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The phase-transition behavior of the NP-hard vertex-cover (VC) combinatorial optimization prob-
lem is studied numerically by linear programming (LP) on ensembles of random graphs. As the basic
Simplex (SX) algorithm suitable for such LPs may produce incomplete solutions for sufficiently com-
plex graphs, the application of cutting-plane (CP) methods is sought. We consider Gomory and
{0, 1

2
} cuts. We measure the probability of obtaining complete solutions with these approaches

as a function of the average node degree c and observe transition between typically complete and
incomplete phase regions. While not generally complete solutions are obtained for graphs of arbi-
trarily high complexity, the CP approaches still advance the boundary in comparison to the pure
SX algorithm, beyond the known replica-symmetry breaking (RSB) transition at c = e ≈ 2.718. In
fact, our results provide evidence for another algorithmic transition at c ≈ 2.90(2). Besides this,
we quantify the transition between easy and hard solvability of the VC problem also in terms of
numerical effort. Further we study the so-called whitening of the solution, which is a measure for the
degree of freedom that single vertices experience with respect to degenerate solutions. Inspection
of the quantities related to clusters of white vertices reveals that whitening is affected, only slightly
but measurably, by the RSB transition.

I. INTRODUCTION

Phase transitions in random ensembles of combina-
torial optimization problems [1–3] have been attracting
the statistical physics community since more than two
decades. In particular so called easy-hard transitions
have been observed, where for a control parameter of the
random ensemble there exist critical values such that,
for a given algorithm, on the easy side a problem can be
typically solved in polynomial time, while in the hard re-
gion an exponential effort is necessary. Phase transitions
on suitably chosen ensembles of random instances were
found, e.g., for the Satisfiability Problem (SAT) [4], the
Traveling Salesperson Problem (TSP) [5] or the vertex-
cover problem (VC) [6]. Note that such transitions de-
scribe the relationship between optimization problems
and algorithms to solve them. In the physics commu-
nity, so far algorithms have predominately studied which
are based on moving in or representing the space of fea-
sible configurations. These algorithm are exact branch-
and-bound algorithms [7, 8], stochastic algorithms, like
WalkSAT [9] or ASAT [10] and message-passing algo-
rithms [11, 12], which are inspired by statistical mechan-
ics methods like the cavity approach [13]. Instead, we
follow here a different approach, namely linear program-
ming (LP) [14] in connection with cutting planes (CP)
[15]. Such approaches operate outside the space of feasi-
ble solutions for most of the computation time. Although
for practical applications many CP implementations ex-
ist, e.g., based on commercial packages like CPLEX [16],
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the phase transition behavior with respect to easy-hard
transitions has not been studied widely. Recently and
for the first time to our knowledge, a phase transition in
a problem-specific CP approach was observed and ana-
lyzed [17]. Based on this, we perform here a correspond-
ing study for two very general CP approaches, so-called
Gomory and {0, 12} cuts, for the VC problem on Erdős-
Renyi (ER) random graphs.

The VC problem describes the intricate task of finding
the vertices (also called nodes) of a graph that make up
a subset called cover in such a way that all edges of the
graph are adjacent to at least one vertex in the cover set.
It forms a prime example of a combinatorial optimization
problem[14], as the decision whether one vertex is part
of the cover set or not is Boolean. As many problems
of applications can be mapped onto graphs, it comes as
no big surprise that also the VC problem has been ap-
plied to model real-world problems such as the number
of guards needed in a museum [6], the stationing of po-
lice cars on road networks [18], the placement of sensor
devices in wireless communication networks [19], vacci-
nation strategies against disease spreading [20], or even
cooperative robot surveillance [21].

Previously the phase transition behavior of VC was
studied mostly [6, 22–24] in connection with algorithms
based on the space of feasible solutions. For the case of
ER random graphs, it turned out that the connectivity
cc = e ≈ 2.718, i.e. the Eulerian number plays a crucial
role. For c < e, VC is typically easy [25] and can ana-
lytically be solved by a replica-symmetric approach [6],
hence the solutions landscape is dominated by one single
cluster in the thermodynamic limit. For c > e, replica-
symmetry breaking (RSB) appears, as visible by many
clusters in the solution landscape [26], and the problem
appears typically hard to solve by exact algorithms. Nev-
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ertheless, VC can be comfortably expressed as an LP,
where variables xi = 0, 1 describe whether node i be-
longs to the cover subset or not, see below for a technical
description. With this, a relaxed LP, i.e., with xi ∈ [0, 1],
can be solved through the Simplex (SX) algorithm [27].
A simple measure of the complexity of a graph is the
connectivity c := 2MN , where M is the number of edges
and N the number of vertices. As the VC problem is
noterministic polynomial (NP)-hard [28], with increas-
ing complexity of the graph, the plain SX algorithm fails
to produce correct (also called complete) results with un-
ambiguously decided variable values xi ∈ {0, 1}. Instead
the yielded solutions include an increasing amount of un-
decided or fractional values xi ∈ [0, 1]\{0, 1}. Such solu-
tions are called incomplete, and generally the fraction p
of complete solutions obtainable with the SX algorithm
breaks down when increasing c. This represents, e.g. on
the ensemble of random graphs, such an aforementioned
phase transition between an “easy” and a “hard” opti-
mization problem [17].

The SX algorithm can be improved by the introduc-
tion of cutting planes, i.e., sets of linear inequalities
which reduce the volume of the space of possible solu-
tions. For the study of phase transitions of VC, first
problem-specific cutting planes were investigated, based
on the topology of the problem [17]. There, it was rea-
soned that for closed cycles within a graph that consist
of an odd number of vertices, the respective number of
vertices covered within this cycle has to be equal to the
the rounded-up half of the number of vertices. With this,
additional constraints could be entered into the LP. With
these measures a transition regarding the hardness of the
problem was observed at a the connectivity of cc = e that
has already been described earlier.

While this approach was so to say tailored for the VC
problem and its prerequisites, it is tempting to utilize
more general approaches as well. A well-established one
is the so-called Gomory cut, which produces new con-
straints from a given solution by regarding only the frac-
tional parts of the coefficients in the SX tableau [29].
Originally is was viewed as a theoretical way only, also
because of arising numerical instabilities [30]. Neverthe-
less, more recently it has since become more widely em-
ployed [31, 32] for practical optimization, especially in
connection with branch-and-cut methods. Note that the
aim of computer scientists is an engineering one, to pro-
vide as efficient algorithms as possible, typically tested
for test-beds of problems, and leading usually to imple-
mentations of clever combinations of algorithms. In the
present work, we are more interested in the behavior of
certain isolated algorithms when applied to ensembles
exhibiting easy-hard transitions. This means we are in-
terested in the statistical mechanics properties and the
relation to the computational complexity of certain algo-
rithms, even if in some cases the algorithmic performance
is bad.

A similar CP method is the
{

0, 12
}

(zero-half) cut,
which is a special case of the so-called Chvátal-Gomory

cut [33]. Within this approach, linearly independent rows
of this tableau are added up until an odd number of co-
efficients is either equal to 0 or can be divided to 1

2 re-
spectively, hence the name. The right-hand side of the
inequality can then be rounded up or down (depending
on the sign) to the next integer. Note that these cuts
are also noted to combine “cyclic” inequality constraints
[34], thus the cycle-cut scheme employed by [17] can just
be interpreted as an applied case of zero-half cuts.

For the present work, we again start by solving the VC
of ER graphs by application of the plain SX algorithm,
but we perform a thorough analysis of the results, which
was lacking in previous work. Next, we expand the SX al-
gorithm by allowing Gomory cuts, zero-half cuts or both
combined. For comparison, we also employ an exact al-
gorithm, but restricted in system size. We investigate the
criticality of the VC problem’s hardness with respect to
the fraction of complete solutions, the fraction of covered
vertices and the deterministic calculation time needed for
obtaining the solution.

A further property we put under scrutiny in the present
work is the so-called whiteness of the solution. This is
not directly related to cutting planes approaches, but
gives also some insight into the solution landscape and
has been, to our knowledge, not been studied before
for VC. As the name indicates, the method was origi-
nally proposed for graph-coloring problems [35] and more
prominently applied to the K-SAT problem later [36, 37].
Whitening was used to identify, e.g., clusters of solutions
that differ in only one variable [36, 38]. A detailed study
on the more general K-SAT problems was presented later
on [39, 40]. Whitening procedures have been used also in
the calculation of SAT backbones [41]. The interesting
property to put under particular scrutiny with respect
to solutions of the VC problem is the dependence of the
“whiteness” of the solution on the solvability of the re-
spective problem. In the literature on whitening, this
idea has been presented in variousways. First, there is
the notion of a “freezing” transition: With an increased
number of clauses, i.e. constraints in the SAT problem,
the fraction of “frozen” solutions rises, i.e., the fraction
of those variables which exhibit in all degenerate solu-
tions the same value. For a low density of constraints,
the solutions are nearly always “white”, also called “un-
frozen” or “free” in other references [40, 42]. Thus, it
has been assumed that the presence of white solutions
indicates easy solvability [39]. A particular mark of this
property is the fact that the average whiteness depth
(AWD), which expresses the average iteration number of
the whitening procedure in which a variable of the model
is marked as white, remains finite. It appears however
that this property has not been inspected any further
afterwards.

Note that the whitening procedure is not applicable to
VC solutions in its original form, but we present below
a corresponding adjusted version. In the results section,
we will investigate quantities related to the prevalence of
white vertices in the graph and interconnected clusters
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of these.
This paper is outlined as follows: Section II A intro-

duces the VC problem formally and its LP formulation.
Next, in Secs. II B,II C and II D we explain the numer-
ical algorithms we have used. In section III we show
our results including data for the typical computaional
hardness. Ultimately, Sec. IV sums up the results briefly
and gives an outlook to further desirable research on this
topic.

II. METHODS

We first introduce the formal definition of the vertex-
cover problem and show how it can be written as a linear
program. Next, we explain the CP approach. In the third
section, we show our whitening procedure as adapted to
VC. Finally, we define the finite-size scaling approach we
have used to analyze the data.

A. The vertex-cover problem as a linear program

Generally, the vertex-cover problem is defined on a
graph G = (V,E), where V is a finte set of N vertices
(or nodes) which are connected by M undirected edges
{i, j} ∈ E ⊂ V (2). In turn, the edge {i, j} is called inci-
dent to the nodes i and j, and these two edges are called
adjacent to each other.

Now, the VC problem on G consists of the following:
Find a subset VC ⊆ V such that ∀{i, j} ∈ E : i ∈ VC ∨
j ∈ VC . To put it less formal: Each edge present in
E should be incident to at least one vertex in VC . The
vertices present in VC are called covered, and the subset
VC comprises the vertex cover of the graph G. Note that
with the aforementioned condition, it is possible for an
edge to be incident to two vertices of VC .

Trivially, VC = V is already a vertex cover, but obvi-
ously a very large one. The main point in the VC prob-
lem is therefore to minimize the size |VC | of the vertex
cover, which is an optimization problem. It belongs to
the class of NP-hard problems [43], which means that
currently only exact algorithms are known which require
a worst-case running time which grows exponentially in
the number N of nodes. This directly motivates the ex-
pression of the VC problem as a linear program (LP).
In this, all vertices are represented as variables xi where
xi = 1 means node i is covered while xi means i is not
covered. Now, we have the program statement

minimize
∑
i∈V

xi (1)

subject to: xi + xj ≥ 1 ∀{i, j} ∈ E (2)

xi ∈ {0, 1} .

Such a scheme is called integer linear program (ILP).
Eq. (1) denotes the objective function of the program.

The total sum of variables is to be minimized, i.e. the
number of elements xi in the vertex cover VC . But
this minimization has to fulfill the expressions stated in
Eq. (2), which are called constraints: Each edge {i, j}
present in E is represented through an inequality, and
this inequality is fulfilled if the variables corresponding
to the vertices i and j sum up to at least 1, i.e., if at least
one node is covered.

But unfortunately, such ideal results are only possible
if the solution space is integer, i.e. ~x ∈ {0, 1}N . With
real values xi ∈ R, which makes the problem feasible
for polynomially-running LP solvers. One calls the con-
straint xi ∈ {0, 1} relaxed, e.g., to xi ∈ [0, 1]. However,
the problem now arises that a constraint may also be
fulfilled by e.g. xi = xj = 0.5. For example for a tri-
angle graph, i.e., the complete graph with three nodes,
x1 = x2 = x3 = 0.5 is the optimum solution of the
relaxed problem, while a true optimum VC solution has∑3

1 xi = 2. Obtaining such a non-integer solution, in par-
ticular for large problems, gives no clear deciding state-
ment whether i and j are actually part of the vertex
cover. Solutions of the LP with such an outcome on any
of the variable values xi are called incomplete.

Note that actually solving ILPs is a research topic of
its own, and has spurred the development of many now-
common methods. Most prominent among these are tree-
based branching methods [44] and CP approaches [45].
Such approaches have an exponential worst-case running
time. The latter approach and its phase transition be-
havior with respect to typically polynomial running times
is the main focus of this work.

B. Cutting-plane algorithms

To explain the approaches we used, we have to resort
a bit to the theory of linear programming, for easy intro-
ductions see [14, 27]. Nevertheless, we will mention only
those elements of LP, which are needed here.

We start considering the relaxed VC problem, i.e., with
xi ∈ [0, 1], the space ~x ∈ [0, 1]N is the N -dimensional unit
hypercube. The linear inequalities in Eq. (2) constitute
dividing lines in the xi-xj plane. Thus, the relaxed solu-
tion space becomes limited in nearly all directions, and
instead of a hypercube, it is now equivalent to a polytope.

The linearity of the optimization problems means that
for any points inside the polytope there is a direction in
which one can improve the objective function. Therefore,
optimum solutions are found on the vertices or facets
of the polytope. To apply the SX algorithm, the prob-
lem is slightly rewritten, by replacing the inequalities
xi + xj ≥ 1 by equalities xi + xj − sm = 1 with an ad-
ditional slack variable sm ≤ 0 for each constraint. Note
that for VC, the constraints imply sm ∈ [0, 1]. Since
there are M edges, there are M constraints and therefore
m = 1, . . . ,M slack variables sm. This set of equations
is written in matrix form as
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A~x = ~b , (3)

with A being an M × (N + M) matrix describing the
equalities. For simplicity, we denote the combined vector
of the problem variables x1, . . . , xN and the slack vari-
ables s1, . . . , sM as the (N + M) dimensional vector ~x.

Note that here ~b = (1, 1, . . . , 1)T ∈ RM and that A has
rank M since all edges are independent in the graph.

As the theory of LP [14, 27] tells us, SX works by select-
ing so called basic feasible solutions. These are subsets
B = {B(1), . . . ,B(M)} of indices B(i) ∈ {1, . . . , N +M}
such that the columns of A corresponding to these in-
dices are linearly independent. Thus, these columns form
a M ×M matrix of rank M denoted as B. The other in-
dices of the other columns of A are denoted as Z, forming
the matrix Z. W.l.o.g., let the columns and rows of A and

the corresponding entries of ~x and ~b be ordered in such a
way that A = (B,Z) and ~x = (~xB , ~xZ)T . Thus, Eq. (3)

can be written as A~x = B~xB + Z~xn = ~b. Since B has
rank M , the inverse matrix B−1 exists, and one obtains

B−1B~xB+B−1Z~xZ = B−1~b, i.e., ~xB+B−1Z~xZ = B−1~b.
By selecting ~xZ ≡ 0 one obtains the basic feasible solu-
tion

~xB = B−1~b , ~xZ ≡ 0 . (4)

We just mentioned that SX works by first determin-
ing an initial basic feasible solution, which is sometimes
involved, and then exchanging variables in and out of B
while assuring that the value of the objective function is
not changed opposite to the desired direction. This is
interated until no further improvement is possible, i.e.,
the optimum is found, which also fulfills Eq. (4).

Now, since the problem is relaxed, i.e., ~x ∈ [0, 1]N+M ,
there may be non-integer entries of ~x such that the origi-
nal ILP Eqs.(1),(2) is not solved. Note that if the relaxed
problem leads actually to an integer, i.e., complete solu-
tion, it is automatically a solution of the ILP and we are
done.

Hence, we now consider the case of an incomplete solu-
tion, i.e., there are entries in ~xB which are, for our prob-
lem, in ]0, 1[. We next explain so called Gomory cuts
[29, 32], which have the basic idea to generate inequal-
ities which make the present incomplete version invalid,
while not affecting any solution to the ILP. The starting
point is to multiply Eq. (3) with B−1 leading to

B−1A~x = B−1~b . (5)

Following in our presentation[46], we denote the entries

of B−1A = by āij , and the entries of B−1~b by b̄i. Note
that after again suitable reordering or rows and columns,
B−1A = B−1(B,Z) = (E,B−1Z), where E is the unit
matrix. According to Eq. (4) the right hand side just
contains the non-zero entries of the solution of the relaxed

LP, i.e., of the variables belonging to the optimum basic
feasible solution. Since this solution is not integer, there
must be at least one line i where the right hand side is
non-integer. This line reads:

xB(i) +
∑
j∈Z

āijxj = b̄i . (6)

Since all variables fulfill xi ≥ 0, by rounding up the coef-
ficients on the left hand side to dāije we immediately get
xB(i) +

∑
j∈Zdāijexj ≥ b̄i. If all variables xi on the left

hand side, also the added slack variables, are required
to be integer in the end, the full left-hand side must be
integer. Thus, we can round up the right hand side as
well, resulting in

xB(i) +
∑
j∈Z
dāijexj ≥ db̄ie , (7)

For the current solution xi = 0 for j ∈ Z and b̄i is non-
integer, which contradicts Eq. (4). Thus, the inequality
is not fulfilled by the current solution. Such an inequality
is called Gomory cut.

If not all coefficients āij ∈ Z, then one can equivalently
subtract Eq. (6) from Eq. (7). By denoting the missing
part of a real number r to its next integer as φ(r) =
dre − r, we arrive at

∑
j∈Z

φ(āij)xj ≥ φ(b̄i) . (8)

For the current solution xi = 0 for j ∈ Z and b̄i is
non-integer, thus φ(b̄i) > 0. Thus, also Eq. (8), which
is called Gomory fractional cut, is not fulfilled by the
current solution.

With the addition of the the Gomory cut given by
Eq. (6) or Eq. (8), the LP can be re-solved. Afterwards,
theroblem either yields a complete solution or allows ad-
ditional feasible Gomory cuts, and this scheme is iterated
until either a complete solution is obtained or no more
Gomory cuts can be generated.

The main notion behind the usage of Gomory cuts is,
in the words of [14], that “no integer feasible points are
excluded”, while the solution space is still curtailed in a
meaningful way, therefore generally leading towards the
correct, optimum solution of the LP. It can be proven
[46] that in principle the iteration of adding Gomory cuts
will terminate after a finite number of steps in an inte-
ger solution, if it exists. Here, in particular the so called
lexicographical dual SX algorithm yields a good perfor-
mance [47]. As mentioned before, for practical imple-
mentation it is at least possible that no further Gomory
cuts be generated at some point – which then might ter-
minate the execution of the algorithm without finding a
complete solution. It has also been argued that Gomory
cuts are generally prone to numerical instability [48], due
to computational problems in floating-point arithmetic
when representing fractional numbers and possibly also
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due to the rapid expansion of the LP size generated by
the addition of constraints and slack variables. A pos-
sible remedy of the first problem could be to treat all
constraint coefficients aij generally as fractions instead
of floating-point numbers.

The other considered CP method are {0, 12} (zero-half)
cuts. In order to understand this approach, we note that
the Gomory cut Eq. (7) has the form

d~λTAex ≥ d~λT~be , (9)

where the vector ~λ ∈ Rm originates from the corre-
sponding entries of the inverse matrix B. Still, this holds

for arbitrary vectors ~λ, starting from A~x = ~b and also

from A~x ≥ ~b, if one uses the original starting LP Eq. (2)
without slack variables, with the same argument when
deriving Eq. (7) above. If Eq. (9) excludes the current
optimal but non-integer solution, it can be useful for a
CP scheme. For the {0, 12} cuts, one restricts oneself to

vectors ~λ ∈ {0, 12}
m. Note that useful inequalities arise

only if actual rounding takes place, this means that in A

and ~b odd entries must exist. But this can be guaranteed
always, because if all entries in a line are even, one can
divide by two as many times as needed until at least one
entry becomes odd, without changing the meaning. Al-
though the set of possible vectors ~v is exponentially large,
there exist efficient methods to find cuts which are vio-
lated by the current non-integer solution [33, 49]. Since
we use an external library for our simulations, we do not
go into details here.

In the introduction, we mentioned that the earlier CP
approach to the VC problem of [17] is a special case of
the {0, 12} cut. This is to be understood in the following
way: In the VC problem, the basic constraints as per
Eq. (2) include only two variables, i.e., those denoting
whether the respective vertices incident to the respective
edge are covered or not. If one now considers a cycle
L ⊂ E in the graph and sums up the inequalities corre-
sponding to the edges in the cycle, each node of the cycle
will contribute its corresponding variable twice, leading
to 2

∑
i:∃e∈L:i∈e xi ≥ |L|. After multiplying with 1

2 and
rounding up, which may happen only at the right side,
one arrives at nontrivial inequalities for odd cycle length
|L|. Therefore, the application of the {0, 12} CP approach
is a generalization of the cuts used before [17] allows for
a comparison with the previous results.

Regarding the actual implementation of those CP
methods we used the IBM ILOG CPLEX optimization
studio [16]. In CPLEX, we use the pre-defined methods
supplied by CPLEX when defining the LP specifically as
an ILP. This is done by changing the type of all present
variables from floating-point numbers to integers. For
some our our results shown below, we have used the full
power of CPLEX for the solution of the ILP. But for our
analyses of the effects of the cutting planes, we have de-
activates manually other other cut types except Gomory
cuts and zero-half cuts. We then deactivated also branch-

and-cut methods, which is done by limiting the number
of branching nodes to zero, and all other the heuristic
methods, which are anyway not further specified by the
CPLEX documentation.

For some performance tests and comparison, in par-
ticular for counting the number of generated cutting in-
equalities, we also used our own implementation of Go-
mory cuts while using CPLEX just as LP solver. Nev-
ertheless, we observed the issues mentioned earlier re-
garding numerical stability, i.e., the difficulty of repre-
senting fractional values like 1

3 = 0.3 = 0.333... with
sufficient precision. Thus, we have set a maximum num-
ber Ncut,max = 1000 of added CPs. If this threshold was
reached, without finding a complete solution, the corre-
sponding instance was counted as incomplete.

C. Whitening

We start by considering the whitening approach for K-
SAT [36, 37]. A SAT instance is a conjunction of logical
clauses, where each clause contains disjunctions of pos-
sibly negated variables called literals. For K-SAT each
clause contains K literals. The SAT problems is a de-
cision problem which asks whether for a given instance
there exists a satisfying “true” assignment. Whitening is
meant to distinguish white and frozen variables within a
solution, where flipping white variables affects the solu-
tion only locally, but not globally. Therefore, the whiten-
ing algorithm for SAT start by assigning the white state
to all clauses which are satisfied by at least two literals,
i.e., at least one variable can be flipped without changing
the satisfied state of the clause. Next, iteratively, vari-
ables are assigned white which appear as satisfying only
in white clauses. At the same time, more clauses can
turn white if they contain a white variable. The itera-
tion stops if no changes occur.

Unfortunately, this algorithm cannot be directly trans-
ferred to VC: The clauses of SAT correspond to the edges
of VC. Therefore, in the initial phase, a white state of an
edge would be assigned if the edge is covered twice. Now,
a node would be considered white if all its incident edges
are white. But this would mean that the node and all
its neighbors are covered, which is a contradiction to the
minimum property of a minimum vertex cover.

Thus, we have adapted the approach for the VC prob-
lem. The basic idea is that for a given minimum vertex
cover, a covered vertex i which has at most one uncovered
neighboring vertex j, one can cover i instead of j. Thus
the vertex i can be in two states, covered and uncov-
ered, which is considered as white. Corresponding cases
hold for white neighbors. The actual algorithm reads as
follows:

• Given: a vertex cover VC

• Initialization: Mark every vertex as frozen, i.e.,
non-white.
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• Repeat until no vertex state changes:

1. Mark all vertices i white that are covered
(i ∈ VC) and that have a maximum of one
neighbor which is non-covered and frozen.

2. Mark all vertices i white that are not covered
(i /∈ VC), but adjacent to white vertices only
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FIG. 1. (color online) Example graph with minimum vertex
cover (left). Vertices with solid lines indicate covered ver-
tices dotted lines indicate uncovered ones. (Right) Result of
the whitening algorithm: Solid circles represent white nodes,
frozen ones are shown with dotted lines.

The notion behind this scheme is exemplified by the
application shown in Fig. 1: In the first step, a single
node could be declared as white, i.e., node 4. This is
due to the degree of freedom attributed to this vertex
in the solution. Flipping vertex 4 would leave only edge
(1, 4) uncovered, while the other edges incident to vertex
4, i.e. (0, 4) and (4, 6) are also incident to other covered
vertices. Hence, a complete solution after flipping vertex
4 can still be obtained by covering vertex 1. The solution
ṼC = {0, 1, 3, 6} is then of the same size NC = 4 as the

original solution ṼC = {0, 3, 4, 6} and hence a degenerate
case. For the example graph and the given solution, not
more white nodes are detected.

Note that the whitening algorithm is able to gather in-
formation about the solution space structure, but it will
typically not have access to all degenerate solutions. For
the example shown in Fig. 1, there are more solutions:
As mentioned, one could cover node 1 instead of node 4.
If node 1 is covered, one can cover node 5 instead of node
3. This solution is not detected by the whitening algo-
rithm. We have investigated other variants of algorithms
for the whitening, with more relaxed options for a node
to become white, e.g., make a node white if all neighbors
are either white or covered. In the present example in
Fig. 1, node 1 would immediately turn white. This holds
also for more nodes. After some iterations even node 6
would become white as well, which clearly makes no sense
since it is covered in all minimum vertex covers. All the
variants we have tried, although they looked promising
on the first sight, lead to such undesirable results.

A particular question regarding the whitening proce-
dure is the treatment of isolated vertices of the graph,

i.e., those without neighbors. One might consider them
frozen, as they do not play any role for the VC solution
itself since they are never covered at all. However, they
fulfill condition (2) of the whitening procedure if the ex-
pression “adjacent to white vertices only” is interpreted
as “of all their neighbors (zero), all (zero) are white”.
With defining isolated vertices as white it is also possi-
ble to achieve full whitening, i.e., all vertices are white.
Thus, we find it justified to define isolated vertices as
white here.

D. Scaling analysis

Our main interest is to determine phase transitions
between regions where our algorithms result in complete
solutions, i.e., where all variables are integer, and regions
where no or few complete solutions are found. For this
purpose we measure the fraction p of graphs with a com-
plete solution as a function of the control parameter c,
which is the average vertex degree here.

In order to determine the phase transition from the
data we follow the scheme established by [50] for the
2-SAT problem. Note that this approach works in par-
ticular for the case when the transition is not visible by
an intersection of the curves for different sizes N , but
instead on one side of the transition, the data is almost
size independent, as it was observed previously for other
phase transitions in combinatorial optimization problems
[51]. The scaling approach works in the following way.
For each number of vertices N of the graph, we follow the
course of p(c), seek out the point of the steepest decrease
in the curve, align a tangent to it and calculate the inter-
cept c0(N) with the c-axis. The behavior of c0(N) fol-
lows [50] the finite-size behavior of other standard phase
transitions well, i.e., a power-law behavior as

c0(N) = a ·N−b + c0,∞ . (10)

Thus, the asymptotic N → ∞ critical value c0,∞ can
be obtained by standard least-square fitting to Eq. (10).

III. RESULTS

We performed our numerical simulation [52] of vertex
covers for the ensemble of Erdős-Renyi graphs [53]. We
analyzed graphs with the number of vertices ranging be-
tween N = 20 and N = 3000, respectively. For this
purpose we generated graphs exhibiting exhibiting many
values of the connectivity c = 2MN between c = 0.1 and
at most c = 8. For each value of N and c we generated
an number of realizations of random graphs ranging be-
tween 20000 for the smallest sizes N ≤ 500 to at least
2000 for the largest sizes.
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FIG. 2. The fraction p of complete solutions of the VC prob-
lem on ER graphs of N vertices as function of the connectivity
c, obtained with the SX algorithm. A tangent is fitted to the
the steepest point of each curve, shown as straight lines. The
intercept c0(N) af the tangent with the c-axis quantity is plot-
ted as function of N , as shown in the inset. A power-law fit
according to Eq. (10), shown as a line in the inset, results
in a = 3.8(3), b = 0.35(3) and an asymptotic critical value
cSX ≡ c0,∞ = 2.67(5), which is indicated by the vertical solid
line in the main plot.

A. Completeness of solutions

To start, we consider the behavior of SX algorithm
itself, without any refinements. The result is shown in
Fig. 2 and reveals that p begins to drop already for small
values of c. While this behavior appears to be indepen-
dent of graph size N , the individual curves start to spread
and become separated around c ≈ 2.4. After a steep de-
crease of p, the curves flatten out, but nevertheless hit
p = 0 on all occasions, albeit earlier for larger graphs
than for smaller ones.

We have analyzed the curves as described in Sec. II D.
The finite-size dependence of the intercepts c0(N) be-
have in a quite regular way and can be well fitted by the
power law of Eq. (10), resulting in an asymptotic value
cSX ≡ c0,∞ = 2.67(5). This is within error bars compat-
ible with the known critical value of cc = e = 2.71828...,
where replica symmetry-breaking in the analytical calcu-
lation appears [6, 23], where clustering of solutions can
be observed numerically [26], and where the percolation
of the leaf-removal core occurs [25]. Interestingly, at this
point also the SX algorithm in combination with the cycle
cutting planes stop to work successfully [17]. Thus, the
comparison with the present result seems to show that

the application of cycle cutting planes leads to the same
phase transition point. Nevertheless, a direct compari-
son of the rate p of complete solutions from Fig. 2 and
Fig. 1 of Ref. [17] reveals, that p is always higher when
including the cycle cuts, as one can expect it. These
figures suggest the following interpretation: For the SX
algorithm alone, the point c = e denotes the connectiv-
ity beyond which basically no complete solutions can be
found at all, while for c < e, a finite fraction a graphs
can be solved, but p → 1 only for c → 0. One the other
hand, SX plus the cycle cuts allows one to find complete
solutions for almost all graphs for c < e, in particular
p→ 1 for about c ≤ 2.
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FIG. 3. Fraction of decided vertices pdec in solutions obtained
with the SX algorithm as function of connectivity c. The inset
shows the intercepts c0(N), the extrapolation yields a critical
value cdecSX ≡ c0,∞ = 3.2(2). The vertical line indicates the
extrapolated critical value c0,∞, while the other lines show
the tangents used to determine the intercepts c0(N).

One might argue that the overall fraction of complete
solutions is a too rigorous quantity, as a VC solution is
incomplete already with only a small fraction of vertices
being actually undecided. From the algorithmic point
of view even obtaining a finite fraction of decided vari-
ables xi, i.e., xi = 0 or xi = 1, might help towards the
overall solution, because for the vertices cover problem
it has been shown [54] that there are always exact solu-
tions for which the state of these variables is the same.
This means, one can safely remove the nodes of these
decided variables from the graph and apply a different,
possibly exhaustive, algorithm for the remaining graph,
which might be considerably smaller.

Therefore, we consider next the fraction of decided ver-
tices, i.e., pdec = |{i ∈ V |xi = 0 ∨ xi = 1}|/N . The
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result is shown in Fig. 3. It turns out that the fraction
of decided vertices remains high for much more complex
graphs, i.e. higher values of the connectivity c, in com-
parison to the result for p. It appears that indeed only
small fractions of vertices are responsible for the rapid
decrease of p in Fig. 2. In turn, the analysis based on es-
timating the corresponding intercepts c0(N) with respect
to the graph size N yields a much higher critical value
of cdecSX ≡ c0,∞ = 3.2(2). Note that the curves of pdec in-
clude all complete solutions as well, which enter into this
averaged quantity with pdec = 1. The actual fraction of
decided vertices in graphs with incomplete solutions may
be considerably smaller. Anyway, the result means that
there is an intermediate regime, where one can decide at
least a fraction of the variables and the remaining prob-
lem to be solved by a complete algorithm is considerably
smaller. As usual, more insight on this might be gained
by examining the actual distribution of the number of
decided or undecided vertices and not alone the behavior
of the average, but this is beyond the scope of the current
study.
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FIG. 4. The fraction p of complete solutions of ER graphs
as function of c, obtained with the SX algorithm enhanced
by Gomory cuts. The lines show the tangents used to deter-
mine the intercepts c0(N). The inset displays these intercepts
c0(N) together with the fit according to Eq. (10), shown as full
line, yielding a critical value of c0,∞ = 2.90(2). The horizon-
tal line indicates this extrapolated critical value, also shown
as vertical line in the main plot.

Next, we consider the application of the SX algorithm
with Gomory cuts. The result for p(c) is shown in Fig. 4.
The found curves of p(c) are similar to that of the SX case
in that they also approach zero. Some other properties
however differ from that case: Most notably, p(c) stays
close to 1 over quite a range of c. It only starts to drop
off at considerably large values around c ≈ 2.3, also this
drop is steeper than in the SX case.

An extrapolation from the zero intercepts of the tan-
gents on the steepest slopes yields a value of cGomory ≡
c0,∞ = 2.90(2), which however is well above the value

found for the SX case. Thus, it seems that Gomory cuts
help the SX algorithm efficiently to obtain complete solu-
tions for connectivities beyond the aforementioned crit-
ical value at cc = e ≈ 2.718. Hence, the results offer
the possibility that there exists another structural tran-
sition beyond cc = e which could be responsible for the
transition seen with the complete Gomory-cut algorithm.
However, the extent of this change of cGomory as seen in
the thermodynamic limit N → ∞ may appear a bit ar-
guable, as the extrapolated value does not lie far above
that for the SX algorithm. Still, as we will see in the
next section, the results for the number of necessary cuts
will show that there is indeed a change of the behavior
significantly above c = e ≈ 2.718. Note that the results
depend in principle on the limit Ncut,max for the num-
ber of applied Gomory cuts. Since the Gomory cuts are
complete in theory, an infinite-precision CP algorithm
would always lead to a complete solution if one allows
for arbitrary long running time. Anyway for some test
cases in the critical region, we did not see any relevant
changes when raising this limit Ncut,max by a factor of
ten. Note that if indeed raising the limit lead to any no-
table change, it would rather increase of p(c). This would
rather increase cGomory than decrease it towards cc = e.

We have evaluated the fraction pdec of decided vari-
ables also for the SX + Gomory cuts approach. The
figures looks similar to the previous shown results and is
therefore omitted here. We have in the same way ana-
lyzed the interceptions co(N) and fitted it to the power
law Eq. (10). We have obtained a extrapolated critical
value cdecGomory ≡ c0,∞ = 3.48(5) for this case. Similar to

the pure SX case, the critical point cdecGomory below which
almost all variables can be decided is well above the criti-
cal point cGomory = 2.90(2) below which the problem can
be completely solved. Thus, there is again an interme-
diate regime, where the Gomory-cut approach is able to
determine many variables, leaving only a small fraction
of the graph still to be solved by an algorithm which is
complete in practice.

The value cdecGomory = 3.48(5) is near the critical value
c3−core ≈ 3.35 where the percolation of the 3-core ap-
pears for ER random graphs [1]. The q-core of a graph is
the subgraph which remains when one iteratively removes
all nodes and the adjacent edges for nodes with a degree
smaller than q. Note that for q = 3 the transition is first
order, often called “explosive percolation”. Given this
closeness, we have tried to find correlations between the
set of non-integer nodes and between the 3-core by inves-
tigating realizations for c = 3.35 and N = 1000. But our
results indicate only a small relationship: The size of the
3-core does not at all correlate with the number of non-
integer variables (not shown), while it is known that the
size of the leaf-removal core does [17], which is also con-
firmed by the data obtained in this study. Still, whenever
there is a non-zero 3-core, the fraction of non-integer vari-
ables which are located on the 3-core is about 47%, while
the 3-core size is only about 17% of the graph. Thus, one
can say that the 3-core does not determine the number
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of non-integer variables, but non-integer variables are lo-
cated preferentially on the 3-core.
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FIG. 5. The fraction of complete solutions p for CPLEX’
MILP solver allowed to apply {0, 1

2
} cuts. The lines show the

tangents used to determine the intercepts c0(N). The inset
displays these intercepts c0(N) together with the fit according
to Eq. (10), shown as a full line, yielding a critical value of
c0,∞ = 2.8(1). The horizontal line indicates this extrapolated
critical value, also shown as vertical line in the main plot.

Moving over to the SX algorithm with {0, 12} cuts, the
result is shown in Fig. 5. Note that here we rely com-
pletely on the CPLEX implementation of the cuts. Op-
posed to the pure SX algorithm, CPLEX then does not
yield incomplete solutions here, but simply returns no so-
lution at all and an error informing us that “no solution
exists”. Therefore, the fraction of undecided variables
can not be evaluated. Anyway, the result of p(c) displays
similar qualities compared to Gomory cuts, including the
tendency to remain near p(c) ≈ 1 until c ≈ 2.3. The crit-
ical point for the disappearance of complete solutions is
determined by the fit to Eq. (10) and yields the extrap-
olated value c0, 12 ≡ c0,∞ = 2.8(1). This is statistically

compatible with the critical values obtained for the SX
approach alone, the SX + cylce cuts algorithm [17] and
the critical value cc = e ≈ 2.718. Since, as discussed,
the previously used cycle cuts are a, apparently power-
ful, subset of the zero-half cuts, it appears reasonable
that the critical point is comparable, if not equal.

It might be tempting to allow Gomory and {0, 12} cuts
at the same time. We actually carried out such calcu-
lations, yet it turned out that the found value for c0,∞
did not go beyond those found for these two CP methods
alone, respectively. Therefore, we omit these results here,
and conclude that the applicability of cutting planes is

controlled by the set of “most-powerful” cuts and the
corresponding critical points determined by the related
structural changes of the graph ensemble.

B. Computational hardness

The next question we want to address is whether there
is a connection between the behavior of the solvability
and the typical computational hardness. Regarding the
application of the pure SX algorithm, this question is not
so interesting, because it is known that the SX algorithm
typically runs always in polynomial time [14], although
there is not formal polynomial bound for the worst-case
running time. Note that the so called ellipsoid algorithm
solves LP in guaranteed worst-case polynomial time, but
it is more complicated and slower than SX.
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FIG. 6. The 70% percentile of the number Ncuts of Gomory
cuts until a complete solution is found as a function of the
system size N , for some values of the connectivity c. For
c = 2.8, the data can be well fitted by a power law with
exponent b = 0.86(7) (broken line), while for c = 2.9 and
c = 3.0 the behavior is compatible with an exponential (full
lines).

Thus, we consider next the case of the Gomory cuts.
We investigated the typical numberNcuts of cuts, as usual
when considering running times, since it will not be in-
fluenced by statistical outliers which are very hard to
solve. In particular, we evaluated the r = 0.7 percentile.
Thus, 70% of all problem instances require a number
of cuts smaller or equal to the shown value. Note the
we could have used the median, i.e., the 0.5 percentile
instead, but here the finite-size dependence is not very
strong since about half of the problem instances require
only few cuts. This means, for the median it is much
harder to distinguish between a polynomial and an ex-
ponential growth. Note that when taking the percentile
also instances which can not be solved within the selected
maximum number of added cuts have no influence, if the
fraction of solved instances is larger than r. This is also
the reason why we have not chosen a larger percentile
r, because then the number of unsolved instances would
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make more points invalid: For c = 2.9 and N = 3000,
the fraction of unsolved instances has already grown to
0.25.

For small values of c, the problem is typically solved
with no or very few additional cuts. Thus, we concen-
trate on the case of c near the critical value cc = e.
In Fig. 6 the typical number Ncuts of Gomory cuts as
a function of N is shown for three significant values
of c. Please note the logarithmic scale for Ncuts. For
c = 2.8, the data exhibits a curvature and a fit to a
power law Ncut(N) = Ncut,0+αNβ works very well, with
Ncut,0 = 1.6(2), α = 0.012(7), and a small β = 0.86(7).
This shows that the problem is typically polynomial here,
even slightly beyond c = e. Note that, as additional test,
for c = 2.8 also the average number of Gomory cuts (not
shown) exhibits a polynomial behavior with power as a
function of the system size Nβ with β = 1.29(4).

On the other hand for c = 2.9 and c = 3.0, the data
follows a straight line and fits well to an exponential
Ncut(N) = γ exp(δN), with γ = 3.7(2), δ = 0.015(1)
for c = 2.9 and γ = 3.1(4), δ = 0.033(1) for c = 3.0.
This renders the problem typically exponentially hard
for c ≥ 2.9. These results are compatible with the above
determined critical threshold cGomory = 2.90(2) below
which typically complete solutions are found by this ap-
proach. Note in particular the fact that the number of
cuts at c = 2.8 increases clearly polynomially, at least
for the system sizes we can access, confirms that that the
critical value cGomory for the Gomory cuts is separated
from the well known value cc = e where RSB appears.

The CPLEX package which we have used offers also
a complete solver for ILPs through a number of means
beyond those considered here in detail. Among these are
branching, all kinds of different CP methods and not fur-
ther specified heuristics, all of which are even enabled per
default. This however comes at the price of a massive nu-
merical effort, which can be estimated directly from the
solver’s “tics”. This is stated by CPLEX and measured
versus a given counter during the execution of the code
and can therefore be interpreted as deterministic and
somehow independent of the respective computer system.
Thus, we use this number of tics as calculation time ttotal
of the complete solver and study its dependence on the
graph size N at given values of the graph connectivity c.
It turns out that the behavior of ttotal is well described
through a power-law dependence, i.e. ttotal ∝ N b in any
case as exemplified in the inset of Fig. 7. Note that we
observe polynomial behavior for all values of c, even well
beyond cc = e. This shows that the algorithm is in the
range of accessible system sizes empirically very power-
ful. Still, it can not be excluded that for much larger sizes
an exponential behavior becomes visible for large enough
connectivity c. Still, for low values of c, the exponents
b revolve around b ≈ 1.5, in the range of b = 1.4...1.6.
However, the main plot of Fig. 7 exposes a minimum at
c ≈ 2.6. The reason for the slight decrease beyond c ≥ 1,
instead of a slight growth, is probably that CPLEX starts
to use other means than the cutting planes studied here,
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FIG. 7. Calculation times ttotal needed to obtain the full ILP
solution of CPLEX. The inset shows that the time exhibit
a power-law dependence on the graph size N according to
ttotal = a ·Nb. The main plot shows the resulting exponent b
as function of the average connectivity c. b starts to increase
drastically once the connectivity c exceeds the critical value
at cc = e.

e.g., activates branching, since this is actually more ef-
ficient. Beyond c ≈ 2.6 an excessive growth of b can be
observed. Thus, although the typical behavior is poly-
nomial for the complete CPLEX solver in the studied
regime, the combination of algorithms CPLEX uses to
attack VC is again mostly influenced by the structural
change of the ER random graphs near cc, highlighting
the importance of this critical point.

Note that we could have measured also the running
time for the zero-half cuts through the number of CPLEX
tics. Nevertheless, the behavior of the zero-half cuts is
very similar to the cycle cuts, as explained. Since the
empirical computational hardness of the cycle cuts has
already been studied [17] and did also show a pronounced
change at cc = e, we do not expect different results here
and thus did not consider the empirical time complexity
of the zero-half cuts.

C. Whiteness of vertex-cover solutions

The intention behind investigation of whitening in VC
solutions is the idea that the aforementioned transition
at cc = e might also affect quantities related to white or
frozen vertices of these solution. The whitening proce-
dure can only be applied properly on correct, complete
solutions of the VC problem on a given graph. Therefore,
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graph connectivity c. As shown in the inset, these extrapo-
lated values result from an asymptotic decay of this quantity
over graph size N at fixed values of c.

for the corresponding simulations we simply utilized all
options CPLEX has to offer, heedless of the drastic in-
crease of computation time for larger connectivities. Still,
it was sufficient to consider only graphs up to c = 4 where
we were able to study graphs with N ≤ 700.

Our results show that, even with definition of isolated
vertices as white, full-white solutions are rare and only
occur for graphs of small size N and low connectivity c,
so the VC problem is generally characterized by largely
frozen variables and only a certain fraction of white ver-
tices or clusters of these.

First, we considered the size dependence of the number
Nwv(N) of white vertices. For a given connectivity c, the
relative quantity nwv = Nwv/N converges asymptotically
to a constant value according to a power-law like Eq. (10),
i.e., nwv = nwv,∞ + aN−b, see inset of Fig. 8. These
extrapolated values nwv,∞ as function of c are shown see
main plot in the figure. No particular influence of the
transition at or near cc = e or elsewhere is visible. The
asymptotic fraction nwv of white vertices matches well
an exponential decrease as function of c. This resembles
the exponential decrease e−c of the isolated vertices, but
not as fast. Already at c = 1, the fraction of isolated
vertices is about 0.37, well below nwv,∞ ≈ 0.64.

Still, by taking a closer look, the RSB transition at cc =
e is visible in the data. In the inset of Fig. 9 the relative
size nmax,w = Nmax,w/N of the largest white cluster is
shown as a function of the number N of nodes. The data
follows well a power law with exponent b for all values of
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FIG. 9. Inset: relative size nmax,w of the largest white cluster,
indicating a power law behavior N−b. Main plot: dependence
of the exponent b on the connectivity c which demonstrates
the criticality of the VC by “jumping” from a lower value of
about b ≈ 0.73 to a higher value of b ≈ 0.8 once the connec-
tivity c rises. The line displays the sigmoid function sig(c)
fitted to the data, with a center value c∗ = 2.73(6) (marked
by the vertical line).

c. In the main plot of Fig. 9 the results for b from fits to
power laws are shown as function of the connectivity c.
For low values of c, b revolves around low values of ca.
b ≈ 0.73. With c increasing above the threshold around
cc = e, the value of the exponent then moves to a regime
of considerably larger values around b ≈ 0.8. It is also
possible to fit a stretched and shifted sigmoid function
sig(c) = b0 + a

1+exp(c−c∗) to the course of b(c) to model

this transition and yield a center point of c∗ = 2.73(6),
which which is compatible with the RSB transition at
cc = e within the error range.

For some other quantities obtained through fits similar
changes near cc = e are visible. For example, when con-
sidering the average size of all clusters except the largest
one, and fitting power laws to the N -dependence, the
prefactor of the resulting power law shows a decrease by
about 15% (not shown) near c = cc, but the signature is
a bit weaker as compared to the preceding case. Next,
when analyzing the number of white clusters as func-
tion of system size, the approach to the limiting value
is from below for about c ≤ 2.6 while it is from above
for larger values of c. Nevertheless, such pronounced
changes as function of c are not visible for all param-
eters involved in the finite-size behavior of parameters
related to whitening. For example, we also considered
the exponent b obtained in fitting nwv(N), as shown in
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the inset of Fig. 8. Here the value of b is up to a factor of
2 larger for smaller values of c ≤ 2 as compared to large
values c ≥ 3 (not shown). But the data for b is rather
noisy and the decrease seems to happen rather near c = 2
than near cc = e.

IV. CONCLUSIONS

We have considered the NP-hard combinatorial opti-
mization problem vertex cover on Erdős-Renyi random
graphs with connectivity c. We applied a represention as
a linear program and sought to solve this through various
variants of the simplex algorithm in particular enhanced
with Gomory cuts. The main motivation behind this was
the question how the structure of the ER graphs influ-
ences the ability of the SX algorithm augmented with
a theoretically complete set of cutting planes to obtain
integer solutions at the expense of computational effort.
Also, due to numerical limitations originating from fi-
nite number precision, well known instabilities of Gomory
cuts may lead to regions in graph space, where in practice
no solutions can be obtained at all.

By applying the CPLEX library for LPs, we could
study rather large graph sizes of up to N = 3000 nodes.
We have found transitions between solvable and unsolv-
able phases for SX alone and for SX+Gomory cuts. By
analyzing the finite-size dependence of the interceptions
c0(N) of tangents of the solution probability p(c), we de-
termined critical points by extrapolation N → ∞. For
the pure SX algorithm, the obtained value cSX = 2.67(5)
is well compatible with the critical point cc = e ≈ 2.718
where the onset of RSB is located, a hierarchical cluster-
ing of the solution sets can be observed, and the ER
ensemble exhibits a percolation transition of the leaf-
removal core. Interestingly, the same analysis for the
SX+Gomory cuts approach yields a significantly higher
value cGomory = 2.90(2). The analysis of the number
Ncuts of necessary Gomory cuts supports the finding that
this easy-hard transition is distinct from the RSB transi-
tion: For c ≤ 2.8, Ncuts grows like a power law with the
system size, while for c ≥ 2.9 a clear exponential growth
is visible. Thus, it seems that the structure of ER random
graphs exhibits another, to our knowledge yet unknown,
change of structure for c ∈ [2.8, 2.9]. Nevertheless, since
we study only graphs of finite sizes numerically, we can-
not exclude that the apparent polynomial growth of the
running time we have observed for c = 2.8 turns into
an exponential growth at much larger system sizes, but
this appears unlikely to us, given the clean fits we have
observed. Anyway, it would be very interesting if our
results motivate further analysis which confirm that VC
indeed exhibits more than one transition with respect to
the computational complexity, similar, e.g., to the rich
behavior of the SAT problem.

Concerning the technical implementation of Gomory
cuts, it should be noted that they require very high nu-
merical precision, since they rely on an accurate compu-

tational representation of rational numbers. CPLEX ac-
tual operates with a finite numerical percision. At least,
cross-checking with other publicly available LP solvers
such as lp solve,[55] PuLP[56] or Python MIP[57] might
give further insight to this issue, to see whether the ob-
served easy-hard transition at a point above cc = e is
present for other solvers as well.

We have also studied the fraction pdec of decided vari-
ables which results form the calculation of partial solu-
tions. This is interesting, because for VC all integer-
valued variables within a incomplete solution can be
left out before proceding with a complete algorithm.
We have found also transitions from a low-connectivity
phase where pdec > 0, but possibly pdec < 1 to a
high-connectivity phase where pdec = 0. Interestingly,
by again analyzing the finite-size behavior of the inter-
cepts of tangents, we obtained for the SX and for the
SX+Gomory cases of transition points around c = 3.3
which are located even more above the known RSB tran-
sition point cc = e. Our analysis revealed a weak relation
to the appearance of the 3-core, but whether undecided
variables exist at all in the solution seems basically to be
independent of the existence of a 3-core.

Our results show that the dynamics of LP based algo-
rithms are harder to understand. The reason is probably
that they operate outside the space of feasible solutions,
in contrast to branch-and-bound algorithms, message-
passing techniques or approaches based on random walks,
where only feasible solutions are considered. Thus, LP-
based algorithms deserve a closer look by physicists in the
future, in particular because such algorithms are applied
in practical industrial applications.

Furthermore, it turned out that
{

0, 12
}

cuts cannot be
seen an alternative to Gomory cuts. The obtained phase
transition rather coincides with that observed for the
pure SX approach and the one seen in previous work for
SX + cycle cuts. This seems plausible, since we argued
that they technically are largely identical to the model-
specific CP approach of [17], which considered particular
constraints for vertex cycles of odd length within the ER
graph.

Regarding whitening of the VC solutions, the findings
for this problem differed well from those reported for SAT
models in that the VC problem hardly ever showed full
whitening. This however comes as no big surprise, as
we had to modify the whitening procedure specifically
for this problem since the original whitening procedure
for SAT tended to mark the whole interconnected cluster
of the graph as white. The asymptotic N → ∞ frac-
tion of white vertices showed no pronounced change as
a function of the connectivity c, just a smooth exponen-
tial decay. But instead, we found out that the criticality
exposes itself in other properties related to whitening,
namely in the exponent which controls the finite-size be-
havior of the size of the largest white cluster.

To summarize, whitening for VC, at least in the version
we tried, displays visible effects related to the clustering
phase transition at cc = e only within a deeper scaling
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analysis of the data. A more direct access to the cluster-
ing structure, e.g., by looking at neighboring solutions in
solution space [26], seems so far more capable to provide
insight into the solution landscape for VC.

Concerning further work, it should be stressed that Go-
mory cuts are in principle able to solve any combinatorial
optimization problem, by considering relaxed LPs, i.e.,
configurations which start non-feasible but optimal and
are moved iteratively into the space of feasible solution.
This should motivate more research, seeking a better un-
derstanding of the relation between computational com-
plexity, problem instance properties and solution-space
structure. Here, checking the VC problem through other
LP solvers with Gomory cuts might add clarity, in par-
ticular for solvers which work with true infinite-precision
rational number representations. Also it would certainly
be worthwhile to consider other problems, like coloring,
SAT, number partitioning or the traveling salesperson
problem, to see whether known easy-hard transitions are
visible when studying the behavior of Gomory cuts.

Also inspection of typical properties of complete so-
lutions of VC and other optimization problems might
give insight to similar CP methods. It could be even

worthwhile to utilize machine-learning based methods for
the selection of cutting pleanes, since such approaches to
the general VC problem have already been considered in
other ways [58–60].

Finally, the work on the relation between out-of-
configuration space LP cutting plane approaches and
the structure of combinatorial optimization problems has
been numerical so far, to our knowledge. It would there-
fore be very desirable if analytical approaches were at-
tempted to better understand how the structure of the
solution space affects such algorithms.
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