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A simple zipper model is introduced, representing in a simplified way, e.g., the folded DNA
double helix or hairpin structures in RNA. The double stranded hairpin is connected to a heat
bath at temperature 7" and subject to an external force f, which couples to the free length L
of the unzipped sequence. Increasing the force, leads to an zipping/unzipping first-order phase
transition at a critical force f.(7T') in the thermodynamic limit of a very large chain. We compute
analytically, as a function of temperature T and force f, the full distribution P(L) of free lengths
in the thermodynamic limit and show that it is qualitatively very different for f < f., f = f. and
f > fo. Next we consider quasistatic work processes where the force is incremented according to
a linear protocol. Having obtained P(L) already allows us to derive an analytical expression for
the work distribution P(W) in the zipped phase f < f. for a long chain. We compute the large
deviation tails of the work distribution explicitly. Our analytical result for the work distribution is
compared over a large range of the support down to probabilities as small as 1072°° with numerical

simulations, which were performed by applying sophisticated large-deviation algorithms.

I. INTRODUCTION

The physical work W plays an important role for many
equilibrium and non-equilibrium processes at all scales.
The work W is a random variable that fluctuates from
one realization of the underlying process to another. For
large thermodynamic systems, typically the distribution
of work converges to a delta function peaked at its aver-
age and it is thus sufficient to compute just the average
work. For smaller systems, however, the fluctuations of
W around its average are also highly relevant, as illus-
trated by the field of stochastic thermodynamics [1, 2].
Therefore, to describe systems with few degrees of free-
dom comprehensively, one needs to know the full distri-
bution P(W) of the work, and not just its first moment.
For example, the knowledge of P(W) in a nonequlib-
rium process connecting two equilibrium states allows
one to extract the free-energy difference between these
two states by using the Jarzynski equality [3] or the the-
orems of Crooks [4].

In experiments [5, 6], the processes are repeated many
times, the work is measured for each execution, and a
histogram of W is obtained. This allows one to approx-
imate P(W) in the high-probability region, i.e., for typ-
ical values. But one does not have access to a broader
range of the support of P(W) down to its tails. If the
system contains few degrees of freedom, the estimation of
free-energy differences without knowing the tails of P(W)
yields wrong results, because the tails dominate the com-
puted averages of exponentials of work. The same is
true, when numerical simulations of model processes are
performed in a straightforward way and repeated many
times in the so called simple sampling scheme. Still, by
using large-deviation algorithms, the work distribution
P(W) has been obtained in few cases for a larger range
of its support, down to extreme tails with probabilities as

small as 10719, In the most interesting case of complex
interacting many-particle systems, P(W) was obtained
for the Ising model subject to a changing magnetic field
[7] and for stretching of an RNA hairpin structure [8].

By using analytical studies, the distributions P(W)
over their full range of support have been obtained for
some systems with few degrees of freedom. In very sim-
ple cases Gaussian distributions are obtained [9, 10]. Fur-
thermore, a particle in a cylinder with a moving piston
[11] was considered. Other examples are given by two
level systems [12] and single particles with a dynamics
described by a Fokker-Planck equation [13, 14] or, equiva-
lently, by a Langevin-equation [15-23] in one-dimensional
potentials of varying shapes. Also single-particle systems
with stochastic driving were investigated [24, 25]. Re-
cently, such approaches were extended to single-particle
quantum systems [26]. In a related context, models for
single-particle heat engines have also been studied [27-
30].

Here we want to go beyond the single-particle case
and address the analytical calculation of the work distri-
bution P(W) for a more complex system of interacting
particles, but with a finite number N of degrees of free-
dom. Some works have been done in that direction. For
example, in a system of several point particles coupled
by harmonic springs, e.g.., the Rouse polymer model,
the work distribution can be obtained from the result
of the single-particle Gaussian case [10]. In addition to
the harmonic coupling also the extreme case of very stiff
nonlinear coupling can be solved [31]. The treatment of
polymers can be extended to networks of harmonic oscil-
lators [32]. Furthermore, for a relaxing elastic manifold
[33] and for a chain of active particles coupled by har-
monic springs [34] the heat statistics have been obtained
analytically.

Our present work is motivated by the recent numer-



ical study on stretching of RNA secondary structures,
where P(W) was obtained for hairpins. By applying
large-deviation algorithms, almost the full range of the
support could be obtained [8]. In the present study we
will investigate a simplified zipper model that can be used
to describe either the opening and closing of RNA hairpin
structures, or that of DNA double helices, under an ex-
ternal force. Our zipper model is a very simple one with
non-harmonic interactions (and thus goes beyond Gaus-
sian integrals in models with harmonic interactions), and
yet allows for an exact analytic solution in the folded or
‘zipped’ phase, in particular exhibiting a non-Gaussian
distribution of work P(W).

In an early model for DNA unzipping in a solvent [35],
the term coupling the free part of the helix to a solvent
can be interpreted as the interaction of the free part with
an external force f. The model allowed for an exact cal-
culation of the partition function and an unzipping tran-
sition was observed. During the decades other variants
of unzipping models [36-38] were studied, like the un-
zipping of DNA by pulling [39], and the denaturation of
DNA under applied torque [40]. Also a model exhibiting
a first-order unzipping transition was analyzed [41-43].
Furthermore, unzipping was studied via the calculation
of Lee-Yang zeros [44], which allowed the authors to ob-
tain the large-deviation tail of the energy distribution.
In some cases heterogeneous sequences were considered
[45], in particular a mapping to the disordered polymer
in random media was provided [46], allowing for an an-
alytical replica calculation. The actual dynamics of un-
zipping was modeled via a simple kinetic two-step pro-
cess [47], for reviews see, e.g., Refs. [48, 49]. For the
equilibrium models, unzipping transitions with model-
dependent critical forces f. were found and the behaviors
in the zipped and the unzipped phases were described
by average quantities (and sometimes also by the cor-
responding fluctuations). One important observable is
the free length L, i.e., the unzipped part of the sequence
which is next to the beginning of the sequence where the
external force is applied.

In the present paper, we will use a simple version of
the previous models but go beyond the calculation of av-
erages and study the full distribution P(L) of the free
length in the zipped phase, in the unzipped phase, and
also at the critical force f.. This in turn will allow us
to calculate analytically some moments and finally the
full distribution P(W) of work for equilibrium processes
where the external force is changed from 0 to fiax qua-
sistatically, in the region f < f. (zipped phase). We com-
pare the analytical results to large-deviation simulations
of the unzipping process and find very good agreement
over about 200 decades in probability. Thus, the model
constitutes a nice example where the work distribution
is available for a process in a system of many interact-
ing particles. This can be used as a starting point for
similar consideration of the corresponding not-quasistatic
process or other models of complex interacting particles.
Also the shape or generalizations of the obtained distri-

bution can be used to fit to numerical data for other
systems.

The paper is organized as follows. In Sec. II, we present
our zipper model. Then in Sec. III, we solve the model
exactly and show the existence of a first-order unzipping
transition in the temperature-force plane and obtain in
particular the full distribution P(L) of the free length. In
Sec. IV we present an exact numerical algorithm to sam-
ple configurations in equilibrium. In Sec. V, we use this
algorithm to confirm the analytical results for the ther-
modynamic behavior. Next, in Sec. VI, we analytically
derive, in the zipped phase, the first two moments and
also the full distribution of work P(W) for quasistatic
processes involving a finite number of increments of the
force f. In Sec. VII, we evaluate these quantities in the
limit of infinitely large increments. Then, in Sec. VIII, we
present the numerical results of the large-deviation sim-
ulations showing the work distributions over hundreds of
decades in probability and compare with the analytical
findings. Finally, we conclude in Sec. IX with a summary
and outlook.

II. A SIMPLE UNZIPPING MODEL

We consider a zipper consisting of two complemen-
tary halfs of a sequence consisting of N opposite pairs
of bases, where each pair can independently be bonded
(close) or unbonded, see the top part of Fig. 1. Note that
we assume the simplest case where each base can only be
bonded to the complementary base in the pair, not to
other bases.

The part of the sequence that is outside the “outmost”
bonded pair, i.e., the upmost pair in the top part of
Fig. 1, is denoted as free. We consider the case where
the first base is fixed and the last base is coupled to, e.g.,
an optical tweezer, such that a force f can be exerted on
the zipper. Thus, it is the free part of the zipper which
couples to the force.

This situation can be described by a one dimensional
lattice of N sites ¢ = 1,..., N, which represents the first
half or strand of the zipper. At each site, we have a bi-
nary variable o; € {0,1}, indicating whether the base 4
is bonded (o; = 1) or not, respectively. A typical con-
figuration of this binary string is shown in Fig. 1. Let
M denote the total number of 1’s in a configuration. We
also denote by L the number of lattice sites to the left of
the first 1 (appearing in the string as one reads from left
to right)—this is one half of the free length of the zipper.
Evidently all these L sites contain 0 by definition, see
bottom of Fig. 1. Thus a typical configuration is labeled
by two integers M and L. Note that for a given L in
0 < L < N, the number of 1’s, i.e., the variable M can
take values only in the range 0 < M < N — L. We define
the energy of the configuration as [50]

E(M,L)=—-JM -2fL (1)

where f > 0 is the applied force and J > 0 is the binding



FIG. 1. Top: A sequence which is partially unzipped under an
applied force f. The length of the outside unzipped part is L.
Also in the zipped part, some pairs are not bonded, forming
so called bubbles. Bottom: binary-string representation of
length N of this configuration consisting of 1’s and 0’s. Thus,
L denotes the length of the substring made of consecutive 0’s
from the left before the first 1.

energy of a base pair between a base in one strand and
its partner base located at the equivalent position in the
other strand.

IIT. EQUILIBRIUM BEHAVIOR

Ground state: Let us first investigate the ground state
by minimizing the energy function in Eq. (1). We need
to maximize —E(M, L) = J M +2 f L. Since both terms
in —F are non-negative, we can maximize them one after
the other. First fix L and vary M. The maximum value
of M, for fixed L, is clearly (N — L). Hence —E(M =
N-LL=JIN-L)+2fL=JN+(2f—-J)L. We
now have to maximize this function with respect to L
where 0 < L < N. There are two possibilities.

e The case 0 < f < J/2: In this case, the function
JN + (2f — J) L is maximized when L = 0, i.e.,
the first entry (from the left) in the ground state
configuration must be a 1. This is then the ‘zipped’
phase.

e The case f > J/2: In this case, the function J N +
(2f — J) L is maximized when L = N. This means
the ground state consists of all 0’s. This is thus a
totally ‘unzipped’ phase.

In summary, there is a phase transition in the ground
state from the ‘zipped’ phase to the ‘unzipped’ phase,
as one increases f (fixed J) through the critical value
fe = J/2. We will see below that this ‘unzipping’ phase
transition persists at finite temperature also.

Finite temperature: At finite temperature, we asso-
ciate a Boltzmann weight e #F(ML) to each configu-
ration labeled by (M, L) where the energy E(M,L) is
given in Eq. (1) and § = 1/T is the inverse temperature.
Henceforth, we fix J and consider the behavior of the sys-
tem as a function of two control parameters (T, f) in the
force-temperature plane. Our goal is to obtain the phase
diagram in the (T — f) plane. The partition function of
the model is defined as

InB, )= 3 epEann), (2)

all config.

To evaluate the partition function, we carry out the sum
over configurations in two steps. We first fix L and sum
over all values of M. After this, we sum over all values
of L. Thus we write

N
N(B, )= Wn(L) (3)
L=0
where we define
N-L
Wy(L) =) e PPALL). (4)
M=0

When carrying out the sum over M, we need to distin-
guish two cases, namely when 0 < L < N — 1 and when
L = N. In the latter case (L = N), the string consists
entirely of 0’s, hence M = 0. In this case, the Boltzmann
weight factor is just 2N For0< L <N — 1, we note
that once we fix L, the (L 4+ 1)-th entry is necessarily a
1. Hence, the remaining (M — 1) 1’s can be placed in the
available (N —L—1) boxes such that each box can contain
at most one 1. The number of ways this can be done is
simply (N 1\7[5 Il) Hence the net partition sum obtained
by summing over all possible M, for fixed 0 < L < N,
can be expressed as

WN(L) = GZBfN 5L,N+

N—-L
N-L-1

where 1p<<ny—1 is an indicator function which is one if
0<L<N-—1anddr, n is the Kronecker delta function.
The sum over M in Eq. (5) can be performed trivially
using binomial expansion and one gets, after slight rear-
rangement,

W (L) =
(14 ePNHN

ey [ loszena+ Qe ™) orn] . (6)

where we introduced the important parameter
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Finally, summing Eq. (6) over L (it is just a simple ge-
ometric series), we get the exact partition function valid
for arbitrary positive N

Zn(B,f) =) Wn(L) =

(14PN {1 — N

ey 1o Tt ®

where p is given in Eq. (7).
We now analyze the thermodynamic limit N — oo.
The free energy per site is defined as

. 1InZN(B,f)
F(B.1) = = Jim == 9)
Taking logarithm of Eq. (8) and the N — oo limit, we see
that the limiting value of the free energy per site depends
on whether ;4 <1 or u > 1. We obtain

—%ln(l—i—eﬁ") if pu<i
F(B.f) = (10)
—of if o> 1.

Note that F does not depend on the force for 4 < 1 and is
continuous at u = 1, but its first derivative with respect
to T or f is discontinuous at the critical point p = 1,
indicating a first-order phase transition.

To shed more lights on the two phases and the transi-
tion between them, let us now define the average fraction
of 1’s in the string as an order parameter

o M) OF(B.f)
) = Jm ="

(11)

Using Eq. (10) for the free energy per site, one gets
B
T4ehT it p<l1
(m) = (12)
0 if pu>1.

Thus the phase g > 1 corresponds to the ‘unzipped’
phase where (m) = 0, while the phase u < 1 corresponds
to the ‘zipped’ phase where (m) is nonzero. As one ap-
proaches the critical point 4 — 1 from below, the order
parameter (m) undergoes a finite jump, thus confirming
the first-order phase transition,

Thus the critical line in the (7" — f) plane is obtained
by setting 4 = 1. Using the expression of u in Eq. (8)
one then obtains the critical curve f.(T) in the (T — f)
plane

p=1= f(T)= W = g In(1+e”/T). (13)

The phase diagram in the (7' — f) plane including the
critical line f.(T") is shown in Fig. 2. Note that the critical
force increases when increasing the temperature, i.e., the

UNZIPPED

<m> =0 fC(T)

ZIPPED
S <m> >0

T

FIG. 2. Phase diagram in the (T — f) (temperature-force)
plane. The critical line f.(T) = (T/2) In(1 + e’/T) (drawn
schematically in the figure) separates the unzipped phase
(f > fo(T)) from the zipped phase (f < f.(T)). The order
parameter (m), namely the fraction of 1’s in the string in the
thermodynamic limit, is nonzero in the zipped phase and van-
ishes in the unzipped phase. On the critical line f = f.(T),
the order parameter (m) is nonzero and jumps to 0 as one
enters the unzipped phase from the zipped side, indicating a
first-order phase transition.

fluctuations do not help. This is known as cold unzipping
in the literature.

The critical curve f.(T') has the following asymptotic
behaviors

%_’_%e—J/T_%e—zJ/T_i_m (T = 0)
fe(T) ~ ] (14)
T2)T+ 4 + - +0(T7%) (T — o).

To obtain the T" — 0 limit, we rewrite the expression of
fo(T) in Eq. (13) as f.(T) = J/2 + (T/2)In(1 + e=/T)
and then expand the logarithm in powers of e=//7. This
gives the first line of Eq. (14). In the opposite T — oo
limit, we first expand e’/T = 1+ J/T + J?/(2T?) + ...
and then expand the logarithm in Eq. (13) in powers
of 1/T, yielding the second line in Eq. (14). Thus, as
T — 0, the critical value f.(0) = J/2 is consistent with
the ground state analysis before.

Statistics of the free length L: One can also charac-
terize the transition in terms of the variable L, denoting
the free length of the RNA chain. Here, we will not only
calculate the average value but actually the full distribu-
tion P(L|N) for any given N. This will allow us later on
to obtain for slow processes the full distribution of work
analytically.

Indeed, it follows from Eq. (6) that P(L|N) is given



exactly, for all 0 < L < N, by

Wi (L)

pElocpan—1+ (1 +e PN o N

—uN
117}1& + (1 +eB)yuN

(15)

It is easy to check that Py(L) is normalized, i.e.,

Zj:\[:o Py (L) = 1. A plot of this distribution for a small
value of N and f > f. highlighting the delta peak is given
in Fig. 3.
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FIG. 3. Distribution of the free length L in the unzipped
phase (see Egs. (15)) for T = J = 1, N = 10 and force
value f = 0.7 > f., where f. ~ 0.6566. The red vertical line
highlights the delta peak at L = N.

From Eq. (15), it is easy to compute its first moment
for all N

N
(L) =Y LPy(L)=
L=0
o |1=p™ g N1 14 eBIYN N
T I +(1+e?)Np

N
LT 4 (14 e B) N

where p is given in Eq. (7). In Sec. V samples for (L) as
function of the force f are shown and compared to result
from numerical exact sampling.

It is interesting to compute (L) in the large N limit.
It follows from Eq. (16) that this thermodynamic limit
depends crucially on whether ¢ > 1, p < 1 or p = 1.

Taking this limit carefully, we find that as N — oo

15“ for w<l1
(L) ~ { for pw=1 (17)
N for w>1.

Hence, as N — oo, the average free length available per
site (I) = (L)/N approaches to 0 for ;1 < 1 (zipped phase)
and 1 for g > 1 (unzipped phase). Exactly, on the critical
line 4 = 1, we find (I) — 1/2. This statistics of () also
confirms the first-order nature phase transition at u =1
for a different measurable quantity.

Let us also analyze the asymptotic form of the full
distribution Py(L) in Eq. (15) in the thermodynamic
limit N — oo. The behavior again depends on whether
u < 1 (zipped phase), > 1 (unzipped phase) or on the
critical lime p =1 (critical).

e Zipped phase (u < 1): In this case, as N — oo in
Eq. (15) the distribution Py (L) converges to an N
independent form which is purely geometric. For
L =0,1,2,--- one obtains

Pyosoo(L) = (1= p) " (18)

In this N — oo limit, the average value (L) ap-
proaches a constant

(D)= (—p) 3 Lt =5, (19)

in accordance with the first line of Eq. (17). The
fluctuations of L around this mean is quantified
by the variance Var(L) = (L?) — (L)? that also
approaches to a constant Var(L) = u/(1 — p)? in
the large N limit.

e Critical line (i = 1): On the critical line u = 1, we
find that Py(L) in Eq. (15) approaches a scaling
form as N — o0

1 L
Pyooo(L) — I F (N) , (20)
where the scaling function F(z) =1 for 0 <z <1
and F'(z) = 0 for z > 1. In other words, the dis-
tribution of L approaches a flat uniform distribu-
tion over L € [0,N]. Consequently, the average
value (L) approaches the value N/2 as found in the
second line of Eq. (17). One can also check that
the variance Var(L) = (L?) — (L)? — N?/12 as
N — oo, indicating that the fluctuations of L re-
main big in the large N limit at the critical point,
unlike in the zipped phase where it is of O(1) as
N — oo.

e Unzipped phase (1 > 1): In this phase, the dis-
tribution Py (L) in Eq. (15) does not approach a



limiting form as N — oo. Instead, there is a de-
caying N-dependent ‘bulk’ part that co-exists with
a delta peak (condensate) at the right edge of the
support at L = N. More precisely, for large N, we
find from Eq. (15) that

(p—1)
A T P
(" M lo<p<n-1+ (14 e Py Sp.n] - (21)

Note that the weight of the delta peak or the con-
densate at L = N approaches an N-independent
value as N — oo. However, the ‘bulk’ part of
the distribution, even though decays exponentially
as ~ =N away from the condensate, does ac-
tually contribute to all moments of L even in the
N — oo limit. For example, the average value
(L) = N+ 0(1) (as N — o0) as in the third line
of Eq. (17). The variance Var(L) = (L?) — (L)?
however approaches to a constant as N — oo

Lt (22 = 1)(1+ eP)]

Var(L) — 5 -
(n =11+ (p =11 +e )]

(22)

For both moments, the delta peak as well as the
‘bulk’ part contributes in the large N limit. So,
one can not neglect this ‘bulk’ part in the thermo-
dynamic limit. This is thus a rather unusual and
interesting distribution.

The limiting distribution is compared for different val-
ues of f to the ones obtained from numerical exact sam-
pling in Sec. V. The numerical approach is described
next.

IV. SAMPLING OF CONFIGURATIONS

To sample configurations numerically, we calculate for
a given system length N two conditioned partition func-
tions Z;(i) and Z,(3), ¢ = 1,...,N. Here Z;(i) is the
partition function of the subsequence 7 ... N conditioned
to the case that all sites 1,2...7— 1 are not bonded, i.e.,
on the free part. Z,(i) is the corresponding partition
function for subsequence i... N for the zipped case, i.e.,
for at least one site j € {1,...,9 — 1} we have o; = 1.
The simplest case is for i = N, i.e., the sequence is only
the last pair. If the preceding subsequence o1, ...0n_1
is free, having the pair open will contribute according
to Eq. (1) the energy —2f while closing the pair will
contribute energy —J. Correspondingly if the preceding
subsequence is not fully free, there will be no coupling
to the force in the final site ¢ = N. Therefore, having
the pair open contributes energy 0, while closing the pair
again yields energy —J. Thus, one obtains

Zy(N) = /T 4 /T
Z(N)=¢e" +el/T, (23)

This can be used as starting point for the recursive equa-
tions which read for ¢ € {0,..., N — 2}:

Zi(i) =T Zi(i 4 1)+ e Z,(i + 1)
Z.(1) = (e + e/ Z,(i + 1) = (" + /YN 1 (24)

Thus, the computation is done by the dynamic program-
ming approach [51], by starting at ¢ = N and iterating
site ¢ until ¢ = 1 is reached. Thus, the calculation takes
O(N) steps. The case ¢ = 1 describes the full sequence
and therefore the complete partition function is given
by Z¢(1), while Z.(1) is not used. Note that here it is
rather easy to introduce site randomness by generalizing
J = J;.

To sample a configuration o1, ...,o0N one starts at site
i = 1, in the free part of the chain, and assigns itera-
tively variables o;, ¢ = 1,..., N. As long as the partial
configuration is free, i.e., 0; = 0 for all j < 4, one assigns
o; = 0 with probability p}(i) = e*//TZ;(i +1)/Z;(i).
Thus, with probability 1 — pg)c(i) one assigns o; = 1.
Once the first non-zero assignment o; = 1 has been
made, one has reached the zipped part of the chain.
From now, on assigns o; = 0 with probability p%(i) =
Z.(i+1)/Z.(i) = 1/(1 +¢’/T) and o; = 1 with proba-
bility 1 — pY(i) = e’/T/(1 + e’/T). Note that this sam-
pling is performed in perfect equilibrium, and all sampled
configurations are statistically independent, for arbitrary
values of temperature T and force f. To sample one con-
figuration it takes a linear O(NN) number of steps. While
sampling, one can directly record the size L of the free
length and the number M of bonded sites.

V. NUMERICAL RESULTS FOR THE
UNZIPPING TRANSITION

In Fig. 4 the result for the average length (L) is shown
for T'= J =1 as a function of the force strength f. To in-
vestigate the finite-size effects, two different system sizes
N =10% and N = 10* are displayed. For the numerical
result, an average over 10% randomly sampled configura-
tions was taken for N = 102, while 10* configurations
were considered for N = 10%. An excellent agreement
with the analytical results from Eq. (16) is observed. In
particular the first-order nature of the transition is very
well visible for N = 10%.

In Fig. 5 examples for the distributions Py (L) of the
free length are shown, for the case T = J = 1 and
N = 100. Three cases f < f., f = fco and f > f.
are presented. The numerical results are histograms ob-
tained from 107 independently sampled configurations.
For f < f. a clear decreasing exponential function is vis-
ible. Despite the rather small system size N = 100, a
very good match with the limiting N — oo analytical
result from Eq. (18) is visible, apart from the statistical
fluctuations for large values of L. For f = f. an almost
full uniform distribution is found, as obtained in Eq. (20),
plus a small peak at L = 100, which is present in the full
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FIG. 4. Normalized expectation value (L)/N of the length
of the unzipped part as a function of the force strength f,
for temperature T = J = 1 and two different system sizes
N = 10%,10%°. The symbols denote the numerical results,
while the lines the analytical results from Eq. (16).

distribution Eq. (15), but should decrease in weight for
N — oo. For f > f. a rising exponential, matching the
result of Eq. (21) is clearly visible. Here also a finite
peak at L = N appears, which should remain also for
large system sizes. In general, finite-size effects appear
very small. Thus, the rather small size N = 100 almost
represents the limiting N — oo behavior.

VI. WORK DISTRIBUTION IN THE ZIPPER
MODEL IN THE ZIPPED PHASE

In this section, we compute the work distribution in
the zipper model in the zipped phase by increasing the
applied force quasistatically. Here, we will consider in-
creasing the applied force in discrete steps in units of
fo > 0. In other words, the applied force at the m-th
step is given by

f(m)

where N is the total number of steps. We restrict ourself
in the present work to the zipped phase u < 1, because
the simple shape of the distribution Py (L) — (1—pu) mu®
(as N — o0) in this phase allows us to perform all com-
putations analytically. Therefore, the final force f(N;) =
fo Ny stays below the critical force f. = In(1+¢7)/(23)
as given by Eq. (13).

To define the work appropriately, consider the follow-
ing general situation. Suppose we have a system with a

= fom where m=0,1,2,..., Ny, (25)

10°
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FIG. 5. Distribution of the free length L for T = J = 1,
N = 100 and for force values f = 0.6 < f., f = feo = 0.6566
and f = 0.7 > f., respectively. The symbols denote numer-
ical results, while the lines show the analytical asymptotic
distributions from Egs. (18), (20) and (21). The delta peak
at L = N is for some cases only slightly visible, in partic-
ular for f = 0.6 where the relative flucations are large, and
therefore highlighted in the figure by arrows, respectively.

Hamiltonian that depends on the local degrees of free-
dom such as the spins {s;} on a lattice and also contains
a parameter \(t) that evolves in continuous time (for ex-
ample, the external magnetic field). We write this Hamil-
tonian as H({s;}, A(t)). Now, we evolve the system up
to a final time t, following A(t). Then, quite generally,
the work done to the system up to the final time t, is
defined as [3]

ts
W = / dt \(t

For a fixed set of spins {s;}, as A evolves, the Hamiltonian
changes, i.e., the energy changes. Hence, when integrated
up to ts as in Eq. (26), this gives the total energy pumped
into or released from the system, defined as work, just
due to the change of the parameter, and not due to spin
fluctuations.

We now adapt the general definition of work in Eq. (26)
to our zipper model. Here, the external force f in the
Hamiltonian in Eq. (1) plays the role of the parameter
A(t), but we assume that our evolution occurs in discrete
steps and not in continuous time. Then from Eq. (25), we
get the discrete-time analogue of /\(t) in Eq. (26), namely
)\(t) = fo. Using furthermore O\H = —2 L,, where L,,
is the random variable describing the free length of the
chain after the m-th step, we get the discrete-time equiv-

OH({s:}. A1)

o (26)



alent of Eq. (26)

Ng—1
W=-2f > Lpn. (27)
m=0

We further assume that the system equilibrates after each
step (quasistatic), i.e., at the m-th step, the probability
distribution of a configuration is given by the Boltzmann
weight oc e #Em (ML) with inverse temperature § and
with the energy function

Eny(M, L) = —J M =2 f(m) Ly, . (28)

It is convenient to define the rescaled work

w=—sr =Y Ln>0. (29)

Our goal is to find the distribution of the random vari-
able w in Eq. (29). To compute this, we will use the fact
that L,, at the m-th step is distributed via the equilib-
rium distribution in the zipped phase as given in Eq. (18),
ie.,

62 B fom

——57 - (30)

P(Ly) = (1= i) pm T

where u,, =
Note that we have already taken the thermodynamic
limit N — oo. A consequence of Eq. (30) is

1_,um

= . 31

(zFm)y = 2P P(Li)

We now consider the generating function of the rescaled
work w in Eq. (29) and use the fact that the L,,’s for
different m’s are statistically independent. This gives,
using the result in Eq. (31), a rather nice and simple
expression

Ng;—1 Ns;—1 1— "
(z) = H (") H ﬁa (32)
m=0 m=0 m

where we recall that p,, is given in Eq. (30).

From the generating function in Eq. (32), one can eas-
ily compute all the moments and cumulants, by taking
derivatives with respect to z and setting z = 1. For this
purpose, it is convenient to write z = e~° and derive the
cumulants by taking derivatives with respect to s and set
s =0. Thus Eq. (32) reads, in the variable s,

-1

= 1

m=0

(1 — Mm)

T pre ] (%)

Consequently, the cumulant generating function is given

by

In [(e_sw>] = Z mn% , (34)

where k, is the n-th cumulant. Taking the logarithm of
Eq. (33) and expanding for small s, one can obtain all
the cumulants. For example the first two cumulants are
given by

N;—1

m= (o) = 0 T (35)
" N;—1

ro = (w?) — (w)? = Z (1_“—’;771) (36)

Let us now turn to the generating function of the full
distribution in Eq. (33). First, we want to point out an
interesting fact. Substituting s = —2fp8 in Eq. (33), we
get

Ns—1
<€_’8 W> _ <625fo w> _ H (1 - /um)
m—0 (1 — p €2810]
Ns;—1

1+65Jf625f0m

- 1__[0 T4 T — ezt - 7

However, now the cross terms in the numerator and de-
nominator of Eq. (37) cancel telescopically leaving behind

eﬂ‘]

—BW\ __
(e >*1+65J_626f01vs' (38)

However, in the zipped phase where p < 1 and it is then
easy to see that in the thermodynamic limit the partition
function in Eq. (8) reduces, with f = f(m), to

N —oc0

(1 +€BJ)N+1
(1+e B [1+ePl —e2Bhom]”

(39)
Hence Eq. (38) can then be expressed as

<675W> _ ZN—)oo(/Ba st) _
ZN—)OO(57 f(0)>
exp [=f (F(B, f(m = Ns))
= F(B,f(m=0)))], (40)

where F(5, f(m)) = —(1/8) nZ(B, f(m)) is the free
energy of the system at the m-th step. In fact, Eq. (40)
is nothing but the discrete version of the Jarzynski equal-
ity [3].

Note that the Jarzynski equality holds only when we
set s = —28fy. It does not help us to compute the full
work distribution. To compute this, we need to keep a
general s in Eq. (33) and try to invert this generating
function. In fact, since w in Eq. (29) is an integer, we
first rewrite Eq. (32) as

() = iProb [w = Kk|N,] 2* = Nﬁlm
_k-:() R _m:O [ = pm 2]

(41)



Now, one can formally invert the generating function in
Eq. (41) using Cauchy’s theorem

dz 1 ! (1 — pm)
Prob. [w = k|Ns] = / — T (42)
o 2mi 2kt 71-;[0 1 — pm 2]

where C' denotes a closed contour in the complex z plane
around z = 0. The integrand in Eq. (42) has simple poles
at z,, = 1/um. Hence, one can evaluate the contour inte-
gral by computing the residue at each pole and summing
them up (with a negative sign). This gives, after some
straightforward algebra, the following explicit result

N,—1 ‘uN stk
Prob. [w = k| Ng| = 1— ) L ,
= mn) = L= ol e
(43)

where p,,, is given in Eq. (30). An example of the result-
ing distribution is shown in Fig. 6. Also, a comparison
to numerical large-deviation data is included, which is
presented in Sec. VIII.

©
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FIG. 6. Analytical N — oo work distribution (solid line) in
Eq. (43), measured in terms of integers k = —W/(2fo), for
the case § = J = 1 and for Ny = 502. The symbols denote
results obtained from numerical large-deviation sampling, as
described in Sec. VIII, for three different chain lengths N.
Errorbars are smaller than symbol size.

VII. THE LARGE N, BEHAVIOR OF THE
MEAN, THE VARIANCE AND THE FULL
DISTRIBUTION

In this section, we will derive the behavior of the work
distribution in the scaling limit when Ny — oo, fo — 0

but with the product

UZQﬂfoNS

fixed, corresponding to a constant final force. We con-
sider below the mean, the variance and the full distribu-
tion separately.

(44)

A. The mean

For the mean work (w), we have the exact formula in
Eq. (35), namely

Ns—1 Ng—

L
Z 1_:U/m7

m=0

e2B fom
Z 1+ ePJ —e2Bfom’

(w) = (45)

where we recall that e2#/oNs < 1 4 ef7. Let us define
x =20 fom. As m changes by 1, the variable = changes
by Az = 2 fy. In the limit fo — 0, this change Az — 0.
Hence, one can replace the sum over m in Eq. (45) by an
integral over x in this scaling limit. We get

1 “ e’
~ d _——
<’LU> Q/BfO/O x1+eﬂJ_e:E
1 el
In
2 ﬁ f() 1 + 65'1 —
Thus, the mean work, in the scaling limit where Ny — o0,

fo = 0 with w = 23 fy N fixed, can be expressed in a
nice scaling form

{w)

where the scaling function M (u) is given for 0 < u <
uczln(1+63") by

e“}' (46)

~ N, M (u=28fyN,), (47)

My (u) = 1 In { (48)

ef
u 1+efd — e“} '
The scaling function M;(u) is plotted in Fig. 7 and has
the following asymptotic behaviors

e BT as u—0

Mi(u) ~ (49)

—L In(u, —u) as

Uc

U — U .

Thus the mean diverges very slowly (logarithmically) as
u — u. from below.

Physical significance. The scaling behavior of the
mean work in Eqs. (47) and (48) has an interesting phys-
ical significance. In fact, for this model in the thermo-
dynamics limit N — oo, the partition function at step
m where f,, = fom is given, by Eq. (39). Let us now
consider the ratio

ZN—oo(B, f(m = Ny)) _ eBJ
ZN*}OO(B?f(m:O)) B 14+ eBJ —e2BfoNs”’

(50)
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FIG. 7. The lines show the scaling functions M1 (u) for the
mean work of Eq. (48) and Ms(u) for the variance Eq. (57).
We chose 8 =1, J = 1 and consequently u. = In(1 + *7) ~
1.31. The symbols show the numerical results as presented in
Sec. VIII

where f(m = 0) = 0 and we used Eq. (39). Now consider
the scaling limit Ny — oo, fo — 0, but with the product
u = 20 fo Ng kept fixed. Then the ratio in Eq. (50)
reduces to

ZN—)OO(/vi(m:Né)) _ eﬁJ (51)
Znosoo(B, f(m=0)) — 1+efd —ev’

Now, from Eqs. (47) and (48), we have the mean work
(unscaled)

e’ ] (52)

1
(W) = =2 fo(w) = 3 In [H—eﬂ“—e"

Now taking logarithm on both sides of Eq. (51), we can
express the right hand side of Eq. (52) as

1 {ZN—wo(ﬂ»f(m = Ns)):|

W) =g | . Fm=0)

= F(B, f(m = N,)) = F(B, f(m = 0)) . (53)

Thus the mean work is exactly the free energy difference
between the final equilibrium state and the initial equi-
librium state, which is expected for quasistatic evolution.
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B. The variance

Also for the variance, we have the exact formula in
Eq. (36) that reads

Ng—1
2\ 2 _ Hm
Var(w) - <’UJ > <w> Z (1 _/J/m)2
m=0
et 26 fom
= (1+eP7 c (54
() 3 o e 9

As in the case of the mean, we define the variable z =
2 B fo m which becomes continuous in the fy — 0 limit.
Hence, in the scaling limit in Eq. (44), we can replace the
sum by an integral and write

efL’

et (55)

1 u
Var(w) =~ N, (l—l—eﬁJ)a / dx T,
0 e

Performing the integral explicitly, we then have the scal-
ing behavior

Var(w) ~ Ny Ma(u =20 fo Ns), (56)

where the scaling function My(u) is for 0 < u < u, =
In (1 +efd ) given explicitly by

(e" —1)

Ms(u) = (1+e_[”)m.

(57)

The scaling function My (u) is plotted in Fig. 7 and has
the following asymptotic behaviors

e BT1+eP7) as u—0

Ma(u) ~ 1 (58)

Yo (Go—w) as U — Ue.

Thus as ©v — u, from below, the variance diverges as
1/(ue — u), which is faster as compared to the mean in
Eq. (49).

C. The full work distribution

Here, we will consider the full work distribution in
the scaling limit Ny — oo, fo — 0 with their prod-
uct u = 28 fo Ns kept fixed. Our starting point is the
exact Cauchy representation of the work distribution in
Eq. (42), which can be re-written as

Prob. [w = k|N| =
dz g
A/C% exp | —(k + 1) In(z) — n;ln(l—um )|,

(59)

where A = [N '(1 — pm), and we recall that i, is

m=0

given by Eq. (30).



To proceed we set k = y N5 where y is of O(1) in the
large Ny limit. Taking the scaling limit as usual, i.e., by
defining x = 2 8 fy m and replacing the sum inside the ex-
ponential by an integral, one finds after straightforward
algebra, for y = Nis and u = 20 fo N,

Prob. [w = k|N;]

d
~ A Ne In(1e” ) / 2 exp[-N, S (2ly,w)] , (60)
e} 271
where the action S is given explicitly by

1 u
S(z\y,u):ylnz—&-a/ In(1+4e’7 —ze") da. (61)
0

The idea is now to perform a saddle point analysis of
the integral in the large N, limit. Taking derivative with
respect to z and setting

9.5(zly,u) =0, (62)
gives the saddle point explicitly

(14ePT) (emv —1)
(eu (y+1) — 1)

2" (ylu) = (63)

Similarly the prefactor A eNs m(+¢””) in Fq. (60) can be
analyzed in the large N, limit giving

. [
A eNs 111(1“’8ﬂ I) ~ exp |:NS — / In (]. + GBJ - 61) dl':|
u Jo

(64)
Evaluating the integral by the saddle point method for
large Ny and using the result in Eq. (64), the work dis-
tribution can be expressed in a nice large-deviation form
(for fixed u = 28 fo Ns and N large)

Prob. [w = k|N,] &~ exp {—Ns P, (AI; = y)} . (65)

where the rate function @, (y) is given by

Dy (y) =y In (2" (y[u))

L[ [1+eP7 —2*(ylu)e®
— 1 d 66
+U/0 n[ 1+efJ —er @, (66)

with z*(y|u) given in Eq. (63). Performing the integral
explicitly, we get

Dy (y) =y In (2" (y[u))

1., (2 (yluw) ) 1
— |L —L
Jru[lz(l—&—e/” 2 \11ep7

. e . (e 2" (ylu)
wti () -1 (TR @

where

Lip(z) = 2—2 : (68)
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is the dilogarithm function. A plot of the rate function
D, (y) vs. y (for fixed u) is given in Fig. 8. By taking
the derivative with respect to y (for fixed u) and setting
0y @, (y) = 0 gives the value ymin(u) where the rate func-
tion @, (y) has its minimum. It is not difficult to show
that

65‘]

1
min(w) = = In | ——————
Y (u) u n|:1+eﬁjeu

|=1m@. @)

where M;(u) defined in Eq. (47) is just (w)/Ns. Indeed,
one expects the rate function ®,(y) to be a convex func-
tion with a minimum at y = ymin(u) = M;(u) and must
have a quadratic form near this minimum

(y = Mi(w)’”

2 Mgl(u) ’ (70)

(I)U(y) ~

where M (u) is the scaling function associated to the
variance in Eq. (56) and computed explicitly in Eq. (57).
Indeed, by expanding ®,,(y) up to quadratic order around
Y = Ymin(u), one does recover My(u) from the rate func-
tion. The asymptotic behaviors of ®,(y) as y — 0 and
y — oo can also be deduced easily. Let us define the
parameter

a=1+¢e7. (71)

In terms of this parameter a, we can express the small
and large y asymptotics of ®,(y) (for fixed u) as follows

(Liz () —Liz (3)) +
ylny+O(y), as

(L (3) + L (5) + Lia () - )

+In(ae )y + O (5 as

e =

y—0

Yy — 00.

Interestingly ®,(0) = [Liz (%) —Liy (2)] /u is a pos-
itive constant. This implies, from Eq. (65), that the
probability of vanishing work, i.e., w << Ny decays ex-

ponentially with increasing Ny as

Prob. [w = k|N.] ——— exp [~6(u) N.|
st 0= 0,0)= - (1 (2) -1 (1))
(73)

Also, since @, (y) increases linearly with y for large y, see
the second line of Eq. (72), it follows again from Eq. (65)
that the probability of a very large work w = k >>
N becomes independent of N, and decays exponentially
with increasing k

P . = N — 1 u =
rob. [w = k| N;] Wexp[ k In(ae")]



1.2 T 5()\ T T T
NE=502 0 o

num
100 .
W UNE=502 o o

200 =
num. » V. s:5 02 ° 3

0.8 ": cI)analy. s N=502 ---- - - e OCE

CORCUNC,

FIG. 8. Analytical (line) Ny — oo rate function ®,(y) from
Eq. (67) for fixed u = 1.2. The rate function has a mini-
mum at Ymin = Mi(u = 1.2) = 1.6 and has the quadratic
behavior near the minimum as in Eq. (70). Also shown is
the analytical result for finite N5 = 502 (broken line) and nu-
merical estimates @ﬁ.\{,m,(y) as obtained from large-deviation
simulations, see Sec. VIII. Errorbars are smaller than symbol
size.

VIII. LARGE-DEVIATION SIMULATIONS

Complementary to the analytical calculations of the
work distribution, numerical simulations were performed,
especially to study finite-size effects.

The work simulation works as follows: The linear pro-
tocol is discretized into, here, Ny = 502 points result-
ing in force values f,, = mfy, m € [0,1,2,...,N;],
where fy is a constant chosen such that the final force
is Nsfo = 0.6, which is smaller than the critical force
fe = 0.6566 for the case § = J = 1. Therefore the
phase transition should not contribute significantly. At
each force value a sample from the equilibrium distribu-
tion is drawn using the algorithm as described Sec. IV,
yielding a total of Ny configurations where each one ex-
hibits a free length L,,, i.e., seen from the beginning
(left), a corresponding number L, of 0’s before the first
occurrence of a 1. A sample of such a force-extension
curve is shown in Fig. 9. The work of an entire pro-
cess is then given Eq. (27), which is twice the area under
the curve in the figure. We considered the chain lengths
N € {50, 100,200}.

By running the process many times, for the desired
values of fy and N, one can obtain histograms of the

12

T=J=1.0

0 01 02 03 04 05 06 07

f

FIG. 9. A sample force-extension curve where the free length
Ly, at step m is shown as function of the force f for a single
random realization of the unzipping process, here for length
N =100, Ns=12 steps and parameters "= J = 1. The area
under the curve is the work, times a factor of -2 by Eq. (26).

work in the high-probability region. This allowed us to
measure directly the mean and the variance of the work.
The resulting rescaled work and variance functions M (u)
and Mz (u), see Egs. (47) and (56), are shown in Fig. 7.
An almost perfect agreement of analytical results (for
N, = 00) and numerical results is visible, except for very
small values of the rescaled force u, where the finiteness of
the number of steps and sequence length becomes slightly
visible.

For a meaningful comparison of the full distribution
to the analytical result, it is necessary to resolve the
work distribution over a large range of support, down
to probabilities as small as 1072°°, For this purpose, a
large-deviation algorithm [7] was employed. Note that
this approach was already used to measure work distri-
butions for unzipping processes of a more sophisticated
RNA model [8]. The method’s basic idea is to treat
the underlying random numbers £ = (&1,...,¢k), re-
quired by a single simulation of one full work process,
as a state variable in a Markov-chain Monte Carlo pro-
cess €1 — €3 - | with a target distribution that
has an additional bias proportional to exp (W/6). Here
6 € [-0.0005,...,0.0005] is a temperature-like parame-
ter allowing to control the regime in which work values
are predominantly generated. Since every equilibrium
sample needs N random numbers and each work process
requires Ny samples at different force values, the state
vector £ of random numbers has a size of K = N X Nj.
Each unzipping process is fully determined by &, there-
fore the work is a deterministic function W = W (¢).

One Monte-Carlo step in the Markov chain of random
number vectors consists of

e randomly selecting some entries of the current state
vector £ and redrawing them, resulting in a trial
state £’.

e performing one full work simulation with this trial



state of random numbers
e obtaining the corresponding work W' = W (¢’)

e finally accepting or rejecting the trial
state with Metropolis probability puretr. =
min {1, exp (AW/0)}, where AW = W' — W(£®)
is the work difference between current and trial
state.

Equilibration was ensured as follows: one starts the
Markov chain with random as well as with extreme vec-
tors of random numbers, such that the corresponding ini-
tial work values are very different, respectively. If for
these very different initial conditions after a while the
work values agree withing fluctuations, the chain can be
considered as equilibrated. For more details see Ref. [52].
We considered 90 different values of 6. For each one,
a separate MC simulation is performed with at most
3.2 x 108 MC-steps. This has yielded up to 40000 sam-
ple points each after the initial equilibration phase and
correlations were removed from the chain of work val-
ues. Hence, for each value of 6 a distribution Py(W) is
obtained. These are then combined to the final overall
work distribution via the Ferrenberg-Swendsen method
[53] using a convenient tool [54].

Fig. 6 shows the exact analytical and numerically es-
timated work distributions for the rescaled work w =
k = —W/2fy. The distributions could be obtained down
to probability values as small as 1072%°, For k < 1250,
they show good agreement for all simulated system sizes.
Finite-size effect become relevant in the regime k& > 1250.
Nevertheless, the curves tend toward the analytical dis-
tribution as the system size increases.

Due to the quasistatic nature, i.e., sampling in perfect
thermal equilibrium, each work value is a sum of Ny sta-
tistical independent values L,,. But these values are not
identically distributed due to the different force parame-
ter values at each of the process steps. This explains why
the conditions of the central limit theorem are not ful-
filled. The resulting distributions therefore do not need
to be Gaussian, which they apparently are not.

An estimate of the rate functions from the numerical

determined work distribution PX is given by:
1

Since the analytical rate function in eq. (67) considers
the case Ny — o0, it is also worth looking at

1
(I)analy.(y) = _F hl(PI‘Ob.[’U} = yN9|NS]) ’ (76)

determined from the exact work distribution but for finite
Ny in eq. (43).

The different rate functions are displayed in Fig. 8.
Again, the numerical curves tend towards the analytical
rate functions with increasing system size, where they
are matching each other for y < 3. Finite-size effects
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become relevant for y > 3. The analytical rate function
for finite Ny is only slightly different from the Ny — oo
limiting one towards higher values of y. This indicates
that the influence of a finite number of protocol points
N is minor compared to that of a finite system size V.

IX. SUMMARY AND DISCUSSION

In summary, we have calculated analytically and ver-
ified numerically the distribution P(W) of work per-
formed in unzipping an infinitely long closed hairpin
structure under an external force, applied quasistatically
in the zipped phase. This model has many interacting de-
grees of freedom and goes beyond past analytical works
where either single-particle systems or models with sim-
ple, i.e., harmonic, interactions where considered.

As one of the main steps leading to this calculation
of the work distribution, we computed exactly the full
equilibrium distribution Py (L) of the free length L of
an infinitely long hairpin (N — oo limit), thus going be-
yond previous studies that focused mainly on the average
(L) as a function of system parameters. We find that
the large-N distribution Py_,o(L) drastically changes
its shape at the unzipping transition point f = f., and
is, in particular, very broad right at the transition.

Based on this result, we were able to compute P(WV)
in the zipped phase analytically for all W. It also al-
lowed us to evaluate P(W) numerically over its full range
of support, resulting in probabilities as small as 107200
for the selected values parameters. We find generally a
very good agreement between analytical and numerical
approaches, except expected finite-size effects which are
present in the numerical simulations. There is also a de-
pendence on the number of steps of changes of the force,
but here the influence on the results is rather limited.

In this paper, we have restricted our calculation of
P(W) only in the zipped phase, for simplicity. It would
be interesting to extend our calculation that encompasses
both phases. Finally, our results are valid for quasistatic
processes. It would also be interesting to study the work
distribution for a genuinely far from equilibrium process.
One could describe them, e.g., by considering the distri-
bution P(L,t), t being a time or step counter, and de-
scribing the dynamics by allowing for transitions between
neighboring states. Still, for this model, the part beyond
the first pair is “shielded” from the external force, i.e.,
is always in equilibrium. Only the free part couples to
the external force and is influenced by the rate of force
change. Thus, one could expect an only small influence
of the speed of the process, but this remains to be verified
in future work.
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