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We study numerically the behavior of RNA secondary structures (or single-stranded DNA) under
influence of a varying external force. This allows to measure the work W during the resulting fast
unfolding and refolding processes. Here, we investigate a medium-size hairpin structure. Using
a sophisticated large-deviation algorithm, we are able to measure work distributions with high
precision down to probabilities as small as 10−46. Due to this precision and by comparison with exact
free-energy calculations we are able to verify the theorems of Crooks and Jarzynski. Furthermore, we
analyze force-extension curves and the configurations of the secondary structures during unfolding
and refolding for typical equilibrium processes and non-equilibrium processes, conditioned to selected
values of the measured work W , typical and rare ones. We find that the non-equilibrium processes
where the work values are close to those which are most relevant for applying Crooks and Jarzynski
theorems, respectively, are most and quite similar to the equilibrium processes. Thus, a similarity
of equilibrium and non-equilibrium behavior with respect to a mere scalar variable, which occurs
with a very small probability but can be generated in a controlled but non-targeted way, is related
to a high similarity for the set of configurations sampled along the full dynamical trajectory.

I. INTRODUCTION

In Statistical Physics, the cleanest and so far best-
justified description is obtained for systems in equilib-
rium. Nevertheless, due to open system boundaries and
lack of infinite time to perform experiments or sim-
ulations, most real and simulated model systems are
constantly in non-equilibrium. A bridge between both
worlds is provided. e.g., by the theorems of Jarzynski
[1] and Crooks [2], where the distribution P (W ) of work
W is measured for arbitrary fast non-equilibrium pro-
cesses obtained from sampling equilibrium initial config-
urations and possibly stochastic non-equilibrium trajec-
tories. Correspondingly Prev(W ) is the distribution for
the reverse process. For a system coupled to a heat bath,
Crooks theorem reads P (W ) = Prev(−W ) exp(−(∆F −
W )/T ). This can be used to reconstruct the true free
energy difference ∆F between initial and final state, be-
cause P (W ) and Prev(−W ) cross at W = ∆F . Corre-
spondingly the equation of Jarzynski reads 〈e−W/T 〉 =
e−∆F/T . These and related theorems have led to many
applications and extensions relating equilibrium and non-
equilibrium processes [3–10]. A fruitful field of appli-
cations is biophysics, where these theorems are used to
measure properties of small molecules like RNA.

One major goal of stochastic thermodynamics is to ex-
tract equilibrium information from non-equilibrium mea-
surements or simulations [11]. The fluctuation theo-
rems concern specific measurable scalar quantities like
work [1, 2, 12], entropy [13–21], or a quantity measur-
ing the volume of the phase space [22]. However, be-
yond statistics of particular scalar quantities, the fluctu-
ation theorems do not provide information about the be-
havior along a corresponding equilibrium trajectory, i.e.,
with respect to arbitrary measurable quantities. Stan-
dard derivations of the fluctuations theorems only in-
volve terms which include energies and probabilities of

the initial and final state. What may we expect when
we analyze the full trajectory of a non-equilibrium pro-
cess? First, a typical, i.e., highly probable sample of a
non-equilibrium trajectory will look very different from
a corresponding trajectory sampled during an equilib-
rium process. Second, it is known that when reweighting
trajectories suitably in a time-dependent way, they also
carry some information about the intermediate states
which would occur for the same values of the control
parameter [21, 23, 24] which allows for the reconstruc-
tion of full free-energy profiles beyond initial and final
state. Third, it is somehow intuitive to believe that the
rare non-equilibrium processes which contribute most to
the estimation of ∆F are in a comprehensive way, with-
out reweighting, similar or even equal to the correspond-
ing equilibrium processes. For the case of the theorems
of Crooks and Jarzynski, the statistics of the work dis-
tributions are most relevant for particular work values
W = ∆F and W = W ∗J , where the latter one is the value

where the integrand e−W/TP (W ) exhibits a maximum.
Note that these values are highly improbable to occur
for large system sizes. On the other hand, beyond this
intuition, there is no solid reason that these rare possibly
very fast processes completely resemble true equilibrium
processes: A non-equilibrium process always depends on
the history, i.e., on many configurations encountered so
far, while each equilibrium state in a process does not de-
pend at all on the history. In particular, non-equilibrium
processes depend on the speed of performance, while the
equilibrium is for infinitely low speed.

This motivates our present work: We investigate in a
comprehensive way the dynamics of fast non-equilibrium
processes conditioned to various non-equilibrium work
values W , typical and rare ones, and compare with the
equilibrium process behavior. For this purpose we want
to study a model which exhibits a complex low tempera-
ture landscape, includes the possibility of performing ex-
ternal work and, at the same time, allows for an efficient
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sampling of configurations in equilibrium. Therefore, we
have chosen unfolding and refolding of RNA secondary
structures subject to an external force [25]. The former
one, denoted as forward process, involves stretching an
RNA by subjecting it to an external force f which is
increased from starting at zero. For the latter one, de-
noted as reverse process, one starts with a large force
and reduces it to zero. For small RNAs consisting of
few dozens of bases, Crooks theorem has been confirmed
in experiments [26, 27] and simulations [12, 28] for slow
unfolding and refolding processes. For such small RNA
and slow processes, the resulting work distributions are
rather broad and the distribution for forward and re-
verse processes are close to each other such that they
cross at high-probability values which are easily acces-
sible. For larger RNA molecules, the crossing points
will move to smaller probabilities, such that the cross-
ing can not be observed in experiments or standard sim-
ulations. To go beyond such limiting system sizes, we
applied for our study sophisticated large-deviation algo-
rithms [29, 30], which allowed us to measure probabil-
ity distributions numerically down to extremely small
probabilities. These algorithms have also applied suc-
cessfully to non-equilibrium processes like the transition-
path sampling approach to study protein folding [31, 32],
population-based approaches to study asymmetric ex-
clusion processes [33, 34] or Markov-chain Monte Carlo
methods to investigate, e.g., traffic models [35] and the
Kardar-Parisi-Zhang equation [36]. In particular such an
algorithm has also been applied to measure with high
precision the work distribution of an Ising model subject
to a varying external field [37], providing the first con-
firmation of the theorems of Jarzynski and Crooks for a
large system with many thousands of particles.

Thus, here we will provide similar evidence for RNA
secondary structure unfolding and refolding by applying
such a rare-event algorithm, allowing us to obtain the
work distributions of intermediate-sized RNAs down to
probabilities as small as 10−46. Furthermore, we will an-
alyze the temporal structure of the non-equilibrium pro-
cesses, conditioned to the occurring work values W . We
will compare this to the corresponding equilibrium pro-
cess, which can be sampled exactly [38–40] and efficiently,
i.e., in polynomial time, for RNA secondary structures
without pseudo-knots. Beyond confirming the theorems
of Jarzynski and Crooks we find in particular that the
non-equilibrium processes can be very similar in their
development to the equilibrium ones. The highest simi-
larity is reached for processes which exhibit a work value
W between the values W = ∆F and W = W ∗J which
are most relevant for the Crooks and Jarzynski theorem,
respectively.

We will next present our model and the used simula-
tion methods. Then we show our results and finish by a
discussion.

II. MODEL

Each RNA molecule is a linear chain R = (ri)i=1,...,L

of bases, also called residues, with ri ∈ {A,C,G,U} and
L is the length of the sequence. For a given sequence R
of bases, a secondary structure is a set of pairs of bases,
such that for the present simple model only complemen-
tary (Watson-Crick) base pairs A-U and C-G are allowed.
This can be described by a set S of pairs (i, j) (with the
convention 1 ≤ i < j ≤ L), meaning that bases ri and
rj are paired. For convenience, we also use s(i) = j if
i is paired to j, which implies s(j) = i, and s(i) = 0
if i is not paired. Our restriction to Watson-Crick pairs
means for A-U either ri =A and rj =U or vice versa,
correspondingly for the C-G pair.

Two restrictions are used: (i) We exclude so called
pseudo-knots, that means, for any (i, j), (i′, j′) ∈ S with
i < i′, either i < j < i′ < j′ or i < i′ < j′ < j must
hold. In the first case, pair (i, j) is located entirely before
(i′, j′) in the sequence. In the second case, pair (i′, j′) is
called to be inside of (i, j). If a bond is not inside of
any other bonds, we say it occurs on the first level, i.e.,
it is the topmost pair of the structure enclosing all other
pairs. Neglecting pseudo knots follows the notion of them
being more an element of the tertiary structure [41]. It
also means that it is always possible to draw the molecule
as a single line and connect all pairs by lines such that no
intersections occur. (ii) Du to the bending rigidity of the
molecule, between two paired bases a minimum distance
is required, i.e. |j − i| > s.

Every secondary structure S is assigned a certain en-
ergy E(S), where the dependency on the sequence Ris
not explicitly indicated. This energy is defined by as-
signing each pair (i, j) a certain energy e(ri, rj) depend-
ing only on the kind of bases.

Furthermore there is a contribution arising from the
external force f which stretches the chain to its extension
n = n(S), as introduced previously [25]. The extension
of the structure is the part of the RNA which is outside
any paired base, plus length 2 for any paired base on the
first level. Hence, any globule in the chain contributes
two length units. This is illustrated in Fig. 1. This in-
teraction with the external force f gives rise to an energy
contribution −f × n.

The total energy for the most basic model is the sum
over all pairs plus the interaction with the external force

E(S) =
∑

(i,j)∈S

e(ri, rj)− n(S) f . (1)

By choosing e(r, r′) = +∞ for non-complementary bases
r and r′, pairings of this kind are suppressed. Here we use
the most simple energy model, i.e., e(r, r′) = −1 for com-
plementary bases A-U and C-G. Note that in this simple
form our model can also be seen as a model for single-
stranded DNA. When aiming at modelling real RNA as
realistically as possible, one would have to use a more
sophisticated model. For such cases, stacking energies
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n(S)

FIG. 1. (color online) An example for a RNA secondary struc-
ture with one globule and a line indicating the extension n(S)
of the folded RNA. Circles denote bases, thick black lines
links between consecutive bases, and thin blue lines hydrogen
bonds between complementary bases.

have to be included and also, when it comes to free en-
ergy calculations, entropic effects related to steric con-
straints that are originating from different types of loops
and multiloops. Software packages like mfold [42], Sfold
[43], RNAstructure [44] or the Vienna RNA Package [40]
exist for such detailed modelling in general. For our
present work, where our main aim is to investigate the re-
lationship between equilibrium and rare non-equilibrium
behavior, restricted to qualitative relevance to real sys-
tems, the present simple model is sufficient.

III. ALGORITHMS

In the following, we discuss the algorithms we have
used. First, we show how RNA secondary structures
can be sampled directly in equilibrium. For the non-
equilibrium folding and unfolding simulations, our dy-
namics consist of local steps performed within Markov
chain Monte Carlo (MC) simulations of RNA structures,
as presented in the second subsection. Thus, one time
unit of the simulation is one MC sweep. To study rare un-
folding and folding trajectories, we used a second type of
MC simulations, which is wrapped around the structure
MC simulations, as presented in the third subsection.

A. Sampling secondary structures

For RNA secondary structures it is possible to sample
them directly in equilibrium for finite temperatures T in
time O(L3). We used an extension of the approach for
the zero-force case [38]. For this purpose, one needs also
to calculate partition functions for some sub sequences,
which is possible using dynamic programming in polyno-
mial time. These approaches [25, 45] are also extensions
of the zero-force case method [46].

The partition function Zi,j (i ≤ j) for sub sequence
ri . . . rj at inverse temperature β = 1/T without external
force and without length constraints, obeying the mini-

mum distance s between two paired bases, is given by

Zi,j = 1 for j − i ≤ s
Zi,j = Zi,j−1

+

j−s−1∑
k=i

Zi,k−1e
−βe(rk,rj)Zk+1,j−1 else (2)

All O(L2) values of Zi,j can be conveniently calculated
[46] by a dynamic programming approach, i.e. starting
with Zi,i and continuing with increasing values of j − i.
Since most contributions involve a sum of O(L) terms,
the algorithm has a running time of O(L3).

In order to include the interaction with the external
force, one needs additionally the partition function Q1,j,n

of the sub sequence r1 . . . rj such that the extension is
fixed to the value n, with n ≤ j. We include the fixed
index 1 for matching with the notation for Zi,j ,

Our approach follows the lines of corresponding
methods [25, 45] for calculation of partition functions
and ground state energies of RNA secondary structures
subject to an external force. The partition function
reads :

Q1,1,1 =1

Q1,j,1 =0 for j > 1,

Q1,2,2 =Z1,2

Q1,j,2 =0 for 2 < j ≤ s+ 1 (3)

Q1,j,2 =e−βe(r1,rj)Z2,j−1 for j > s+ 1

Q1,j,n =Q1,j−1,n−1 + for n > 2, j ≥ n
j−s−1∑
k=n−1

Q1,k−1,n−2e
−βe(rk,rj)Zk+1,j−1 .

Also all these partition functions can be conveniently
calculated by dynamic programming in time O(L3).

This allows us to calculate the partition function with
force for sub sequence r1, . . . , rj by

Z̃1,j(f) =

j∑
n=1

Q1,j,ne
βnf . (4)

Note that the case n = 0 can not occur and the case
n = 1 corresponds only to one single base.

The availability of the above partition functions allows
us to sample secondary structures in the presence of an
external force directly, i.e. rejection free, also in polyno-
mial time. The approach is an extension of the zero-force
algorithm [38] to the case f ≥ 0.

For sampling a structure, the following probabilities
are needed. The probability ppi,j,k that for sub sequence
ri, . . . , rj , without the presence or influence of a force,
base j is paired to base k with i ≤ k < j and j − k > s
is given by
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ppi,j,k =
Zi,k−1e

−βe(rk,rj)Zk+1,j−1

Zi,j
. (5)

For j − k ≤ s, this probability is zero. The probability
that base j is not paired is given by

pui,j =
Zi,j−1

Zi,j
. (6)

The probability p̃p1,j,k(f) that for sub sequence
r1, . . . , rj , with the presence of a force f , base j is paired
to base k with 1 ≤ k < j and j − k > s is given by

p̃p1,j,k(f) =
Z̃1,k−1(f)e−βe(rk,rj)+β2fZk+1,j−1

Z̃1,j(f)
(7)

For j − k ≤ s, this probability is zero. The probability
that base j is not paired is given by

p̃u1,j(f) =
Z̃1,j−1(f)eβf

Z̃1,j(f)
. (8)

The sampling of a structure is now performed as fol-
lows. Each time one starts for the full sequence r1, . . . , rL
by considering the case with force f :

• Case with force f for sub sequence r1, . . . , rj

Base j is paired to one of the bases k = 1, . . . , j −
s − 1 with probability p̃p1,j,k(f), respectively, and

remains unpaired with probability p̃u1,j(f).

Now, if base j has been paired to base k, recur-
sively the sequence r1, . . . , rk−1 is treated in the
same way (case with force f) and the sub sequence
rk+1, . . . , rj−1 is treated as described in the case
without force.

If base j has not been paired, the sequence
r1, . . . , rj−1 is treated in the same way (case with
force f).

• Case without force for sub sequence ri, . . . , rj

Base j is paired to one of the bases k = i, . . . , j−s−
1 with probability ppi,j,k, respectively, and remains
unpaired with probability pui,j .

Now, if base j has been paired to base k, recur-
sively the sequence ri, . . . , rk−1 and rk+1, . . . , rj−1

are treated in the same way (case without force).

If base j has not been paired, the sequence
ri, . . . , rj−1 is treated in the same way (case without
force).

In this way, each time a structure is independently
drawn according to the Boltzmann distribution, i.e., the
algorithm constitutes ideal sampling.

When we sample a folding or an unfolding trajec-
tory in equilibrium, i.e., for a sequence of force values

fk = f0 + k∆f (k = 0, 1, 2, . . .), we just sample an equi-
librium structure Sk for all force values {fk} encoun-
tered. Here we use fk ∈ [0, 2] and 400 different force
values, i.e. ∆f = ±0.005. To each trajectory a work
of W = −

∑
k n(Sk)∆f is associated, corresponding to a

small force increment and a subsequent imaginary (infi-
nite) long waiting time until the next equilibrium struc-
ture is encountered. Since we use very small force incre-
ments, the work we measure is actually numerically very
close to ∆F , as we have verified.

B. Folding and Unfolding Algorithm

The algorithm for performing an unfolding or refold-
ing process in non-equilibrium , and to measure the per-
formed work W for a given sequence R, works as follows:
First, an initial secondary structure S is drawn in equi-
librium at some given initial value f0 of the force and for
RNA temperature T . Then a Monte Carlo (MC) sim-
ulation allowing to change the secondary structure with
total of nMC sweeps is performed while the force param-
eter f is increased or reduced depending on ∆f . For
the unfolding process we used f0 = 0 and increased the
work until f = 2 was reached, while for the refolding
process we started at f0 = 2 and decreased the force to
f = 0. During the MC simulation, nforce times the force
is increased by ∆f . Each time the force is changed, we
obtained a contribution ∆W = −n(S)∆f to the work,
where n(S) is the current extension.

The MC sweeps allow for the influence of thermal fluc-
tuations. Since the number of possible Watson-Crick
pairs is O(L2), we define one sweep as L2/2 Monte Carlo
steps. For the individual MC steps, each time two ran-
dom residues i and j are selected. If these are already
paired to each other in the current structure S, a trial
configuration S ′ is made by removing the pair, i.e., the
bond is broken. In case of two non-bonded bases, they
will be paired in the trial configuration S’ if they are
complementary, and if they have a distance larger than
s, and if no pseudo-knots would be created. The configu-
ration is not changed when just one of the selected bases
is already bounded, since a base can only connect to a
single other one. For these cases, the trial configuration
is accepted, i.e. becomes the current one, with the usual
Metropolis probability pMetr = min{1, exp(−β∆E)} de-
termined by the energy change ∆E = E(S ′)−E(S). The
random numbers which are used during the MC simula-
tion are generated before a call to the subroutine and
stored in a vector ξ. In this way, all the randomness is
removed outside this subroutine [47], for a reason we will
present in the next section. Note that all other parame-
ters like R, T etc. remain the same during a simulation,
thus the work obtained during unfolding or refolding is a
deterministic function of ξ:

algorithm W (ξ)
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begin
draw for R an equilibrium structure S at

initial force f0 and RNA temperature T
f = f0

W = 0
for j = 0, · · · , nforce

begin
perform L2nMC/(2nforce) MC-Steps:
begin

select two random residues l,m ∈ {1, . . . , L}
if (l,m) ∈ S, remove pair with prob. pMetr.

else if (l,m) is allowed set S = S ∪ {(l,m)}
with prob. pMetr.

end
f = f + ∆f
W = W − n(S)∆f

end
return(W )

end

The vector ξ = (ξ1, ξ2, . . . , ξK) contains K = L −
1 + 3L2nMC/2 random numbers which are uniformly dis-
tributed in [0, 1]. These are all random numbers that are
needed to perform one full unfolding or refolding simula-
tion. Each random number has a specific fixed purpose.
The first L−1 entries are required to sample an configura-
tion from the partition function, where an individual ran-
dom number is utilized to determine if base j ∈ [2, . . . , L]
is either connected to base k ∈ [1, . . . , j − s − 1] or un-
connected. Not all of these L − 1 random numbers are
necessarily used during a specific sampling process, e.g.,
if for base j the remaining sub sequence for a potential
pairing partner is too small. In this case, the correspond-
ing random number is just ignored, The subsequent MC
steps need three random numbers each, two for select-
ing a pair and potentially one more, if the Metropolis
criterion is used. If not, the third random number is
also ignored, respectively. This results in a number of
3L2nMC/2 additional entries in ξ.

Note that more efficient Monte Carlo algorithms for
RNA secondary structures exists [48, 49], which are
event-driven Gillespie algorithms. Also they take as pos-
sible Monte Carlo moves only allowed moves into ac-
count, i.e., either pairs are removed, or only allowed pairs
are proposed, avoiding non-complementary base pairs or
pseudo knots. This requires keeping track of the allowed
moves, which also generates quite some overhead in com-
putation and it also involves the calculation of necessary
corrections factors due to the varying number of acces-
sible neighboring secondary structure configurations, in
order to guarantee detailed balance. Also, the Gillespie
nature of these algorithms make the use of random num-
bers dependent on the history of previous events. Nev-
ertheless, for the present application, the work process is
embedded into another higher-level Monte-Carlo simula-
tion, see below. For a good performance of the higher-
level MC simulation this requires that for each entry of
the vector a specific purpose is assigned, as presented
above. If this requirement is met, small changes to ξ

yield typically small, i.e., not too “chaotic” changes in
the resulting work W = W (ξ). This is the case with the
present algorithm.

C. Large-deviation approach

By repeating an unfolding or refolding simulation
many times, one can measure approximately the work
distributions P (W ) and Prev(W ), respectively. Never-
theless, this simple sampling approach allows one only
to obtain the work distributions down to rather large
probabilities, like 10−9. To obtain the work distributions
down to much smaller probabilities, we applied sophisti-
cated large-deviation algorithms [29, 30]. Our approach
has already been used to measure work distributions for
large Ising systems [37]. The basic idea is to drive the for-
ward and reverse processes, respectively, by vectors ξ of
random numbers and control the composition of the vec-
tors with a Markov chain Monte Carlo simulation, with a
known, i.e. removable, bias depending on the measured
work.

As mentioned in the previous section, for a given se-
quence R, temperature T and the other parameters,
which are all kept fixed for a set of simulations, the out-
come of the unfolding or refolding process is solely deter-
mined by the random values contained in the vector ξ.
Thus, to perform a standard simple sampling simulation,
each time a random vector ξ is drawn with all its entries
being a pseudo random number uniformly distributed in
[0, 1]. This results in one work value W which is sam-
pled from the true distribution. Thus, if one repeats the
simple sampling many times, one can collect many work
values and calculate a histogram to approximate the full
distribution. Nevertheless, running the simple sampling
K times, will one only allow to resolve probabilities larger
or equal to 1/K in the histogram.

In order to access the work distribution down to very
small probabilities, the following is done: A Markov chain
Monte Carlo (MCMC) simulation is employed, where the
states of the simulation are represented by samples ξ(t)

of the random vectors that drive the RNA unfolding or
folding simulations. Thus, each state of the Markov chain
corresponds to exactly one instance of a full process con-
sisting of starting with an initial state in equilibrium and
performing a, typically fast, non-equilibrium process dur-
ing which the force is changed. The system has a bit of
time to relax between two force changes. In the end,
a work value W = W (ξ(t)) is obtained. Therefore, the
MCMC simulation takes place on a higher level than the
unfolding or refolding simulations. Now, the main idea
is to include a bias in the MCMC simulation, which in-
volves a Metropolis acceptance depending on the change
in the resulting work.

To be more precise, say we have the current state
ξ(t) with work W (t) = W (ξ(t)) in the MCMC simula-
tion. First, a trial state ξ′ is generated, by copying ξ(t)

and then redrawing a number nξ < K of randomly se-
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lected entries from the K entries of ξ′. Next, a com-
plete work process is performed for ξ′, which results in
the measured work W ′ = W (ξ′). The trial state is then
accepted, i.e., ξ(t+1) = ξ′ with Metropolis probability
p̃Metr = min{1, exp(−∆W/Θ)}, where ∆W = W ′−W (t)

is the change in work and Θ is a temperature-like con-
trol parameter. Otherwise, the trial state is rejected, i.e.,
ξ(t+1) = ξ(t). Note that an empirical acceptance rate of
around 0.5 is aimed for, such that nξ is typically small
for small values of Θ and larger for larger values of Θ.
Actual values are given below.

Since the setup of the MCMC simulation is like any
standard MCMC approach for a system coupled to a
heat bath, only that the energy is replaced by the work
and Θ is used for the temperature, it is obvious that
our approach will sample the true work distribution but
including a bias which is exactly the Boltzmann factor
∼ exp(−W/Θ). As usual, the initial phase of the Markov
chain, i.e., the equilibration phase, is discarded and sam-
ple values are drawn only at suitable large time intervals.
Thus, one can in principle perform simulations for a given
value of Θ, measure a histogram approximating the bi-
ased distribution PΘ(W ) ∼ P (W ) exp(−W/Θ) and ob-
tain an estimate for the true distribution P (W ) by mul-
tiplication with exp(+W/Θ), up to a normalization con-
stant. Note that, technically, to resolve the distribution
over a large range of the support, one needs to perform
simulations at several suitably chosen values of the con-
trol temperature Θ, get the normlization constants for all
measured histograms and combine them into one single
finally normalized histogram [29]. Details, in particular
for the case of the work distribution of on Ising model in
an external field, can be found elsewhere [37]. This ap-
proach has already been applied to other non-equilibrium
processes like the Kardar-Parisi-Zhang model [36] or traf-
fic flows [35].

Note finally, that if one aims at using a more realistic
(free) energy model for the RNA calculations, it would
not be possible to just use existing packages like mfold
[42], Sfold [43], RNAstructure [44], or the Vienna RNA
Package [40] because they use random number generators
internally and do not allow for feeding in vectors ξ of
numbers to be used.

IV. RESULTS

An RNA sequence is considered, which is not too
small, such that differences between equilibrium and non-
equilibrium secondary structure configurations can be
observed with suitable resolution. Concretely, we studied
a hairpin structure of length L = 100 which has the se-
quence (AC)25(UG)25, resulting in a ground state of one
large stack with a small loop. This sequence is choosen
because hairpins are common secondary structure ele-
ments of RNA, which have been studied frequently exper-
imentally not only in thermal equilibrium [51], but also
in direct use to verify Crook’s Theorem and the Jarzyn-
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FIG. 2. Exemplary equilibrium secondary structures at T = 1
for different forces. Top: f = 0. Middle: f = 0.805. Bottom:
f = 2. Drawn with the VARNA package [50].

ski Relation [26, 27] by folding and unfolding hairpins by
mechanical force. Hairpins are likewise used in simula-
tions that aim to reproduce experimental results [28, 52].
Also numerically, an exponential increase of the unfold-
ingtime with the hairpin stem length was observed, while
the folding time is almost independent of stem and loop
length [53]. This shows that the thermodynamic behav-
ior can be complex, making it an ideal candidate for our
study. One the other hand, the fluctuations in force-
extension curves decrease with the number of hairpins in
the overall secondary structure, due to a compensation
effect [45]. Finally and interestingly, due to its simple
structure, there even exists an analytical solution of the
partition function in the limit of large L for a hairpin
structure [54].

For the studied RNA size of L = 100, the application
of large-deviation algorithm is necessary to measure the
work distribution with suitable accuracy such that the
theorems of Jarzynski and Crooks can be applied and
the unfolding and refolding histories can be captured.

We considered the RNA to be coupled to a heat bath
at temperatures T = 0.3 and T = 1, respectively. These
are low enough temperatures, such that in the force-free
case, the RNA is basically folded, but exhibits thermal
fluctuations. Example equilibrium secondary structures
are shown in Fig. 2. It becomes apparent how the exten-
sion increases with the force parameter f .

For all unfolding and refolding processes, the force
was increased from f0 = 0 to fmax = 2 and vice versa,
with 400 steps each. Thus, the change of the force was
∆f = ±0.005. Two different speeds of the processes were
simulated, i.e. two different numbers nMC of sweeps per-
formed during the process, here nMC = 8 and nMC = 16.
This can be compared to typical time scales needed to
equilibrate RNA secondary structures of the hairpin us-
ing the MC approach, while beginning from an empty
structure. We performed some tests and found that for
T = 1 and f = 0 the hairpin structure finds typical con-
figurations (as measured by the overlap, see Sec. IV C)
in about 1000 sweeps while for T = 0.3 it takes roughly
40000 sweeps. Thus, our non-equilibrium processes are
fast compared to the equilibration time. Table I shows
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the other simulation parameters we have used.

T nMC f nΘ Θmin Θmax nξ,min nξ,max tld/108

0.3 8 0→ 2 17 0.6 7 938 9× 104 5.44

0.3 8 2→ 0 10 0.4 2 1587 6× 104 4.05

0.3 16 0→ 2 18 0.6 8 1407 12× 104 2.50

0.3 16 2→ 0 10 0.457 2 2557 9× 104 1.82

1 8 0→ 2 11 0.8 10 354 6× 104 6.95

1 8 2→ 0 13 1 5 1350 6× 104 2.81

1 16 0→ 2 11 0.8 10 938 75× 102 4.41

1 16 2→ 0 10 0.8 5 2344 12× 104 2.35

TABLE I. Simulation parameters for different temperatures
T , for different process speeds nMC and unfolding (f = 0→ 2)
and refolding (f = 2 → 0) processes. For the large-deviation
MCMC simulation nΘ different values of the temperature-
like parameter Θ ∈ [Θmin,Θmax] were considered. In each
MCMC step a number nξ ∈ [nξ,min, nξ,max] of entries from
the vectors ξ of random numbers are changed. For the lowest
value of Θ we have nξ = nξ,min, for the largest nξ = nξ,max,
for the others in between. The total number of MCMC steps
in the large-deviation simulation was always larger than the
given values tld, the actual values depending on the value of
Θ and on the available computing time on the computing
cluster, respectively. The longest running time occurred for
the unfolding (forward) process T = 1, nMC = 8 and took
tld = 14.5× 108 steps.

A. Work distributions

In Fig. 3 the work distributions P (W ) of the forward
and Prev(−W ) of the reverse processes are shown for the
case T = 1 and nMC = 16. With the application of the
large-deviation scheme, very small probabilities down to
10−26 could be resolved, i.e., over 26 orders in magni-
tude. The crossing of the distributions at a work value
W = ∆F predicted by the theorem of Crooks [2] can
be well observed. For the present model, because the
partition function can be calculated exactly numerically,
we are able to obtain ∆F = 1/T log{Z(f = f0)/Z(f =
fmax)}. Apparently, the data matches the expectations
from Crooks theorem with high precision.

Crooks relation means that when Prev(−W ) is rescaled
according the exponential exp(−(∆F −W )/T ), it equals
P (W ). This is also confirmed very convincingly by our
data over up to 15 decades, as shown in the inset of Fig. 3.
This in particular shows that our higher-level MCMC
simulation is well equilibrated [37]. Similar results were
obtained for the faster nMC = 8 process (not shown).

In Fig. 4 the corresponding results for the lower tem-
perature T = 0.3 (nMC = 16) are shown. Again, Crooks
theorem is confirmed with high precision. For the case
nMC = 8 (not shown) the distribution even reaches prob-
abilities as small as 10−46.
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FIG. 3. Plain and mirrored work distributions for T = 1 and
16 sweeps of the forward and reverse process, respectively.
They intersect near W = ∆F , which is the exact value and
indicated by the vertical line. The inset shows the same plot
but with the distribution for the reverse process (cross sym-
bols) rescaled as Prev(−W ) exp(−(∆F − W )/T ), according
to the equation of Crooks, yielding a good agreement with
P (W ).

B. Jarzynski Integrand

The integrand of 〈e−W/T 〉 =
∫
dWP (W )e−W/T is

shown in Fig. 5, for T = 1, nMC = 8 and forward and
reverse work processes, respectively. The point where
the integrand peaks is exponentially relevant and can
be used to approximate the integral. Here this is the
value W ∗J ≈ −172 This, together with its probability,
determines according to Jarzynski’s equation the free
energy difference via P (W ∗J )e−W

∗
J /T ≈ e−∆F/T , i.e.,

∆F = W ∗J − T logP (W ∗J ), which explaines the notable
difference of W ∗J from ∆F .

C. Similarity to equilibrium

Our results allow us to go beyond calculation of dis-
tributions and study the actual dynamic processes. This
is in particular possible when conditioning to any value
of W . We concentrate now on T = 1, the results for
T = 0.3 are similar. During a forced process, we sampled
structures, one for each considered value of f , in equilib-
rium and in non-equilibrium ensembles, respectively. To
compare two sampled structures S and S ′ from either of
both ensembles, we define an overlap σ, which runs over
all bases of the sequence, and counts 1/L if for both struc-
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FIG. 4. Plain and mirrored work distributions for T = 0.3
and 16 sweeps of the forward and reverse process, respec-
tively. They intersect near W = ∆F , which is the exact value
and indicated by the vertical line. The inset shows the same
plot but with the distribution for the reverse process (cross
symbols) rescaled as Prev(−W ) exp(−(∆F −W )/T ), accord-
ing to the equation of Crooks, yielding a good agreement with
P (W ).

tures the base is not paired or if for both structures it
is paired with the same base. Otherwise zero is counted.
By using the equivalent notations {s(i)} and {s′(i)} for
the pairing partners of the residues (0 if not paired), the
overlap is given by

σ(S,S ′) =
1

L

L∑
i=1

δs(i),s′(i) (9)

where the Kronecker delta is given by δk,l = 1 if k = l
and δk,l = 0 else. Thus, the overlap equals one when
S,S ′ denote the same secondary structure, and zero when
they are completely different. Overlap quantities are used
frequently to determine order in complex systems, e.g.,
spin glass [55].

Fig. 6 shows average non-equilibrium profiles σ(f), i.e.,
averaged overlaps σ as function of f , where in the cal-
culation of the overlaps one structure is a given non-
equilibrium sample of a forward or a reverse process and
the other structure is a sampled equilibrium structure.
The average is always taken over many equilibrium struc-
tures. Thus σ(f) also reflects the fluctuations of the con-
figurations, both those arising from the ensemble where S
and S ′ are taken from. For comparison in all plots the av-
erage equilibrium profile is shown, where both structures
are sampled from equilibrium. Our results show that
folded structures at low force value f are characterized
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FIG. 5. Jarzynski integrand of the forward process for 8
sweeps at T = 1. Inset: Same for the reverse process, in
which the maximum is not reached. Error bars are smaller
than symbol sizes.

by a variety of secondary structures, while at high values
of f , where the RNA is basically stretched, the secondary
structures are very similar to each other. Note that for
the reverse trajectories in the non-equilibrium case, the
overlap is for f → 0 slightly higher than the equilibrium
value. This is probably due to the fact that the non-
equilibrium trajectories contributing the structures S ′ to
σ are selected with respect to the work W , i.e., they rep-
resent a sub ensemble with an almost fixed work value.
Thus, they overall fluctuate less as compared to the equi-
librium structures, where the work fluctuates more. We
see that for typical work values, i.e., where P (W ) and
Prev(W ) peak, in particular for the forward process, large
differences for non-equilibrium profiles compared to the
average equilibrium profile occur. For work values near
the region W = ∆F and W = W ∗J on the other hand,
a higher similarity is observed, i.e., these very rare non-
equilibrium processes enroll close to the equilibrium ones.
Note that in Fig. 6 we actually show the non-equilibrium
trajectories in between W = ∆F and W = W ∗J for
W ≈ −139 , which exhibit the largest overal similarity
to the equilibrium profiles, which is defined next.

We quantify the similarity Iσ of the non-equilibrium
processes to the equilibrium case by integrating over all
force values f the absolute difference of σ(f) between the
equilibrium and non-equilibrium case, and average this
integral over close-by values of W , i.e., obtaining Iσ(W ).
The result is shown in Fig. 7, in which rather larger dif-
ferences for typical values of W are observed. This is in
particular true for the forward process, see also Fig. 6.
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FIG. 6. Average non-equilibrium overlap profiles σ(f), i.e.
between one non-equilibrium and one equilibrium structure,
for some sample processes at T = 1 and 16 sweeps, with men-
tioned non-equilibrium work values W . The solid line is the
averaged equilibrium overlap, i.e., between two equilibrium
structures, respectively. Top row: forward process for typ-
ical (left) and very rare (right) values of W . Bottom row:
the same for the reverse process. Error bars are smaller than
symbol size.

The reason is that for each sequence of nested pairs only
the first-level pair is subject to the force. Thus, when
increasing the force, opening pairs below the first level
pair it is energetically not favorable. Thefore, basically
one pair must be openend after the other, while the re-
minder of the structure will not change much. Thus, the
structure is opened like a zipper, but due to the ran-
dom update order this takes a while. On the other hand
when f → 0 is decreased, any formed pair will decou-
ple a certain subsequence from the force, which creates
many potential pairs which are energetically favorable.
This leads to faster folding as compared to unfolding in
non-equilibrium.

Next, near W ≈ ±∆F the similarity is of the order
of the similarity I0 obtained by averaging Iσ over many
independent equilibrium processes, which represents the
equilibrium fluctuations. Also the forward processes sam-
pled for work values near the value W ∗J ≈ −170 where the

Jarzynski integrand P (W )e−W/T peaks exhibit a high
similarity to the equilibrium case. Note that for the re-
verse process, the value of W ∗J occurs outside our sampled
region, thus we do not have processes for this case. For
the slower case of nMC = 16 sweeps, i.e., a bit nearer
to equilibrium, the location minimum moves closer to
∆F and even decreases in height towards the equilibrium
value I0.

Thus, our results show that the rare processes near
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non-equilibrium overlap profiles at T = 1, for forward (left)
and backward (right) processes. For 16 sweeps the data is
only partially shown, for better visibility. The horizontal line
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J

of the Jarzynski integrand, the free energy difference ∆F , the
maximum W typ

f of the forward process work distribution, the
negative free energy difference −∆F and the maximum point
W typ
r of the reverse process work distribution.

W = ±∆F do not only have similar work values like
the equilibrium processes, they exhibit also very similar
sequences, as function of the force f , of sampled struc-
tures. We obtained a similar result when considering
force-extension curves, see SM.

D. Force-extension curves

In addition to the overlap profiles σ(f) presented be-
fore, we also used force extension curves (FECs) n(f) to
compare processes for equilibrium and non-equilibrium
situations. Note that the extension n(S) of a structure
can be very much influenced by single base pairs. Thus
two processes, which look very similar on the level of sec-
ondary structures, can be very different with respect to
force-extension curves.

Samples for equilibrium and non-equilibrium FECs for
forward processes, along with corresponding averages,
are shown in Fig. 8. For the equilibrium case, a sig-
moidal form can be observed, with some fluctuations,
and a strong change near the critical force value, where
the folding-unfolding transition takes place [25]. For the
non-equilibrium case, the typical FECs, i.e., with typical
work values W far from ∆F , agree only for small values



10

 0

 20

 40

 60

 80

 100

 0  0.5  1  1.5  2

Mean: Forward

n

f

Eq.

∆ F, n
MC
   =16

∆ F, n
MC
   =8

Typ., n
MC
   =16

Typ., n
MC
   =8

 0

 20

 40

 60

 80

 100

 0  0.5  1  1.5  2

Equilibrium

n

f

W= -122.03
W= -123.25
W= -122.57
W= -122.82

W= -123.5
Equilibrium

 0

 20

 40

 60

 80

 100

 0  0.5  1  1.5  2

W≈∆F: Forward

n

f

W= -122.33
W= -122.92
W= -123.03
W= -122.89
W= -122.66
Equilibrium

 0

 20

 40

 60

 80

 100

 0  0.5  1  1.5  2

Typical: Forward
n

f

W= -16.02
W= -16.07
W= -14.61
W= -15.24
W= -15.51

Equilibrium

FIG. 8. Top left: Mean FECs, in equilibrium as well as in
non-equilibrium for typical forward processes and for work
values near ∆F , for two different numbers nMC of sweeps at
T = 1. Top right: Samples of such single FECs in equilibrium.
Bottom left: samples of non-equilibrium FECs with nMC =
8 for W near ∆F . Bottom right: samples of typical non-
equilibrium FECs, i.e., where W � ∆F , with nMC = 8. The
solid line represents always the mean equilibrium FEC.

of f , i.e., in the initial phase of the process. On the other
hand, the rare processes with W close to ∆F , where five
different examples are shown here, are much more sim-
ilar to the equilibrium FECs. Here, differences appear
mainly near the critical folding-unfolding force.

Samples for equilibrium and non-equilibrium FECs for
backward processes, along with corresponding averages,
are shown in Fig. 9. The results correspond to the for-
ward case, but the processes with typical values of W
agree well with the average equilibrium FEC only for
large values of f but not for small values of f . This
means they also agree in the initial phase of the pro-
cess, before the critical folding-unfolding force value is
reached. The FECs for work values W ≈ ∆F are also for
reverse processes much more similar to the equilibrium
case than typical reverse processes.

These results are confirmed by averaging the absolute
value of the differences between one FEC n(f) and the
mean equilibrium FEC nEq(f) over all available values of
the force f , i.e., calculating In = [ 1

nf

∑
f |n(f)−nEq(f)|]

where the average [. . .] is over different realisations of
n(f). Even when considering equilibrium FECs for n(f),
respectively, there is some variation reflected by a non-
zero average value I0. When using non-equilibrium
FECs, with a specified binned value of W , one sees
stronger differences, as visible in Fig. 10. Similar to
Iσ, the closest agreements between non-equilibrium and

equilibrium are seen near W ≈ ∆F . In contrast to Iσ

the level of the equilibrium fluctuations is not reached for
the measurable quantity FEC.

V. DISCUSSION

RNA unfolding and refolding in equilibrium and in
non-equilibrium for one particular RNA sequence have
been studied. For the non-equilibrium case, by using so-
phisticated large-deviation algorithms, we could access a
large range of the support of the probability distribution
for the work. This allowed us to confirm the theorems
of Crooks and Jarzynski over several dozends decades in
probability. Furthermore, we analyzed the trajectories
in force-extension as well as in secondary-structure space
conditioned to various values of W . It was observed that
near the most relevant, but very improbable, values of
W , the sampled trajectories reach a high similarity with
true equilibrium. Thus, the study here does not depend
on assigning a time-dependent weight to the trajectories
as, e.g., in Refs. [21, 23, 24], the selection is solely by
the total work performed during the process and suitably
evaluating fluctuation theorems. Also no other particular
similarity to equilibrium is enforced explicitly by our pro-
cedure. Our approach and results may open a pathway to
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learning not only about equilibrium characteristic scalar
numbers from non-equilibrium measurements, but even
investigating near equilibrium dynamics by performing
very fast but biased non-equilibrium simulations. We
anticipate that similar studies are feasible and useful for

many different types of systems.
Clearly, we have studied so far one particular RNA se-

quence. Although we expect that in general the closeness
of relevant rare-event trajectories to equilibrium carries
over, details on the result will certainly depend on the
actual sequence. One can imagine that there are biolog-
ical sequences which fold easily and thus evolve closer
to equilibrium anyway. On the other hand, there might
be more complex structures, e.g., arising from random
sequences, which have an even more complex behavior
than the hairpin. Here, it would be very interesting to
test whether our approach still works and, if yes, how
close the most relevant trajecories to equilibrium are in
this case.

For further studies, also beyond considering RNA sec-
ondary structures, one could also extend the approach,
by storing the configurations of the close-to-equilibrium
W ≈ ∆F generated rare trajectories. Starting with these
configurations, one could perform additional equilibrium
simulations at fixed force values, i.e., without performing
work, in the hope to get quickly close or even up to equi-
librium. We have run some test simulations which show
that one can indeed get even much closer to the equi-
librium behavior by applying this add-on equilibration,
apparently perfectly with respect to the force-extension
curves, but this also depends on the temperature. Here
more studies are needed, in particular a comparison of
how good one can equilibrate by just using secondary-
structure MC simulations when starting with empty con-
figurations, i.e., the extended structure without any base
pairs. Also it would be very interesting to see how these
results depend of the actual RNA sequence and the cor-
responding energy landscape.
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