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The distributions of work for strongly non-equilibrium processes are studied using a very general form of a
large-deviation approach, which allows one to study distributions of almostarbitrary quantities of interest for
equilibrium, non-equilibrium stationary and even non-stationary processes. The method is applied to varying
quickly the external field in a wide rangeB = 3 ↔ 0 for critical (T = 2.269) two-dimensional Ising system of
sizeL×L = 128× 128. To obtain free energy differences from the work distributions, they must be studied in
ranges where the probabilities are as small as10−240, which is not possible using direct simulation approaches.
By comparison with the exact free energies, which are available for this model for the zero-field case, one sees
that the present approach allows one to obtain the free energy with a veryhigh relative precision of10−4. This
works well also for non-zero field, i.e., for a case where standard umbrella-sampling methods seem to be not so
efficient to calculate free energies. Furthermore, for the present case it is verified that the resulting distributions
of work for forward and backward process fulfill Crooks theorem with high precision. Finally, the free energy
for the Ising magnet as a function of the field strength is obtained.

PACS numbers: 05.70.Ln, 87.10.Rt, 82.20.Wt, 05.50.+q

Studying non-equilibrium work processes [1, 2] has be-
come a useful tool to extract information about physical sys-
tems. Particular useful are the Jarzynski relation [3] and the
related Crooks theorem [4], which allow one to extract equi-
librium information from non-equilibrium systems. Here, a
system in contact with a heat bath at temperatureT is prepared
initially in equilibrium, under the influence of some external
parameterB = B1. Next it is driven out of equilibrium via
quickly [5] varyingB = B1 → B2, into another state, while
performing some workW . The Jarzynski relation relates the
free energy difference∆F between theequilibrium states at
B = B1 andB = B2 to the workW performed during the
non-equilibrium processB = B1 → B2:

〈e−W/T 〉 = e−∆F/T , (1)

where 〈. . .〉 denotes the combined average over the initial
equilibrium distribution and all possible process paths. In a
similar way, the theorem of Crooks relates the distributions of
work P (W ) for the forward process and of the negated work
Prev(−W ) for the reverse processB = B2 → B1 (where one
starts in equilibrium atB = B2) to the same∆F via:

P (W )

Prev(−W )
= e(W−∆F )/T . (2)

Hence,P (W ) andPrev(−W ) should intersect atW ∗ = ∆F .
Unfortunately, the average of (1) and the region where the two
distributions intersect areoften dominated by exponentially
small probabilities, making finite-sampling errors particular
strong [6]. Thus, the author of this work is only aware of ap-
plications which exhibit either a small number of degrees of
freedom, or where the initial and final statesB = B1, B2 are
very similar to each other. E.g., for the Ising model in an ex-
ternal fieldB, work distributions have been obtained [7, 8]

for rather large systems exhibitingN = 1282 spins, but suc-
cessfully only in the paramagnetic and in the ferromagnetic
phases, where the work distribution could be approximated
very well by a Gaussian. At the critical point, it was only
possible to sample the work distribution reliably for very slow
and small changes of the field, making the direct application
of the approach not successful.

As it is shown in this work, the work distributions can
be obtained very reliably via large-deviation or importance-
sampling techniques [9], which are able to address large-
deviation regions [10] of interest using bias functions. Such
techniques have been previously applied numerically to study
work distributions for small systems [11, 12]. If one targets
not obtaining the full work distribution but is interested just
in free energy differences, it was suggested from results of
simulations [13] and analytical studies [14] of small model
systems, that applying work theorems cannot compete with
direct umbrella-sampling techniques which explicitly obtain
the distribution of the energy over large ranges of the support.
Thus, these results were rather discouraging. Nevertheless, in
the present work not only work distributions are obtained over
a large range of the support, but it is also shown for a sam-
ple strongly non-equilibrium process in a large system with
a non-Gaussian work distribution that a large-deviation non-
equilibrium work-sampling approach turns out to give very
accurate results.

The algorithm presented in this work is a very general
“black-box” type approach which renders it applicable to
study the distribution of almost any quantity of interest
for equilibrium, non-equilibrium stationary and even non-
stationary processes. The algorithm is here applied to work
distributions of the Ising model in a non-zero field. In previ-
ous work the free energy could be obtained using umbrella-
sampling approaches for only rather small systems [15]. This
is in contrast to the zero-field case, where indeed umbrella
sampling is most efficient. Here, the work distributions for



the non-zero-field case are directly obtained down to proba-
bilities as small as10−240 such that the Jarzynski relation (1)
and Crooks theorem (2) can be directly evaluated. For this
purpose, the explicit biased sampling not only over the paths
but also over the initial equilibrium distribution is included
and simulations are performed for a large range of freely
adjustable bias weights, allowing do obtain the distributions
over hundreds of decades in the probability. The simulations
are performed for large systems and strongly non-equilibrium
paths.

The ferromagnetic Ising model in a fieldB ≥ 0 is studied
here, given by a set ofN Ising spinssi = ±1 and described
by the HamiltonianH = −J

∑

〈i,j〉 sisj − B
∑

i si. The
first sum runs over all bonds connecting neighboring sites of
a square lattice of sizeL, i.e.,N = L×L. Periodic boundary
conditions are applied in both directions. The system is cou-
pled to a heat bath at temperatureT = 2.269, about the critical
temperature for the ferromagnet-paramagnet phase transition.

Next, the numerical approaches are described. Processes
were considered, where the system is started in equilibrium
and withinniter steps the field is changed. For theforward
process it was increased fromB = 0 to B = Bmax, i.e.,
in each step by∆B = Bmax/niter. Thus, during each
step l the work Wl = −

∑

i si∆B was performed, the to-
tal work is W =

∑

l Wl. After each field increment, one
sweep of a Monte Carlo (MC) simulation [16] with single-
spin flip Metropolis dynamics was performed. Hence, in each
sweep,N times a spin was randomly chosen and a spin flip,
exhibiting an energy change∆H, was accepted with prob-
ability min{1, exp(−∆H/T )}. The initial equilibrium con-
figuration was obtained by starting in a random configuration
and performing 1000 steps of the Wolff cluster algorithm [17],
which should ensure equilibration since the auto-correlation
time for this algorithm is of the order ofτ ≈ 10 at Tc [18].
Also for Bmax = 3 thereverseprocess was considered where
the system was started in equilibrium atB = Bmax and the
processB = Bmax → 0 is performed in an analogous way as
for the forward process. Since the equilibrium configuration
for this case is almost fully magnetized at this large value of
B = Bmax (typically 0.002N spins are flipped), the initial
configurations were obtained by starting with all spins up and
performing one sweep of the single-spin flip dynamics prior
to theB = Bmax → 0 process.

For the caseN = 1282 and106 independent simulations,
the histogramsP (W ) of work for the forward andPrev(−W )
for the reverse process are shown in Fig. 1. According to
the theorem of Crooks, the two histograms should intersect
at W ∗ = ∆F . This appears to be somewhere between
W = −50000 andW = −45000, which on the first sight
is only a small interval compared the support of the distri-
bution P (W ) visible in Fig. 1. Nevertheless, the probabili-
ties become so small, that it is impossible to see the intersec-
tion using any feasible number of standard simulations runs.
Actually, as it is shown below, the crossing appears where
P (W ) = Prev(−W ) ≈ 10−57. Hence, numerical large devi-
ations techniques have to be used, to address this region.
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FIG. 1: Simple-sampling distributionP (W ) of work for an Ising
system withN = 1282 spins for the forwardB = 0 → 3 and the
mirrored distributionPrev(−W ) for the reverse processB = 3 → 0.

The algorithm presented here is different compared to well-
known algorithms as, e.g., the “cloning” approach [19–21],
and consists of a second MC-simulation level. Each config-
uration is represented by a vectorξ = (ξ1, ξ2, . . . , ξM ) of
suitable lengthM (see below). The basic idea is that the
entries of ξ are random variables uniformly distributed in
[0, 1], which are used to feed the random process under in-
vestigation. Hence, e.g., when performing the work distribu-
tions, the random decisions are not based on numbers drawn
from random number generators, but, in a defined manner,
on the entries ofξ. Here, for the forward process, the first
nWolff(2N + 1) entries are used to feednWolff = 10 iter-
ations of the Wolff algorithm, starting from a precomputed
(1000 Wolff iterations) equilibrium configurations(0). This
allows to sample the equilibrium distribution prior to the work
process. Each Wolff iteration consist of choosing one seed
spin (consuming one entry ofξ) plus a cluster growth, where
possibly for each of the2N bonds it has to be decided ran-
domly whether it is “activated” or not, for details of the Wolff
algorithm see Ref. [17]. Note that each bond is assigned
a specific entry ofξ (for each Wolff iteration, respectively),
independent of whether the bond is tried to be activated or
not. Next, theniter work sweeps are performed, consisting
of niter − 1 single-spin-flip MC sweeps (the last sweep af-
ter the final field increment can be omitted), where for each
sweep2N entries ofξ are consumed, one for randomly se-
lecting a spin, and one for the Metropolis criterion (also if
∆H < 0). Hence, for one full processM = nWolff(2N +
1) + (niter − 1)2N entries, corresponding to random num-
bers, are used. For the reverse process, where no Wolff algo-



rithm is used,M = 2N + (niter − 1)2N = niter2N . Each
process fed byξ results in a workW (ξ). Now, the second-
level MC consist of changing a small number (here 400)
of the entries ofξ, each drawn again uniformly from[0, 1],
leading to a “trial configuration”ξ′ with corresponding work
W (ξ′). The new configuration is accepted with the Metropo-
lis probabilitymin{1, exp(−(W (ξ′)−W (ξ))/TMC)}, other-
wise ξ is kept for the next second-level MC step. Thus, the
observed distribution of work will exhibt a Boltzmann bias
PTMC

(W ) ∼ P (W )e−W/TMC . Note thatTMC is a freely ad-
justable parameter, different from the temperatureT of the
Ising system, which allows to center the observed distribution
in different regions. Therefore, by performing the simulation
for different values ofTMC such that the resulting distribu-
tionsPTMC

(W ) overlap, one can reconstruct the desired dis-
tribution P (W ) via reweighting and gluing the distributions
together [22]. Note that instead of using a Boltzmann bias for
the observed work, one could also use an umbrella sampling
on theξ vectors to obtainP (W ) directly. However, this was
tried during the present work extensively, but the Boltzmann
bias was more efficient.

Seen in an abstract manner, the approach is based on a
configuration vectorξ, an evaluation functioñH(ξ), a sim-
ple dynamics changing the configuration vector to create trial
vectors ξ′ and a Metropolis criterion (involving “tempera-
ture” TMC), which acceptsξ based onH̃(ξ) and H̃(ξ′).
All problem-specific details are included in the functioñH.
Hence, ifH̃ was the energy of a spin system, then the second-
level MC would be a standard MC simulation. But̃H can
represent almost any process, like for the present application
where it states the workW arising from an equilibrium sam-
pling followed by a strongly non-equilibrium work process.
Using this general view on the large-deviation simulation,it
is clear that the approach can be applied basically to any equi-
librium, non-equilibrium stationary and even non-stationary
process which transforms a vector of a random numbers into
a measurable result, independent of how involved this trans-
formation is. Hence, the approach should be applicable toany
random process which can be simulated on a computer.

For the simulations, a number between 4 (Bmax = 0.25)
and 37 (Bmax = 3) of temperaturesTMC ∈ [1.5, 200] were
considered. The spacing∆TMC between the MC tempera-
tures ranged from 0.1 for low values ofTMC up to 100 for
larges values. For each value ofTMC, 106 MC trials were per-
formed, taking about 6 hours on a core of standard 2.66 GHz
Intel Westmere processor, i.e., just37 × 6 = 222 core hours
for the strongest fieldBmax = 3.

Concerning the analysis of the simulation leading to the full
work distribution, the intersection region of the distributions
of work for the forward and reverse processes are shown
in Fig. 2 for Bmax = 3. The two distributionsP (W ) and
Prev(−W ) intersect atW ∗ ≈ −47443. For comparison,
also the exact free energy difference was obtained. For the
zero-field case, the exact free energyF0 is known analytically
[23] for finite-size systems. For the caseB > 0, if B is large,
the system is almost fully magnetized, except for a few single-
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FIG. 2: Distribution of works for the forward and mirrored distribu-
tion for the reverse process forB = 0 ↔ 3, L = 128. According to
the theorem of Crooks, these distributions are expected to intersect
at W ∗ = ∆F signifying the free-energy difference∆F . The ex-
act free-energy difference is indicated by the vertical line. The inset
shows a blow up of the intersection region.

spin excitations. Hence, the free energy is given viaFB =

−T log
(

e(2+B)N/T
[

1 +
∑N

k=1

(

N
k

)

exp−(8+2B)k/T
])

,

where only few terms of the sum around the typical number
k of excited spins (about0.002N for B = 3) contribute
significantly. For L = 128, B = 3.0, this results in
∆F = FB − F0 ≈ −47433. Thus, the relative deviation of
the estimated from the exact free energy difference is only
(∆F − W ∗)/∆F = 0.0002.

To verify whether the data fulfills Crooks theorem (2), the
histogram for the reverse process was rescaled accordingly,
see Fig. 3. This is confirmed by the data with high precision.
Note that testing Crooks theorem may also conveniently serve
as a check that the second-level MC simulations are equili-
brated.

To obtain∆F using the Jarzynski relation (1), the integral
〈 exp(−W/T )〉 =

∫

exp(−W/T )P (W ) dW has to be eval-
uated, resulting in∆F ≈ −47438, which has a relative de-
viation 0.0001 from the exact result. The integrand is shown
in Fig. 4. Note that only the region close to the peak around
W = −48100 contributes significantly to the integral, which
deviates much from the point whereP (W ) andPrev(−W )
intersect. Nevertheless, one has to obtain the full distribution
in a region ranging from its peak value atW = −42000 down
to W = −48200 to getP (W ) right. For the reverse process,
the evaluation (see inset of Fig. 3) results in−∆F = 47450,
which deviates by a factor of0.0004 from the exact value.
Note that one has to obtainPrev(W ) over an even broader sup-
port, which is probably the reason for the somehow smaller
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FIG. 3: Distribution of works for the forward and rescaled-mirrored
distribution for the reverse process. The inset exhibits the integrand
Prev(W ) exp(−W/T ) used to obtain〈exp(−W/T )〉 from the re-
verse processB = 3 → 0.
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FIG. 4: Integrand P (W ) exp(−W/T ) used to obtain
〈exp(−W/T )〉. Inset: Resulting free energy difference∆F
per spinN (minusBmax) as a function of the final magnetic field
Bmax for the forward process.

accuracy compared to the forward process.
The forward process was performed for different values of

Bmax, see inset of Fig. 4. The amount by which∆F/N is
larger thanBmax describes the entropy loss due to the align-
ment of the spins to the field.

To summarize, a biased sampling approach is introduced,

which is based only on a Markov-chain evolution of a vector
of entries from the interval[0, 1], seen as an input vector of
random numbers to an arbitrary stochastic process, which can
be treated as a black box within the approach.

Here, high-precision determination of work distributions
for Ising magnets in a field were performed, for large sys-
tems and strongly non-equilibrium processes, hence for cases
where traditional direct approaches for measuring work distri-
butions completely fail. In the past only close-to equilibrium
processes could be studied with small accuracy [7, 8]. Still,
the path sampling applied here is very general, since no details
of the path construction have to be known to efficiently sam-
ple the corresponding work distribution down to probabilities
as small as10−240. This contrasts the approach with previ-
ous problem-specific yet quite successful techniques, likethe
“shooting approach” [24] or “cloning” [19–21].

The work distributions are used to extract free energy differ-
ences for Ising systems in a field using the Jarzynski relation
[3] and the theorem of Crooks [4]. Note that for determin-
ing the free energy of the Ising systemwithout a field, very
good other approaches exist. Using the convenient Wang-
Landau umbrella sampling [25], the free energy was deter-
mined very accurately for systems of sizeN = 2562. Based
on measuring the large-deviation properties of the number
of components for Fortuin-Kasteleyn clusters even systems
of sizeN = 10002 could be treated [26]. Recently it was
claimed [13] that in general umbrella-sampling approaches
should be superior or at least equally efficient as applying
large-deviation techniques to work distributions to measure
free-energy differences. Nevertheless, for the present study
of an Ising systemsin a field, using umbrella-sampling only
sizes ofN = 422 could be studied so far [15], about ten times
smaller than the sizes addressed in the present study. Hence,
for certain systems, e.g., for an Ising magnet in a field, al-
most the full work distribution can be determined using the
present approach. But even aiming only at determining free
energy differences, the present very general approach might
be superior to highly-evolved existing techniques. The ob-
served failure of Refs. [13, 14] might be due to the fact that
there only very small systems could be studied. Also it could
be due to the specific “shooting” algorithm [24] which might
not be most suitable for fully random processes. Finally, for
some past studies also single [12] or very many [11] specific
bias functions where used, while here a Boltzmann reweight-
ing for few selected weights was performed, which allows to
address different regions of interest independently.

Due to the black-box structure of the algorithm presented
here, it allows to study equilibrium, non-equilibrium station-
ary and even non-stationary systems. Hence, for future work,
many applications of this algorithm can be anticipated.
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