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The distributions of work for strongly non-equilibrium processes ardistlusing a very general form of a
large-deviation approach, which allows one to study distributions of alarbétrary quantities of interest for
equilibrium, non-equilibrium stationary and even non-stationary presesshe method is applied to varying
quickly the external field in a wide rang@ = 3 « 0 for critical (7' = 2.269) two-dimensional Ising system of
sizeL x L = 128 x 128. To obtain free energy differences from the work distributions, thegtrba studied in
ranges where the probabilities are as small@s**°, which is not possible using direct simulation approaches.
By comparison with the exact free energies, which are available for tbdehfor the zero-field case, one sees
that the present approach allows one to obtain the free energy with &igéryelative precision of0~*. This
works well also for non-zero field, i.e., for a case where standarralla-sampling methods seem to be not so
efficient to calculate free energies. Furthermore, for the preseatites verified that the resulting distributions
of work for forward and backward process fulfill Crooks theoreiithvhigh precision. Finally, the free energy
for the Ising magnet as a function of the field strength is obtained.

PACS numbers: 05.70.Ln, 87.10.Rt, 82.20.Wt, 05.50.+q

Studying non-equilibrium work processes [1, 2] has be-for rather large systems exhibitimy = 1282 spins, but suc-
come a useful tool to extract information about physical sys cessfully only in the paramagnetic and in the ferromagnetic
tems. Particular useful are the Jarzynski relation [3] drel t phases, where the work distribution could be approximated
related Crooks theorem [4], which allow one to extract equi-very well by a Gaussian. At the critical point, it was only
librium information from non-equilibrium systems. Here, a possible to sample the work distribution reliably for velgvs
system in contact with a heat bath at temperafuigprepared and small changes of the field, making the direct application
initially in equilibrium, under the influence of some extatn of the approach not successful.

parameter3 = B,. Next itis driven out of equilibrium via  Ag it is shown in this work, the work distributions can
quickly [5] varying B = By — B, into another state, while  pe optained very reliably via large-deviation or importanc
performing some work?. The Jarzynski relation relates the sampling techniques [9], which are able to address large-
free energy differencel I” between theequilibriumstates at  geviation regions [10] of interest using bias functions ciSu
B = B; andB = B, to the workW performed during the  techniques have been previously applied numerically tdystu
non-equilibrium proces® = B, — Ba: work distributions for small systems [11, 12]. If one tasyet
not obtaining the full work distribution but is interesteasj
in free energy differences, it was suggested from results of
simulations [13] and analytical studies [14] of small model
, . ... systems, that applying work theorems cannot compete with
Whe_r_e <_' ) d_em_)tes_ the combined average over the Inltlaldirect umbrella-sampling techniques which explicitly @it
equilibrium distribution and all possible process paths.al the distribution of the energy over large ranges of the stppo
similar way, the theorem of Crooks relates the distribugioh Thus, these results were rather discouraging. Neverthgies
work P(WW) for the forward process and of the negated Workthe present work not only work distributions are obtainedrov
Prev(__W) fo'r.thg reverse process = B; — B, (where one 4 large range of the support, but it is also shown for a sam-
starts in equilibrium a3 = By) to the samel I via: ple strongly non-equilibrium process in a large system with
a non-Gaussian work distribution that a large-deviation-no
PW) LW AR)T @ equilibrium work-sampling approach turns out to give very
Bron(—W) : accurate results.

The algorithm presented in this work is a very general
Hence,P(W) and P,., (—W) should intersect d’* = AF.  “black-box” type approach which renders it applicable to
Unfortunately, the average of (1) and the region where tle tw study the distribution of almost any quantity of interest
distributions intersect areften dominated by exponentially for equilibrium, non-equilibrium stationary and even non-
small probabilities, making finite-sampling errors pautar  stationary processes. The algorithm is here applied to work
strong [6]. Thus, the author of this work is only aware of ap-distributions of the Ising model in a non-zero field. In previ
plications which exhibit either a small number of degrees ofous work the free energy could be obtained using umbrella-
freedom, or where the initial and final statBs= B;, B, are ~ sampling approaches for only rather small systems [15]s Thi
very similar to each other. E.g., for the Ising model in an ex-is in contrast to the zero-field case, where indeed umbrella
ternal field B, work distributions have been obtained [7, 8] sampling is most efficient. Here, the work distributions for
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the non-zero-field case are directly obtained down to proba- 1.5x10'4 T . . T T
bilities as small ag0~24° such that the Jarzynski relation (1) :
and Crooks theorem (2) can be directly evaluated. For this i
purpose, the explicit biased sampling not only over the path i
but also over the initial equilibrium distribution is inded ! % P

imulati rformed for a large range of freel 4L re("W) -rooeoeoe -
and simulations are performed for a large range of freely 1 .(0x10 A

adjustable bias weights, allowing do obtain the distritoosgi i %
over hundreds of decades in the probability. The simulation g Iy 4
are performed for large systems and strongly non-equilibri 5~ . 1 i
paths. P, :35 ‘;
The ferromagnetic Ising model in a field > 0 is studied 5.0x10™ F { N=1282, Bax=3 FEAE
here, given by a set a¥ Ising spinss; = +1 and described i N % g ¥
8i8j — 327 s;. The i § b t
+
b

by the Hamiltoniand = —J3-, i
first sum runs over all bonds connecting neighboring sites of
a square lattice of siz, i.e., N = L x L. Periodic boundary i & M
conditions are applied in both directions. The system is cou O.OXIOO it . i !
pled to a heat bath at temperatdie= 2.269, about the critical -50000 -40000 -30000 -20000 -10000
temperature for the ferromagnet-paramagnet phase ti@msit

Next, the numerical approaches are described. Processes W
were considered, where the system is started in equilibrium
and withinni.. steps the field is changed. For tfeeward  FiG. 1: Simple-sampling distributio® (W) of work for an Ising
process it was increased froM = 0 t0 B = Byax, 1.€.,  system withN = 1282 spins for the forward3 = 0 — 3 and the
in each step byAB = Bpax/Niter- Thus, during each mirrored distributionP.., (— W) for the reverse proceds = 3 — 0.
stepl the workW; = — >, s;AB was performed, the to-
tal work is W = 3, W,;. After each field increment, one
sweep of a Monte Carlo (MC) simulation [16] with single-
spin flip Metropolis dynamics was performed. Hence, in each The algorithm presented here is different compared to well-
sweep,V times a spin was randomly chosen and a spin flipknown algorithms as, e.g., the “cloning” approach [19-21],
exhibiting an energy changA H, was accepted with prob- and consists of a second MC-simulation level. Each config-
ability min{1, exp(—AH/T)}. The initial equilibrium con- uration is represented by a vector= (&1,&s, ..., &) of
figuration was obtained by starting in a random configuratiorsuitable lengthM (see below). The basic idea is that the
and performing 1000 steps of the Wolff cluster algorithm]|[17 entries of¢ are random variables uniformly distributed in
which should ensure equilibration since the auto-cori@tat [0, 1], which are used to feed the random process under in-
time for this algorithm is of the order of ~ 10 at 7. [18].  vestigation. Hence, e.g., when performing the work distrib
Also for B,.x = 3 thereverseprocess was considered where tions, the random decisions are not based on numbers drawn
the system was started in equilibrium8t= B, and the from random number generators, but, in a defined manner,
processB = B,ax — 0 is performed in an analogous way as on the entries of. Here, for the forward process, the first
for the forward process. Since the equilibrium configunatio nwe (2N + 1) entries are used to feetyw,x = 10 iter-
for this case is almost fully magnetized at this large valtie oations of the Wolff algorithm, starting from a precomputed
B = Bpax (typically 0.002N spins are flipped), the initial (1000 Wolff iterations) equilibrium configuratios(?). This
configurations were obtained by starting with all spins ug an allows to sample the equilibrium distribution prior to thenrk
performing one sweep of the single-spin flip dynamics priorprocess. Each Wolff iteration consist of choosing one seed
to the B = Bpax — 0 process. spin (consuming one entry @) plus a cluster growth, where

For the caseV = 1282 and10° independent simulations, possibly for each of th@ N bonds it has to be decided ran-
the histograms? (V) of work for the forward andP,e, (— V) domly whether it is “activated” or not, for details of the \ifol
for the reverse process are shown in Fig. 1. According taalgorithm see Ref. [17]. Note that each bond is assigned
the theorem of Crooks, the two histograms should interseca specific entry ot (for each Wolff iteration, respectively),
at W* = AF. This appears to be somewhere betweenndependent of whether the bond is tried to be activated or
W = —50000 andW = —45000, which on the first sight not. Next, then;., work sweeps are performed, consisting
is only a small interval compared the support of the distri-of n;., — 1 single-spin-flip MC sweeps (the last sweep af-
bution P(W) visible in Fig. 1. Nevertheless, the probabili- ter the final field increment can be omitted), where for each
ties become so small, that it is impossible to see the interse sweep2N entries of¢ are consumed, one for randomly se-
tion using any feasible number of standard simulations.rundecting a spin, and one for the Metropolis criterion (also if
Actually, as it is shown below, the crossing appears whereAH < 0). Hence, for one full procesd/ = nwor(2N +
P(W) = Prey(—W) &~ 10757, Hence, numerical large devi- 1) + (njer — 1)2N entries, corresponding to random num-
ations techniques have to be used, to address this region.  bers, are used. For the reverse process, where no Wolff algo-




rithm is used,M = 2N + (njter — 1)2N = nie,2N. Each
process fed by results in a worki?V (¢). Now, the second-
level MC consist of changing a small number (here 400)
of the entries off, each drawn again uniformly froro, 1],
leading to a “trial configuration” with corresponding work

W (¢). The new configuration is accepted with the Metropo-
lis probabilitymin{1, exp(— (W (¢') — W (€))/Tuc)}, other- 107 |
wise ¢ is kept for the next second-level MC step. Thus, the <
observed distribution of work will exhibt a Boltzmann bias &

Pryo (W) ~ P(W)e~"W/Tuc | Note thatTyc is a freely ad- 10150

N
justable parameter, different from the temperatiiref the N
Ising system, which allows to center the observed distidlout N

-200
in different regions. Therefore, by performing the simidat 10

for different values oflic such that the resulting distribu- + -47500 -47400;
tions Pr,,. (W) overlap, one can reconstruct the desired dis- 0250 - . . . 1
tribution P(1V) via reweighting and gluing the distributions

together [22]. Note that instead of using a Boltzmann bias fo -48000 -46000 -44000
the observed work, one could also use an umbrella sampling W

on the¢ vectors to obtainP (1) directly. However, this was

tried during the present work extensively, but the Boltzman

bias Was_ more efficient. . tion for the reverse process f@ = 0 — 3, L = 128. According to
Se_en 'n_ an abstract manner, _the appr_oagh 1S ba§ed 0Ny theorem of Crooks, these distributions are expected to intersect

configuration vectog, an evaluation functior (§), a sim- gt w* = AF signifying the free-energy differencAF. The ex-

ple dynamics changing the configuration vector to cread tri act free-energy difference is indicated by the vertical line. The inset

vectors¢’ and a Metropolis criterion (involving “tempera- shows a blow up of the intersection region.

ture” Tyic), which acceptst based onH (£) and H(¢').

All problem-specific details are included in the functiéh
Hence, if/7 was the energy of a spin system, then the secondspin excitations. Hence, the free energy is given Nja =
level MC would be a standard MC simulation. BHt can Tlog (e@+BN/T [1 i ZN (N) oxp— (8+2B)k/T
represent almost any process, like for the present apjalitat & k=1 \k) XP '
where it states the workd” arising from an equilibrium sam-
pling followed by a strongly non-equilibrium work process. ™ = * ) )
Using this general view on the large-deviation simulation, Significantly. ForL = 128, B = 3.0, this results in
is clear that the approach can be applied basically to any equ = £5 — Fo &~ —47433. Thus, the relative deviation of
librium, non-equilibrium stationary and even non-station the estimated from the exact free energy difference is only
process which transforms a vector of a random numbers int&AF — W7)/AF = 0.0002.
a measurable result, independent of how involved this trans To verify whether the data fulfills Crooks theorem (2), the
formation is. Hence, the approach should be applicabdeyo histogram for the reverse process was rescaled accordingly
random process which can be simulated on a computer. see Fig. 3. This is confirmed by the data with high precision.
For the simulations, a number betweenZ, (. = 0.25) Note that testing Crooks theorem may also convenientlyeserv
and 37 Buax = 3) of temperaturedc € [1.5,200] were ~ as a check that the second-level MC simulations are equili-
considered. The spacin§Tyic between the MC tempera- brated.
tures ranged from 0.1 for low values @k up to 100 for To obtain A F' using the Jarzynski relation (1), the integral
larges values. For each value®fic, 10° MC trials were per-  (exp(—W/T)) = [exp(—W/T) P(W)dW has to be eval-
formed, taking about 6 hours on a core of standard 2.66 GHurated, resulting i\F" ~ —47438, which has a relative de-
Intel Westmere processor, i.e., juist x 6 = 222 core hours  viation 0.0001 from the exact result. The integrand is shown
for the strongest field,,.x = 3. in Fig. 4. Note that only the region close to the peak around
Concerning the analysis of the simulation leading to thie ful W = —48100 contributes significantly to the integral, which
work distribution, the intersection region of the distitloms  deviates much from the point whe@®(W) and Pre, (—W)
of work for the forward and reverse processes are showintersect. Nevertheless, one has to obtain the full digtioin
in Fig. 2 for B,ax = 3. The two distributionsP(WW) and  in a region ranging from its peak valueldt = —42000 down
Pev (=) intersect atiV* ~ —47443. For comparison, toW = —48200 to getP(W) right. For the reverse process,
also the exact free energy difference was obtained. For ththe evaluation (see inset of Fig. 3) resultsHAF' = 47450,
zero-field case, the exact free eneigyis known analytically  which deviates by a factor ai.0004 from the exact value.
[23] for finite-size systems. For the caBe> 0, if B is large,  Note that one has to obtai}.. (1¥) over an even broader sup-
the system is almost fully magnetized, except for a few singl port, which is probably the reason for the somehow smaller

FIG. 2: Distribution of works for the forward and mirrored distribu-

where only few terms of the sum around the typical number
k of excited spins (abou®.002N for B = 3) contribute
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FIG. 3: Distribution of works for the forward and rescaled-mirrored
distribution for the reverse process. The inset exhibits the integran
Prey (W) exp(—W/T) used to obtainexp(—W/T)) from the re-
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which is based only on a Markov-chain evolution of a vector
of entries from the interval0, 1], seen as an input vector of
random numbers to an arbitrary stochastic process, which ca
be treated as a black box within the approach.

Here, high-precision determination of work distributions
for Ising magnets in a field were performed, for large sys-
tems and strongly non-equilibrium processes, hence fascas
where traditional direct approaches for measuring workidis
butions completely fail. In the past only close-to equililon
processes could be studied with small accuracy [7, 8]., Still
the path sampling applied here is very general, since ndlsleta
of the path construction have to be known to efficiently sam-
ple the corresponding work distribution down to probalgist
as small as0~24°, This contrasts the approach with previ-
ous problem-specific yet quite successful techniquesttike
“shooting approach” [24] or “cloning” [19-21].

The work distributions are used to extract free energy diffe
ences for Ising systems in a field using the Jarzynski relatio
[3] and the theorem of Crooks [4]. Note that for determin-
ing the free energy of the Ising systemithout a field very
good other approaches exist. Using the convenient Wang-

andau umbrella sampling [25], the free energy was deter-
mined very accurately for systems of side= 2562. Based
on measuring the large-deviation properties of the number
of components for Fortuin-Kasteleyn clusters even systems

9100
10 ' ' of size N = 1000 could be treated [26]. Recently it was
109050 claimed [13] that. in general umbrella—sampling approaches
should be superior or at least equally efficient as applying
100000 large-deviation techniques to work distributions to measu
free-energy differences. Nevertheless, for the presermtyst
— 108950 of an Ising system# a field using umbrella-sampling only
§ sizes of N = 422 could be studied so far [15], about ten times
& 103900 smaller than the sizes addressed in the present study. Hence
E for certain systems, e.g., for an Ising magnet in a field, al-
Q1380 most the full work distribution can be determined using the
3800 present approach. But even aiming only at determining free
10 energy differences, the present very general approachtmigh
8750 be superior to highly-evolved existing techniques. The ob-
10 i i
served failure of Refs. [13, 14] might be due to the fact that
103700 there only very small systems could be studied. Also it could
48000 47000 46000 be due to the specific “shooting” algorithm [24] which might
not be most suitable for fully random processes. Finally, fo
w some past studies also single [12] or very many [11] specific
bias functions where used, while here a Boltzmann reweight-
FIG. 4 Integrand P(W)exp(—W/T) used to obtain N9 for few selected weights was performed, which allows to

address different regions of interest independently.
Due to the black-box structure of the algorithm presented
here, it allows to study equilibrium, non-equilibrium stet-
ary and even non-stationary systems. Hence, for future work
many applications of this algorithm can be anticipated.
accuracy compared to the forward process. The author is grateful to Andreas Engel for useful dis-
The forward process was performed for different values ofcussions and critically reading the manuscript. The au-
Biax, see inset of Fig. 4. The amount by whiéh¥'/N is  thors thanks Oliver Melchert for also critically readingeth
larger thanB,.x describes the entropy loss due to the align-manuscript. The simulations were performed on the HERO
ment of the spins to the field. cluster of the University of Oldenburg jointly funded by the
To summarize, a biased sampling approach is introduced)FG (INST 184/108-1 FUGG) and the ministry of Science

(exp(—=W/T)). Inset: Resulting free energy differenc&F
per spinN (minus Bn,ax) a@s a function of the final magnetic field
Bmax for the forward process.
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