stub
from a server are drawn randomly (with uniform distribution
from the list of free stubs), respectively. If there is so far no
edge between the two nodes where the stubs belong to, the
edge connecting them is created and the used stubs get re-
moved. If this edge already exists, two new stubs are drawn.
This procedure is repeated until no stub is left. According to
[44], redrawing two stubs if the edge already exists create a
bias in the generation of the random graphs. This bias can
be removed, after the initial graph construction has finished,
by repeatedly swapping the edges of the generated graph
[45]. For a swap, two edges are chosen randomly. Then the
users, but not the servers to with the edges are connected are
swapped. Repeating this ‘shuffle‘ enough times will lead to
unbiased graphs. We tested the influences of edge swaps and
in our case, they had no measurable effect on the final data.
This might be because we consider bipartite graphs. Thus,
to save computation time, we did not perform such swaps.

The second network ensemble we considered, which is
in the center of our study, consist of bipartite Erdős-Rényi
graphs [46]. This means, each possible edge between a user
and a server is drawn with a probability p, with p = k/S for
any desired average number k of neigbouring servers for the
users. Thus, the degree distributions of users and servers are
Poissonian, respectively.

3 Methods

To solve the maximum z-matching problem, which we call
also just z-matching in the following, numerically on a given
graph, we map the problem to the original 1-to-1-matching
problem on bipartite graphs. To achieve this, each server
node is cloned z−1 times. This means that z−1 new nodes
will be inserted in the graph for every server node. Then,
for each user in the neighbourhood of the server, an edge to
each of the new z− 1 nodes is created. Thus, in the graph
with cloned nodes, each clone has the same neighbours as
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Fig. 1 (a) Cloning the server s1 for the case z = 2 to create ŝ1 having
the same neighbours as s1. (b) A matching on the graph with cloned
servers corresponds to a z-matching on the original graph. Edges in the
matching are marked bold, non-matched edges are marked dashed.

the original server node. Next, a matching is calculated for
the graph with the cloned nodes. Here each node is matched
at most once. This means, with respect to the original graph,
each user node will be matched at most once and each server
node will be matched at most z times. Therefore, a stan-
dard 1-to-1-matching on the graph with cloned nodes corre-
sponds to a z-matching on the original graph. This procedure
is shown in Figure 1.

To find a maximum matching we used Edmond’s Blos-
som Shrinking algorithm [47], implemented in the LEMON-
library [48].

4 Results

We have performed simulations [49] by using exact numer-
ical matching calculations for the two graph ensembles, for
various values of the parameters, for various graph sizes of
up to N = 500000 user nodes and up to S = 250000 server
nodes. We performed for all results an average over up to
several thousands of different graph realisations. Details are
stated below. We first compare our numerical results with
the previously obtained analytical results [41]. Next, we in-
vestigate the finite-size scaling behaviour of the capacity and
compare with scaling form previously found [26] for stan-
dard matchings. In the main part, we show the results con-
cerning the saturable-unsaturable phase transition and com-
pare with the algorithmic behavior.

4.1 Comparison with previous results

We studied the (k,q)-regular graphs, i.e, for integer values
of k. We considered a rather large graph size N = 40000
and η = 4, thus S = 10000. We have considered k = 3, thus
q = ηk = 12. In Figure 2 the average capacity per user node
〈C/N〉 and the average energy per user node 〈H/N〉 are
shown as a function of z. The results are averaged over 100
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Fig. 2 Capacity density C/N and energy density H/N of the z-
matching as a function of z for (k,q)-regular graphs with N = 40000
user nodes. The circles denote the results of the simulation and the line
represents the analytical predictions from [41]. The lines are actually
guide to the eyes which connect the predictions which are available
only for integer values of z as well. The dashed vertical line marks
z = η . There are no error bars because the results are always identical.

realisations for each value of z. But due to the simple struc-
ture of the graphs, although being random, there are no sta-
tistical fluctuation on the results.

One can observe three cases, dependent on the value of
z:

– For z < η , or equivalently zk < q, the capacity is always
C = zS = Cmax and the energy is H = N− zS > 0. All
servers are matched to z users, but there are more users
than all servers together can handle.

– At z = η , i.e., zk = q, the capacity is C = N =Cmax and
the energy is H = 0. This is an optimal situation since all
users are matched to servers and no server has unused
resources.

– For z > η , i.e., zk > q, the capacity is C = N =Cmax and
the energy is H = −N + zS > 0. All users are matched,
but there are more servers than needed.

Thus, in all networks, the full capacity is reached, but there
is only one point of optimal balance between user demands
and provided resources, where the energy is zero. It is inter-
esting, that such a point of balance is possible. Note that here
with k = 3, the graphs exhibit a rather large number of edges
much larger than the number of edges in the matching. On
the other hand for the smallest meaningful degree k = 1, at
z = η all users will be connected to exactly one server, and,
because of q = ηk = z, each server will be connected to z
distinct nodes. Thus, trivally the full edge set is a z-matching
and again all user demands are satisfied. Anyway, these re-
sults confirm those recently obtained analytically [41] for
this network ensemble.
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Fig. 3 Average capacity density 〈C/N〉 as a function of the mean user
degree k for bipartite Erdős-Rényi graphs, N = 500000, z = 2, for two
cases η = 2 and η = 4. The error bars are smaller than the point size.

More variations in the results are obtained for the other
network ensemble we have studied, the bipartite Erdős-Rényi
graphs, since for this ensemble the nodes exhibit fluctuations
of the degrees. In Figure 3 the average capacity 〈C/N〉 per
user node is shown as a function of the average user degree
k for server capacity z = 2 and N = 500000 users. The re-
sults are averaged over 500 realisations for each value of k.
Two cases for the user to server ratio are considered, η = 2
and η = 4. These values correspond to average server de-
grees q = 2k and q = 4k, respectively and server numbers
S=N/η = 250000, and S= 125000, respectively. When ap-
proaching large degrees k, in both cases the limiting capaci-
ties are reached which are according to Equation 4 Cmax/N =

1 for η = 2 and Cmax/N = 0.5 for η = 4. Our results from us-
ing the exact algorithm agree well with the previous results
[41] obtained by a message-passing algorithm. Note that we
obtained data for all values of q down to zero, while in the
previous work only the range q > z, i.e. k > z/η was consid-
ered. Anyway, this success of the message-passing approach
in the previous work is interesting, because it is known that
for other problems, like the NP-hard vertex-cover problem,
message-passing fails in the range of high degrees because
for such models there exist replica-symmetry breaking [14,
15, 17]. The reason for the success with respect to z-matching
could be that in the range of large values of k, the problem
is easy to solve since there are enough options for each user
and each server, which do not block each other too much.
This corresponds to a simple, i.e, “dense” organization of
the solution space and makes a quick convergence of the
message-passing iterations possible. On the other hand for
NP-hard problems, each assignment of a problem variable
has typically a strong impact on the availability of suitable
assignments for other variables.
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Fig. 4 The average capacity density 〈C/N〉 as a function of the num-
ber of users N for bipartite Erdős-Rényi graphs. The line represents the
fit according to Equation 6. Inset shows 〈C/N〉 as function of 1/N for
the same data to confirm the 1/N-behaviour.

4.2 Finite-size behaviour

Since there are basically no finite-size effects for the (k,q)-
regular graphs, we studied the finite-size scaling behaviour
for bipartite Erdős-Rényi graphs. For N ≤ 1000 we averaged
over 5000 different realisations and for larger values of N, a
number of 500 realisations turned out to be sufficient.

In Figure 4, the average capacity density 〈C/N〉 is shown
as a function of the system size for the case k = 2, η = 2 and
z = 2. Motivated by the results [26] for standard matching,
we fitted the data to the function

〈C/N〉= c∞ +α1
1
N

(6)

and found a good agreement. The resulting parameters, also
for the other cases we have studied, are shown in Table 1.
For η = 4, z = 2 and k = 3 the fit does not converge since
most graphs reached Cmax and therefore a finite-size depen-
dence is hardly to observe. For all other cases, we observe
a good agreement with the 1/N scaling. Only the prefactor
of this term seems to be non-universal. Also it should be
noted that not only the finite-size capacities but also the lim-
iting values of the capacity density are usually well below
Cmax/N, due to typically too small average degrees. This
corresponds also to the behaviour seen in Figure 3.

4.3 Phase transition

Finally, we study the saturation probability psat. Due to the
simple structure of (k,q)-regular graphs, we only focus on
the Erdős-Rényi graphs and investigate them while varying
the average degrees k and q = ηk. All results are obtained
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Table 1 Maximum capacity Cmax and fit parameters for the scaling
behaviour Equation 6 for different values of the parameters η , z and k.

η z k Cmax/N c∞ α1

2 2 1 1 0.60089(2) 0.32(1)
2 1 0.84902(2) 0.43(1)
3 1 0.947900(9) 0.388(6)

4 2 1 0.5 0.466631(9) 0.118(8)
2 0.5 0.499142(1) 0.0141(6)
3 0.5 – –

4 4 1 1 0.62561(2) 0.70(2)
2 1 0.86292(2) 1.09(1)
3 1 0.950115(9) 0.794(6)
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Fig. 5 Saturation probability psat (top) and its variance σ2
psat (bottom)

as a function of k for different number N of users. For the largest num-
ber of users there is an almost step-wise transition from psat = 0 to
psat = 1 at some value of k = kc.

over 500 difference realisations for each value of k and each
system size N,S = N/η .

Figure 5 shows psat(k) for different number N of users.
psat increases from 0 to 1 with growing degree k, such that
the curves become steeper when increasing N. This is an
indication for a transition from an unsaturated phase to a
saturated phase. Note that this transition becomes almost
step-wise for a really large number of users. We are able
to observe the phase transition in such a clear way, because
we could study huge system sizes due to the polynomial na-
ture of the problem. This is in contrast to previously studied
phase transitions for NP-hard optimisation problems, where
only exponential-time exact algorithms are known and there-
fore only rather small system sizes could be studied exactly.

To study the observed phase transition in more detail, we
use finite-size scaling analysis [50]. Hence, we assume that
for continuous transitions the saturation probability follows
the standard finite-size scaling relation

psat(k,N) = p̃sat((k− kc)N1/ν) , (7)

with infinite-size critical point kc and ν being the expo-
nent describing the divergence of the correlation length. We
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Fig. 6 Finite-size scaling for the saturation probability. Within the sta-
tistical fluctuations, the values for different N overlap. For visualisation
only four system sizes N are shown, but the results were obtained in-
cluding all measured sizes N.

Table 2 Results for the finite-size scaling parameters kc, ν and the
quality S of the fit, for the considered cases of η and z.

η z kc ν S

2 2 2.3863(9) 2.04(8) 0.90
4 2 0.8852(4) 2.0(1) 0.84
4 4 2.312(1) 2.0(1) 1.48

obtained the best-fitting scaling parameters using the tool
autoScale.py [51]. The results are obtained over 9 differ-
ent system sizes N, ranging from 500 to 500000. Figure 6
shows the resulting data collapse for η = 2, z = 2. Apper-
ently the collapse works very good for this case. The best
found values for kc and ν for all studied cases can be found
in Table 2. The quality S is the average deviation of the
data points from the collapse curve, measured in terms of
error bars [52]. Since S is close to one for all cases we
have considered, the quality of the data collapse is always
very good.

The statistical errors of the scaling parameters are de-
termined as how much a parameter has to be changed to
increase the quality S of the fit by one to S + 1. We also
systematically changed the intervals over which the data col-
lapse is performed. However, these differences turned out to
be smaller than the statistical errors, so we state only those.
Interestingly, within error bars, the value for ν is compatible
with a value of ν = 2 in all studied cases. This indicates that
the behaviour of the saturable-unsaturable phase transition
is universal with respect to network parameters.

Note that the phase transition can also be studied and
analysed by obtaining the variance σ2

psat as a function of k.
Although σ2

psat does not contain any additional information,
it is easy to analyze, because it peaks at the apparent transi-
tion for each system size, which can be seen in the bottom of



7

2.22

2.25

2.28

2.31

2.34

2.37

102 103 104 105 106

z = η = 2

0.12

0.16

0.20

0.24

0.28

2.2 2.3 2.4 2.5

k
m
a
x

N

σ
2 p
s
a
t

k

N = 1000
fit at peak

Fig. 7 Position of maximal variance kmax as a function of the number
of users N. The line represents the fit. The inset shows an example for
the Gaussian fit around the peaks of the variance σ2

psat of the saturation
probability. Note that the peak position shifts to the right for larger
values of N.

Table 3 Parameters kc, β1 and β2 obtained from the fit of the position
of maximum variance kmax(N) according to Equation 8.

η z kc β1 β2

2 2 2.38566(3) -0.07(1) 137(21)
4 2 0.88487(2) 0.076(6) -68(5)
4 4 2.31068(4) -0.04(1) 404(118)

Figure 5. To confirm the results obtained from psat, we also
analysed the phase transition by a finite-size analysis of the
variance. In the thermodynamic limit, the variance should
be maximal at the critical point. On finite systems, the po-
sition of maximal variance, denoted as kmax, will approach
kc as the system size grows. To determined kmax more accu-
rately than given by the resolution of the considered values
of k, we performed Gaussian fits to σ2

psat(k) in small inter-
vals near the maxima. An example is shown in the inset of
Figure 7. To extrapolate kmax the fit

kmax(N) = kc +β1 N−1/ν

(
1+β2 N−1/ν

)
(8)

is used. Note that we had to use here a correction term to the
scaling behaviour, taking care of the very small system sizes.
But we did not need to add a correction exponent to achieve
a good fit and used exponent 2/ν instead. Also, based on
the above results of the finite-size scaling, we fixed ν = 2.
Figure 7 shows the fit for the case η = z = 2. The results
of the obtained fit parameter for all three cases are shown in
Table 3. Within error bars, one or two sigma, the values for
kc agree with the above results which we obtained from the
data collapse.

To summarise, our results speak in favour of a phase
transition from a unsaturable to a saturable phase at a criti-
cal average degree kc which depends on the graph structure.

The scaling of the phase transition seems to be coverned by
a universal exponent ν ≈ 2, which is very different from the
usual mean-field exponent ν = 1/2.

4.4 Algorithm running time

We next analyse the running time of the matching algorithm
when varying the average user degrees, to see whether the
phase transition is reflected for this quantity. Unfortunately,
the package we used, the fastest open-source matching al-
gorithm implementation to our knowledge, does not pro-
vide a machine-independent measure of the running time.
So he had to limit our self to measure the CPU time. For this
purpose, we used always the same machine under the same
conditions. Figure 8 shows the median of the CPU time for
Erdős-Rényi graphs as the average degree increases. Inter-
estingly, the CPU time increases rapidly around the critical
point, a typical behaviour observed so far for a phase transi-
tions in NP-hard optimisation problems. Note that there ap-
pears to be a small non-monotonicity at k = 2. At k = 2 each
user has on average two servers available and the number of
users with this degree is maximal as compared to all other
degree values. A possible explanation for this behaviour is
that the matching algorithm, which contains many sophis-
ticated heuristics to speed up the exact calculation, can im-
prove the solutions here substantially with just performing
local changes for nodes of degree exactly two. For much
larger values k, the median CPU-time decreases slowly, even
though there are more edges to handle. This is the case, be-
cause the z-matchings become more and more degenerate in
this region, i.e., the algorithm has more feasible options to
choose among.

4.5 Approximation algorithm

The result of the running time of the exact algorithm shows
that for small values of k, matchings can be obtained quickly.
This could mean that in that region they are so simple to ob-
tain such that even a non-exact but even faster algorithm is
feasible. Therefore, we compare the exact matching algo-
rithm with a matching heuristics. We considered the com-
monly used so called minimum-degree heuristics [54]. It
finds a matching by connecting the nodes with lowest degree
first, until no more nodes can be matched. The basic idea is
that for nodes with few neighbours, one has to find a match-
ing partner first, while nodes with many neighbours will still
find a partner even if many of their neighbours have been
matched already. Note that the heuristics has a linear running
time. In this context, we study pMD, i.e., the empirical es-
timated probability that the minimum-degree heuristics ob-
tains the same capacity as the exact matching algorithm. The
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Fig. 8 The median of the CPU time as function of user degree k,
each value averaged over 1500 runs. The error bars are obtained using
bootstrap resampling [53]. The circles show only some data points for
better visualisation, but the black line connects all measured points.
Note the bump at k = 2 which is probably related to a fast heuristics
used by the algorithm. The vertical dashed line marks the critical point
kc as obtained above.

top of Figure 9 shows how far the capacity density C/N ob-
tained from the minimum degree heuristic differs from the
the one calculated by the exact matching algorithm. On the
bottom, pMD(k) is shown. Both results are obtained over 500
different realisations for each value of k. Note that the av-
erage difference of the capacities between both algorithms
starts to grow for k ≥ kc. In particular, pMD undergoes for
large systems an almost step-wise transition from 1 to 0 near
the critical point. This means that for k < kc the heuristic
finds solutions with are well comparable to the exact solu-
tion. But for k > kc this is no longer the case. Hence, the
saturable-unsaturable phase transition coincides with a kind
of easy-hard transition with respect to a fast heuristics, al-
though the z-matching problem is polynomially solvable ev-
erywhere.

5 Summary and outlook

We have studied the saturable-unsaturable phase transition
for the z-matching problem on bipartite Erdős-Rényi ran-
dom graphs. Since the problem can be solved with exact
algorithms in polynomial time, we could study very large
systems with good accuracy, leading to high-precision esti-
mates of the critical points kc and of the critical exponent ν

of the correlation length.
We have also studied the running time of the exact al-

gorithm and found that the phase transition point is very
close to the largest change in the running time. Also, for
the minimum-degree heuristics, when studied for increas-
ing node degrees, we find that the degree beyond which the
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Fig. 9 Top: the difference of the capacity densities C/N obtained from
the exact matching algorithm and from the minimum degree (MD)
heuristics on the same graphs. Bottom: pMD as a function of k for sev-
eral system sizes N. The vertical dashed line marks the critical point
kc.

heuristics start to fail, seems to agree with the critical point
kc. Thus, the saturable-unsaturable transitions seems to coin-
cide with strong changes of the algorithmic behaviour. This
was previously observed mainly for NP-hard optimisation or
constraints-satisfaction problems, not for polynomial prob-
lems.

Thus, for future work, it could be very interesting to
study other polynomial optimisation problems in a similar
way and verify whether phase transitions in connection with
changes of the run time are present. This could also apply to
the investigation of other ensembles of the z-matching prob-
lems, or other variants of matching. This could lead to better
understand the relation between phase transitions and com-
putational hardness of optimisation or decision problems.

Finally, to understand this relation even better, one could
analyse the solution structure for the z-matching problem.
For this purpose one could extend the algorithm to allow for
sampling of degenerate solutions, possibly by introducing
slight random changes to the initially uniform edge weights,
in order to make so-far found solutions unfavourable. This
would allow to investigate the cluster structure [55] of the
solution space. Possibly one could in this way observe changes
of the solution-space structure in connection with the saturable-
unsaturable transition, as it has been the case for NP-hard
problems [56–58].
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jian, L. ZdeborovÃą, PNAS 104, 10318 (2007). DOI
10.1073/pnas.0703685104

58. A. Mann, A.K. Hartmann, Phys. Rev. E 82, 056702
(2010)

https://link.aps.org/doi/10.1103/PhysRevE.85.026101
https://link.aps.org/doi/10.1103/PhysRevE.85.026101
http://lemon.cs.elte.hu/pub/doc/1.2.3/index.html
http://lemon.cs.elte.hu/pub/doc/1.2.3/index.html
https://arxiv.org/abs/0910.5403
https://arxiv.org/abs/0910.5403
https://link.aps.org/doi/10.1103/PhysRevB.70.014418
https://link.aps.org/doi/10.1103/PhysRevB.70.014418
https://doi.org/10.1145/2049673.2049677

	Introduction
	Model
	Methods
	Results
	Summary and outlook

