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We study the vertex-cover problem which is an NP-hard optimization problem and a prototypical
model exhibiting phase transitions on random graphs, e.g., Erdős-Renyi (ER) random graphs. These
phase transitions coincide with changes of the solution space structure, e.g, for the ER ensemble at
connectivity c = e ≈ 2.7183 from replica symmetric to replica-symmetry broken. For the vertex-
cover problem, also the typical complexity of exact branch-and-bound algorithms, which proceed by
exploring the landscape of feasible configurations, change close to this phase transition from “easy”
to “hard”. In this work, we consider an algorithm which has a completely different strategy: The
problem is mapped onto a linear programming problem augmented by a cutting-plane approach,
hence the algorithm operates in a space outside the space of feasible configurations until the final
step, where a solution is found. Here we show that this type of algorithm also exhibits an “easy–
hard” transition around c = e, which strongly indicates that the typical hardness of a problem is
fundamental to the problem and not due to a specific representation of the problem.

NP-hard combinatorial optimization problems [1, 2]
are fundamental to computational complexity, because
despite much effort no algorithm has been found so far,
which is able to solve these problems in the worst case in
polynomial time, leading to the famous P-NP problem.
One way to try to understand the root of the apparent
computational hardness is to analyze hard instances of
problems. This has attracted much interest in statisti-
cal physics [3–5]. Phase transitions on suitably chosen
ensembles of random instances were found, e.g., for the
Satisfiability Problem [6], the Traveling Salesman Prob-
lem [7] or the vertex-cover problem (VC) [8]. For ex-
act branch-and-bound algorithms [9, 10] the hardest in-
stances are found right at these phase transitions, of-
ten related to a change from a typically polynomially
(“easy”) to a typically exponentially (“hard”) region.
Branch-and-bound algorithms systematically explore the
space of feasible solutions (branching) while trying to
avoid uninteresting configurations via updating efficient
bounds. The behavior of these exact algorithms can be
partially understood in terms of an effective dynamics
inside the phase diagrams [11, 12]. In practice very effi-
cient but not exact are stochastic algorithms, e.g. Walk-
SAT [13] or ASAT [14] and message-passing algorithms
[15, 16], inspired by statistical mechanics methods like
the cavity approach [17]. Also these types of algorithms
rely on either moving in configuration space or on cal-
culating iteratively probabilities (weights) for different
subspaces of configurations.

Here, we consider a completely different and comple-
mentary type of algorithm, linear programming (LP),
which is a standard approach for practical optimization
problems [2]. In connection with cutting planes (CP)
[18], it is a very efficient (but apparently still worst-
case exponential) approach to combinatorial optimiza-
tion problems. This approach is fundamentally different
from the algorithms mentioned above since it does not
move inside the configuration space but instead consid-

ers non-feasible (non-combinatorial) assignments to the
variables which are always more optimal than the true
feasible solution. Cutting planes are constraints which
are added additionally and iteratively to the problem un-
til a feasible solution is found, which is then the optimal
solution. In particular we study the vertex cover problem
via LP and CP for Erdős-Renyi random graphs [19]. We
show that VC with our LP/CP implementation changes
from “easy” to “hard” right at the same transition point,
where this change occurs for a branch-and-bound algo-
rithm, and where the solution landscape changes from
simple (replica symmetric in the spin-glass language [17])
to complex (replica-symmetry broken). Hence, our re-
sults indicate that the typical hardness of a problem
seems to be quite universal since the changes from “easy”
to “hard” are visible for algorithms which are based on
fundamentally different notions of configuration space.

Model Let G = (V,E) be an undirected graph with
N vertices i ∈ V and M edges {i, j} ∈ E. A vertex
cover VVC ⊂ V is a subset of vertices so that for all edges
{i, j} ∈ E at least one end i or j is contained in VVC.
The vertices i ∈ VVC are called covered, uncovered else.
We are interested in vertex covers of G of minimum car-
dinality |VVC|, the minimum vertex covers. The decision
problem if a VC with fixed cardinality exists or not be-
longs to the class of NP-complete problems [1].

The analytical solution of VC on Erdős-Renyi graphs
exhibits a phase transition at the average connectivity
c = e ≈ 2.7183: for c < e, the solution is replica symmet-
ric, while for c > e replica symmetry breaking was found
[8]. This can be seen also numerically when clustering the
minimum vertex covers [20]. Furthermore, in connection
with the leaf-removal heuristic [21], the typical-case com-
plexity of a branch-and-bound algorithm changes form
“easy” to “hard” at c = e.

Linear-Programming Approach First, we translate
the VC problem to an integer linear programming (ILP)
problem [2], each of the N nodes of the graph is rep-
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resented by a variable xi ∈ {0, 1}, i = 1, . . . , N . The
value xi = 1 denotes a covered, xi = 0 indicates an un-
covered node. The fact that for each edge {i, j} i or j
must be covered can be written as xi + xj ≥ 1. Min-
imizing the cardinality of the cover means we want to
minimize

∑

i xi. When we relax the integer constraint to
xi ∈ [0, 1], the set of constraints xi + xj ≥ 1 describes
a polytope. Now we obtain the following linear program-
ming problem (LP):

Minimize x =
∑N

i=1 xi

Subject to 0 ≤ xi ≤ 1 ∀ i ∈ V
xi + xj ≥ 1 ∀ {i, j} ∈ E

This can be solved efficiently, i.e., typically in polyno-
mial time, by the simplex algorithm (SX) [2, 22]. We
used the public available lp solve [23] with Bland’s first
index pivoting [24]. Note that now the solutions are not
guaranteed to be integer-valued any more, variables with
xi ∈ ]0, 1[ we call undecided. Such solutions we call in-
complete. The value of x =

∑

i xi is always a lower bound
for the cardinality of a complete solution. On the other
hand, if a solution computed by SX is complete, i.e., all
variables are integer-valued, then it is immediately clear
that it is a correct minimum for VC.

Cutting-Plane Approach In order to obtain more
complete solutions, the CP approach [18] can be used.
The basic idea is to limit the solution space by adding
extra constraints, which exclude incomplete solutions. In
principle, many types of extra constraints are possible.
Here, we apply the following heuristics, inspired by the
nature of the problem: For any graph which is a cycle,
setting all variables of non-isolated nodes to 0.5 (0 else)
is a solution of the LP, but incomplete. Nevertheless, for
a cycle of odd length l = 2k +1, the size of the minimum
cover is always k + 1 > k + 0.5. Hence, for any cycle of
length l = 2k + 1 in a graph, at least k + 1 nodes of the
cycle must be covered. Thus, after an execution of SX, if
the solution is incomplete, we try to detect cycles of odd
length l where the condition

∑

xi∈loop

xi ≥

⌈

l

2

⌉

(1)

is violated (⌈l/2⌉ is the largest integer larger or equal
to l/2) and add this constraint to the LP. Technically,
the loops are obtained by searching a random spanning
tree (ST) in the graph via a random breadth-first search
and adding a randomly chosen edge, which is part of
the graph but not of the ST. Our algorithm stops, if
s = 20M times for a randomly chosen spanning trees
and for all loops emerging from these trees we did not add
a constraint (because the loop was of even length or the
constraint was already fulfilled by the current incomplete
solution). Otherwise, SX is executed for the next time
and the solution checked for completeness again.

In general, SX guarantees to obtain a solution in a cor-
ner of the polytope with minimum x. This means that
still non-integer solutions can be obtained,how frequently
depends also on the heuristics used in the actual SX im-
plementation. Anyway, an incomplete solution obtained
by CP+SX provides another lower bound x, usually bet-
ter (but never worse) than that obtained by SX alone.

Node heuristics To complete an incomplete solution,
we also applied the following “node” heuristics (NH): It
randomly selects a vertex i with an undecided variable
xi ∈ ]0, 1[ and adds xi = 0 to the LP and solves it again.
This forces the SX algorithm to set nodes j adjacent to i
to xj = 1. After each run of the SX algorithm we checked
whether still undecided variables are found and if neces-
sary the procedure is repeated. This ensures that finally
a complete solution, i.e., a vertex cover is found, but it
doesn’t have to be a minimum one. Hence the values of
x obtained in this way are upper bounds to the true min-
imum vertex covers. Note that we also tried a heuristics
where xj = 1 is added to the LP, but it provided typi-
cally higher values of x as solution, in particular for large
graph connectivity c > 5.

Results Next, simulation results for the different
types of algorithms are presented for ER random graphs
of N nodes, up to N = 280. We used the ensemble where
for each graph M edges are created randomly with uni-
form weight, i.e., the connectivity is c = 2M/N .

Fig. 1 shows the fraction pf of graphs which exhibit a
complete solution, for the SX (inset) and SX+CP algo-
rithms, obtained from averaging over 1000 realizations of
graphs and for different system sizes, respectively. Ap-
parently, SX is able to find solutions up to about c = 1,
where a sharp drop of pf is visible, resembling a phase
transition. Note that the percolation transition of the ER
ensemble is at c = 1. For c < 1, ER random graphs con-
sist mainly of trees, which are apparently easy to solve,
even for SX. When including CP, more samples can be
solved, the transition shifts to a point close to the c = e,
where replica symmetry breaking occurs and where the
exact configuration-space-based branch-and-bound algo-
rithm (with leaf removal [21]) starts to exhibit a typically
exponential running time.

An indicator for the running time of the SX+CP algo-
rithm is the average number of extra constraints Mextra

that were added to the LP resulting from CPs (1) to
obtain complete solutions. Fig. 2 shows Mextra/N as a
function of connectivity c. Clearly, an increase close to
c = e is visible. Note that Mextra/N increases also for all
realizations (see inset), but in this case this is less infor-
mative, since the algorithm is stopped if for some time
no new constraint could be added.

Finally, Fig. 3 shows the phase diagram for the VC
problem. In addition to the exact minimum VC and the
analytical solution [8], simulation results for the SX and
the SX+CP algorithm (lower bounds) and a combination
of SX/SX+CP with NH (upper bounds) are included.
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FIG. 1: Fraction pf of complete solutions for CP approach
as a function of connectivity c for ER random graphs. The
inset shows pf for the SX algorithm. The vertical line denotes
c = e, the other lines are guides to the eyes only.
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FIG. 2: Average number of extra constraints Mextra per node
for CP algorithm as a function of c only for complete solutions
and for all solutions (inset). The vertical line denotes c = e,
the other lines are guides to the eyes only.

These bounds were obtained, respectively by averaging
the “cover size” x for different system sizes N and dif-
ferent connectivities c, yielding x(N, c). We extrapolated
to infinite system sizes x(c) = limN→∞ x(N, c) via fitting
the data to functions x(N, c) = x(c)+a N−b (see inset of
figure 3) or x(N, c) = [xc(c) + a N−b]· [1 + f N−g]. The
latter was only used for the SX+CP/SX+CP+NH ap-

proaches for c ≥ 5, where apparently stronger finite-size
corrections occur. We found, e.g., for SX+CP at c = 4 a
value b = 0.88(9) which is compatible with the scaling of
the exact value obtained by branch-and-bound [25].
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FIG. 3: Phase diagram for the fraction of covered vertices
x. Minimum VC found with exact Branch-and-Bound algo-
rithm/analytics [8] as well as upper and lower bounds ob-
tained from the different algorithms. Inset: Finite-size scaling
for SX+CP and c = 4.0 The vertical line denotes c = e, dot-
ted line in the inset a result from the fit (0.52 + 0.40N−0.88)
and the other lines are guides to the eyes only.

The SX algorithm alone only yields results close to the
minimum VC up to c = e. Above this value the critical
fraction of covered vertices converges towards the trivial
solution xc = 0.5. The SX+CP approach results in a bet-
ter lower bound and deviates only for an average degree
c ≥ 5 visibly from the true minimum cover sizes. Com-
paring with the previous results, this means for c >

∼ e,
this approach typically does not yield the correct solu-
tion but comes very close to it. The upper bounds also
start to deviate significantly for c > e, but stay rather
close. In general, one sees again the importance of the
critical line c = e: For smaller connectivities c all bounds
seem to agree but beyond it they start to diverge, which
is in contrast to previous analytical bounds [3], which do
not match the correct result for all connectivities c > 0.

Conclusion/Outlook We studied the vertex-cover
problem for Erdős-Renyi random graphs with a linear
programming/cutting plane algorithm. The algorithm
shows a clear “easy–hard” signature close to the con-
nectivity c = e. This measn that this point denotes a
phase transition not only for configuration-space-based
quantities and algorithms [8, 21] but also for the LP/CP
approach which operates outside the space of feasible so-
lutions. Thus, the typical hardness of VC is really an
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intrinsic property of the problem and not bounded to
specific algorithms. This finding may be related to the
fact that also in the worst-case, all algorithms known for
NP-hard problems exhibit an exponential running time,
i.e. it could help in order to understand better the P-NP
problem.

In principle, the number of loops grows exponentially
with the number of nodes. Hence, one could imagine
that even within our SX+CP approach, by exhausting
the set of these loop constraints, one arrives at an (ex-
ponentially slow) but complete algorithm. Nevertheless,
there are graphs, where our constraints are clearly in-
sufficient: A simple example is a complete graph of size
N = 4, i.e., where each node is connected to any other
node. The result of SX will be to set all xi = 0.5, i.e.,
x = 2. By adding constraints for the four possible loops
of odd length, the result will be xi = 2/3 for all nodes,
i.e., x = 8/3, while the correct minimum-cover size is
x = N − 1 = 3.

One could improve the algorithm in principle by adding
other types of constraints, e.g., general Gomory-Chvátal
cuts [18]. Alternatively, one could consider small sub-
graphs G′ = (V ′, E′), V ′ ⊂ V and E′ ⊂ E, solve them
by an exact algorithm yielding the cardinality X ′ of the
minimum cover. Then one could add the constraint
∑

i∈V ′ xi ≥ X ′. We have performed some preliminary
experiments with these types of cuts, but observed only
marginal improvements so far, i.e., the overall behavior
with the transition close to c = e was preserved.

In practice often a combination of the branching, i.e.
configuration-space based, and cutting, i.e., LP-based ap-
proaches, are used. Here, branching sets in when all
available cutting planes are exhausted. Thus, it would
be very interesting to see how this combination of ap-
proaches performs on VC for ER graphs.

Furthermore, it would be of high interest to analyti-
cally analyze the cutting plane approach, to see whether
one can understand why it performs so well for c < e.
This would lead to a better understanding of the roots
of computational hardness and could also lead to refined
bounds on the minimum cover sizes, providing techniques
applicable to a vast range of problems.

Finally, it could be worthwhile to extend the present
study to other graph ensembles. One could test whether
at the same point replica symmetry breaking occurs, hi-
erarchical clustering of solution space can be found, and
the problem becomes hard for configuration-space-based
branch-and-bound approaches as well as for the LP-based
cutting-plane algorithms.
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