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We perform large-scale Monte Carlo simulations using the Machta-Newman-Chayes algorithms
to study the critical behavior of both the diluted antiferromagnet in a field with 30% dilution and
the random-field Ising model with Gaussian random fields for different field strengths. Analytical
calculations by Cardy [Phys. Rev. B 29, 505 (1984)] predict that both models map onto each other
and share the same universality class in the limit of vanishing fields. However, a detailed finite-size
scaling analysis of both the Binder cumulant and the two-point finite-size correlation length suggests
that even in the limit of small fields, where the mapping is expected to work, both models are not in
the same universality class. Therefore, care should be taken when interpreting (experimental) data
for diluted antiferromagnets in a field using the random-field Ising model. Based on our numerical
data, we present analytical expressions for the phase boundaries of both models.

PACS numbers: 64.60.De, 75.10.Nr, 75.40.-s,75.50.Lk

I. INTRODUCTION

The random-field Ising model1 (RFIM) is of
paramount importance in the field of disordered
systems.2–5 A plethora of problems across disciplines can
be studied via the RFIM, ranging from the thermody-
namics of disordered magnets,6 hysteresis in magnetic
systems and Barkhausen noise,7–9 tunable domain-wall
pinning,10 the random pinning of polymers,11 and even
water seepage in porous media. As such, the RFIM is
still under intense theoretical, as well as numerical and
experimental scrutiny.

More recently, the RFIM has been realized in di-
luted dipolar magnets in a transverse field such as
LiHoxY1−xF4. However, most experimental studies fo-
cus on diluted antiferromagnets in a field (DAFF), such
as FexZn1−xF2.

3,12–15 Fishman and Aharony16 were the
first to note that the DAFF can be described by the
RFIM and Cardy17 predicted that the critical behav-
ior of both models should be in the same universality
class in the limit of small fields. The work of Fish-
man and Aharony,16 as well as Cardy17 therefore opened
the door for intense experimental investigation of the
RFIM via DAFF materials. However, early experiments
and simulations already hinted towards discrepancies be-
tween experimental and numerical estimates of the criti-
cal exponents.3 However, exact ground-state calculations
using moderate system sizes suggested an agreement be-
tween the critical exponents for both models.18

In this work we perform detailed Monte Carlo sim-
ulations of both the RFIM and the DAFF. The latter
is studied at 30% dilution, i.e., below the percolation
threshold. Using a finite-size scaling analysis of both the
Binder cumulant and the two-point finite-size correlation
function, we show that even in the limit of small fields—
where the Cardy mapping17 is expected to work—both
models seem to be in different universality classes. There-

fore, care should be taken when making predictions for
the critical behavior of the RFIM using experiments on
DAFF materials. Finally, we present heuristic analytical
expressions based on our numerical data for the phase
boundaries of both models to help guide experimental
studies.

The manuscript is structured as follows. In Sec. II we
introduce both the RFIM and the DAFF, followed by an
explanation of the used algorithms in Sec. III, as well as
the measured quantities in Sec. IV. In Sec. V we show
our numerical results, followed by a detailed discussion
of the phase boundaries and universality between both
models in Sec. VI.

II. MODELS

The Hamiltonian of the diluted antiferromagnet in a
field (DAFF) is given by

HDAFF = +J
∑

〈i,j〉

εiεjSiSj − B
∑

i

εiSi , (1)

and the Hamiltonian for the random-field Ising model
(RFIM) is

HRFIM = −J
∑

〈i,j〉

SiSj − h
∑

i

δiSi . (2)

In Eqs. (1) and (2) Si ∈ {±1} represent Ising spins, J = 1
is the coupling constant between two adjacent spins, and
〈i, j〉 denotes a sum over nearest neighbors. The linear
term in Si couples to an external field: For the DAFF
it is an externally-applied uniform field B, whereas for
the RFIM the spins couple to a random field of strength
hδi, where the δi are quenched random variables chosen
from a Gaussian distribution with zero mean and stan-
dard deviation unity. This means that the typical field
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has strength h. In the DAFF εi ∈ {0, 1} represents the
site dilution, where each site is randomly and indepen-
dently occupied by a spin (εi = 1) with probability p.
Here, we fix the dilution to 1 − p = 0.3. Both models
are studied in three space dimensions on a lattice with
N = L3 spins, L the linear size of the lattice.

III. ALGORITHM

The simulations are done using the Machta-Newman-
Chayes replica-exchange (MNC) algorithm19 combined
with single-spin Metropolis Monte Carlo.20,21 The MNC
algorithm is a mixture of the Swendsen-Wang exchange
algorithm22 and simulated tempering Monte Carlo.23,24

Note that the latter is not efficient when simulating
random-field systems.25 The advantage of the MNC al-
gorithm over standard parallel tempering lies in the fact
that we can choose any path in the field–temperature
plane. Although parallel tempering can also be imple-
mented with a variable field, the method does not per-
form efficiently when systems have disorder.26

In the MNC algorithm19 a cluster of connected spins
is grown between two replicas with the same disorder
but at different points in the phase space, i.e., (T,B)
and (T ′, B′), where T represents the temperature and
B the external field (here for the case of the DAFF).
Starting from an arbitrary spin with different sign in both
realizations, adjacent spins pointing in the same direction
are successively added to the cluster with probability

p(β, β′) = 1 − exp{−2(β + β′)} , (3)

where β = 1/T is the inverse temperature. Once no
more spins can be added to the cluster C, it flips with
the Metropolis probability27 min{1, exp(−Σ)}, where

ΣDAFF = 2sign(C)
[

(β−β′)(n++−n−−)+(B−B′)|C|
]

(4)

for the DAFF, and for the RFIM

ΣRFIM = 2sign(C)
[

(β−β′)(n++ −n−−)− (h−h′)
∑

i∈C

δi

]

.

(5)
Here |C| is the number of spins in the cluster, sign(C)
the orientation of the spin in the replica having inverse
temperature β, n++ and n−− are the number of bonds
connecting to nearest neighbors of the cluster with spin
up and spin down in both replicas, respectively. After
each cluster update, (L/2)3 attempts to flip single spins
are performed, where L is the linear size of the system.

As stated before, the MNC algorithm enables us to
perform simulations along any arbitrary path in phase
space. We denote such path a replica chain (RC). The
phase boundaries for the RFIM and DAFF in the field–
temperature plane are well described by ellipses (see be-
low). To reduce corrections to finite-size scaling28 we
therefore choose paths in the field–temperature plane

that cut the phase boundaries at an as orthogonal an-
gle as possible. This means that, in general, T ∼ h for
the RFIM and T ∼ B for the DAFF. To ensure efficient
mixing and therefore fast convergence of the Monte Carlo
method, we additionally connect the point with the high-
est field within the disordered phase to another RC that
runs parallel to the approximated phase boundary to a
temperature T > Tc and B = 0 (h = 0 for the RFIM),
where Tc is the critical temperature of the model at zero
field (see Fig. 5, light dashed lines). This end point of
the second RC is simulated efficiently by the Wolff cluster
algorithm.29 Simulation parameters are listed in Tables
I and II for the RFIM and DAFF, for the first RCs, re-
spectively.

Finally, we also study the DAFF at zero temperature
using the method introduced in Ref. 30. Here, the DAFF
is mapped onto a graph31 with N nodes (N is the num-
ber of spins) attached to a source and a sink node, all
connected in a distinct manner via edges with positive
edge weights. The edge weights are calculated depend-
ing on the local staggered field, i.e., ±B. The maximum
flow/minimum cut is obtained using the algorithm intro-
duced in Ref. 32. The minimum cut is a direct represen-
tation of the ground-state spin configuration from which
derived quantities, such as a zero-temperature Binder ra-
tio, can be calculated. Note that the method takes the
ground-state degeneracy into account. The simulation
parameters for the DAFF at zero temperature are shown
in Table III.

IV. OBSERVABLES

Both the DAFF and RFIM undergo second-order
phase transitions as a function of temperature and field.
To pinpoint the transition temperature we measure the
Binder cumulant,33 as well as the two-point finite-size
correlation function.34–36 To compute these observables,
we measure the magnetization per spin

M =
1

N

N
∑

i

Si . (6)

For the DAFF we measure the staggered magnetization,
i.e., each second spin is counted opposite to its orienta-
tion in a three-dimensional checker-board manner. For
simplicity, we refer to the staggered magnetization also
as M . An antiferromagnetically-ordered spin configura-
tion has therefore M = 1. A Binder cumulant for M can
then be defined via

g(T,L) =
1

2

(

3 −
[〈M4〉]av
[〈M2〉2]av

)

, (7)

where 〈· · · 〉 represents a thermal average and [· · · ]av an
average over disorder (field or dilution configurations) for
a fixed value of h (RFIM) or B (DAFF). Close to criti-
cality the Binder ratio scales as

g(T,L) = G̃[L1/ν(T − Tc)] , (8)
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TABLE I: Simulation parameters for the RFIM along dif-
ferent nontrivial paths of the type h = a + bT in the h–T
plane for different linear system sizes L (the first two path
types have b = 0). Nsa is the number of disorder realiza-
tions. NT corresponds to the number of temperatures (points)
along the simulation path. Tmin and Tmax are the lowest and
highest temperature simulated, respectively. The equilibra-
tion/measurement times are 2x Monte Carlo sweeps.

simulation path L Nsa NT Tmin Tmax x
h = 0.225 8 1536 25 4.00 5.00 18
h = 0.225 10 827 25 4.00 5.00 18
h = 0.225 12 2048 17 4.30 4.80 18
h = 0.225 16 1024 19 4.35 4.70 18
h = 0.225 20 1024 19 4.35 4.70 18
h = 0.225 24 1024 26 4.40 4.69 18
h = 0.225 28 666 26 4.40 4.69 18
h = 0.225 32 406 26 4.40 4.69 18
h = 0.225 36 1017 26 4.40 4.69 18

h = 0.5 10 2503 17 4.20 4.60 18
h = 0.5 12 4035 17 4.20 4.60 18
h = 0.5 16 2048 17 4.20 4.60 18
h = 0.5 20 1024 14 4.30 4.50 18
h = 0.5 24 512 14 4.30 4.50 18

h = 1.22T − 3.43 10 4096 15 3.40 4.10 18
h = 1.22T − 3.43 12 3852 15 3.40 4.10 18
h = 1.22T − 3.43 16 1177 17 3.65 4.10 18
h = 1.22T − 3.43 18 862 17 3.65 4.10 18
h = 1.22T − 3.43 20 957 17 3.60 4.00 18
h = 1.22T − 3.43 24 976 17 3.60 4.00 18
h = 1.22T − 3.43 28 646 17 3.60 4.00 18
h = 1.22T − 3.43 32 379 17 3.60 4.00 18

h = 2.67T − 6.10 8 4071 25 2.80 3.06 18
h = 2.67T − 6.10 10 4045 25 2.80 3.06 18
h = 2.67T − 6.10 12 512 27 2.85 3.00 18
h = 2.67T − 6.10 14 512 27 2.85 3.00 18
h = 2.67T − 6.10 16 605 17 2.85 2.95 18
h = 2.67T − 6.10 18 1024 27 2.85 3.05 18
h = 2.67T − 6.10 20 512 31 2.86 2.93 18
h = 2.67T − 6.10 22 981 31 2.85 3.05 18
h = 2.67T − 6.10 24 1024 31 2.85 3.05 18

h = 4.94T − 6.80 16 1912 15 1.76 1.88 18
h = 4.94T − 6.80 18 2048 15 1.76 1.88 18
h = 4.94T − 6.80 20 1858 15 1.76 1.89 18
h = 4.94T − 6.80 24 906 15 1.76 1.89 18
h = 4.94T − 6.80 28 505 15 1.76 1.89 18
h = 4.94T − 6.80 32 627 15 1.76 1.89 18

where G̃ is a universal function. Note that for the DAFF,
when T = 0, g(B,L) = G̃′[L1/ν(B − Bc)]. To com-
pute the two-point finite-size correlation function we first
calculate the wave-vector-dependent susceptibility (along
the x direction) via

χ(k) =







〈





1

N

∑

j

Sje
ikxj





2
〉







av

. (9)

TABLE II: Simulation parameters for the DAFF along non-
trivial paths of the type B = a + bT in the B–T plane for
different linear system sizes L (the first two path types have
b = 0). Nsa is the number of disorder realizations. NT cor-
responds to the number of temperatures (points) along the
simulation path. Tmin and Tmax are the smallest and the
highest temperatures of the RC, respectively. The equilibra-
tion/measurement times are 2x Monte Carlo sweeps.

simulation path L Nsa NT Tmin Tmax x
B = 0.1 8 2166 26 2.50 3.50 18
B = 0.1 12 1208 26 2.50 3.50 18
B = 0.1 14 1042 18 2.70 3.30 18
B = 0.1 16 2048 19 2.80 3.30 18
B = 0.1 18 1104 19 2.80 3.30 18
B = 0.1 20 796 21 2.80 3.35 18
B = 0.1 24 444 21 2.80 3.35 18
B = 0.1 28 505 21 2.80 3.35 18
B = 0.1 32 322 21 2.80 3.35 18

B = 1.0 14 1271 21 2.70 3.20 18
B = 1.0 16 1718 21 2.70 3.20 18
B = 1.0 18 1215 21 2.70 3.20 18
B = 1.0 20 888 21 2.70 3.20 18
B = 1.0 24 491 21 2.70 3.20 18
B = 1.0 28 556 21 2.70 3.20 18
B = 1.0 32 352 21 2.70 3.20 18

B = 0.2T 8 1344 17 2.55 3.30 18
B = 0.2T 10 685 17 2.55 3.30 18
B = 0.2T 12 452 17 2.55 3.30 18
B = 0.2T 16 542 31 2.87 3.50 18
B = 0.2T 20 1564 31 2.87 3.50 18
B = 0.2T 22 825 31 2.87 3.50 18
B = 0.2T 24 189 31 2.87 3.50 18
B = 0.2T 26 128 31 2.87 3.50 18
B = 0.2T 28 115 31 2.87 3.50 18
B = 0.2T 30 558 31 2.87 3.50 18
B = 0.2T 32 383 31 2.87 3.50 18

B = 0.67T 10 1201 30 2.45 3.50 18
B = 0.67T 12 711 30 2.45 3.50 18
B = 0.67T 16 305 30 2.45 3.50 18
B = 0.67T 20 512 27 2.35 3.50 18
B = 0.67T 22 1024 27 2.35 3.50 18
B = 0.67T 24 2048 30 2.35 3.50 18
B = 0.67T 28 1024 27 2.35 3.50 18
B = 0.67T 32 741 30 2.37 3.50 18

B = 1.5T 10 1920 17 1.30 1.62 18
B = 1.5T 12 1984 17 1.30 1.62 18
B = 1.5T 16 2048 17 1.30 1.62 18
B = 1.5T 18 2048 26 1.30 3.50 18
B = 1.5T 20 1056 20 1.35 1.60 18
B = 1.5T 24 807 20 1.35 1.60 18
B = 1.5T 28 457 20 1.35 1.60 18
B = 1.5T 32 532 20 1.35 1.60 18
B = 1.5T 36 336 20 1.35 1.60 18

The two-point finite-size correlation function is then
given by

ξL =
1

2 sin(kmin/2)

√

χ(0)

χ(kmin)
− 1 (10)
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TABLE III: Simulation parameters for the DAFF at zero tem-
perature for different fields B and for different linear system
sizes L. Nsa is the number of disorder realizations. Bmin

and Bmax are the lowest and highest fields simulated and NB

corresponds to the number of fields simulated to perform a
finite-size scaling analysis.

L Nsa Bmin Bmax NB

24 10302 2.00 4.30 31
32 2091 2.40 2.70 16
48 2091 2.10 2.80 17
64 2091 2.30 2.70 21
72 2040 2.30 2.54 17
96 5100 2.30 2.54 17
128 3586 2.30 2.47 22

with kmin = (2π/L, 0, 0). The two-point finite-size corre-
lation function scales as

ξL(T,L)/L = X̃[L1/ν(T − Tc)] . (11)

Using both the Binder ratio and the two-point finite-
size correlation function allows us to perform a detailed
finite-size scaling analysis to determine the critical ex-
ponent ν, as well as to test if both models share the
same universality class using the method introduced in
Ref. 37. To obtain an optimal data collapse we use
a Levenberg-Marquardt minimization combined with a
bootstrap analysis, see Ref. 37. This allows us to deter-
mine the optimal values of the critical parameters Tc and
ν with a statistical error bar by fitting the data to a third-
order polynomial that approximates the scaling functions
G̃(x) and X̃(x) close to x = 0, where x = L1/ν(T − Tc).

V. RESULTS

The critical parameters for both the RFIM and the
DAFF have been computed via a finite-size scaling
analysis of the two-point finite-size correlation function
[Eq. (11)] along the different simulation paths. Finite-
size corrections can be large for small system sizes and
are strongly field dependent, which is why for some exter-
nal fields in both models we do not include small systems
in the finite-size scaling analysis used to determine the
critical parameters. To illustrate the typical behavior, in
Fig. 1, left panel, we show the two-point finite-size cor-
relation function for the DAFF for B = 1.0 and different
system sizes. The data cross at a point, therefore sig-
naling the existence of a phase transition. Note that for
this particular field corrections to scaling are manageable
and the data scale well, as can be seen in Fig. 1, right
panel. However, this is not always the case, especially
when the external field is large. For the RFIM correc-
tions to scaling are considerably stronger, even at small
fields, see Fig. 2.

Using finite-size scaling we determine the location of
the critical points, as well as the associated critical ex-
ponent ν for the different simulation paths. Data for

the RFIM are summarized in Table IV, for the DAFF in
Table V.

TABLE IV: Critical temperature Tc and critical field hc com-
puted from a finite-size scaling analysis of the two-point finite-
size correlation function for the RFIM. ν is the critical expo-
nent of the correlation length.

simulation path Tc hc ν
h = 0.225 4.481(1) 0.225 1.39(4)
h = 0.5 4.381(2) 0.5 1.30(5)
h = 1.22T − 3.4 3.76(2) 1.16(3) 1.39(5)
h = 2.70T − 6.1 2.89(5) 1.7(1) 1.3(1)
h = 4.94T − 6.8 1.79(1) 2.01(5) 1.4(1)

TABLE V: Critical temperature Tc and critical field Bc com-
puted from a finite-size scaling analysis of the two-point finite-
size correlation function for the DAFF. ν is the critical expo-
nent of the correlation length. The last line lists data from
zero-temperature simulations (see text). The estimate of the
critical field Bc is obtained from a finite-size scaling analysis
of the zero-temperature Binder ratio.

simulation path Tc Bc ν
B = 0.1 2.977(1) 0.1 1.34(5)
B = 1.0 2.807(1) 1.0 1.2(2)
B = 0.2T 2.908(4) 0.582(8) 1.36(7)
B = 0.67T 2.42(1) 1.61(1) 1.5(3)
B = 1.5 1.46(9) 2.2(1) 1.4(3)
T = 0 0 2.32(2) 1.43(2)

To determine the critical field Bc at zero tempera-
ture for the DAFF we compute ground states with the
algorithm introduced in Ref. 30. The same finite-size
scaling technique as used for the two-point finite-size
correlation function (see above) can be used to analyze
the ground-state Binder cumulant. The data collapse is
shown in Fig. 3. The results for the critical point and
the correlation-length exponent at zero temperature are
stated in the last line of Tab. V.

We also determine the peak position of the fluctuations
of the staggered magnetization of the ground-states:

F(B) = L3
(

[M2]av − [M ]2av
)

. (12)

This approach has proven to be quite accurate in pre-
vious studies for the susceptibility.43 Because the fluc-
tuations peak at the putative transition, we fit a Gaus-
sian to the peak and determine its precise location. Er-
ror bars are determined via a configurational bootstrap
analysis.44 Figure 4, left panel, shows the fluctuations at
zero temperature and as a function of the applied field
B. The peaks are well described by Gaussians. The
right panel of Fig. 4 shows an extrapolation of the peak
position to infinite system size assuming the functional
form Bc(L) = Bc + aL−ω. The best fit is obtained for
Bc = 2.34(2) [ω = 1.25(9)], in agreement with the esti-
mate using the Binder cumulant, see Tab. V.
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FIG. 1: (Color online) Left: Two-point finite-size correlation function ξL/L vs temperature T for the DAFF with B = 1.0 and
different linear system sizes L. Finite-size corrections are small and the data cross at one point signaling a transition. Right:
Finite-size scaling collapse of the data in the left panel. The best collapse is obtained with Tc ≈ 2.807 and ν ≈ 1.2.
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FIG. 2: (Color online) Left: Two-point finite-size correlation function ξL/L vs temperature T for the RFIM with h = 0.225
and different linear system sizes L. Finite-size corrections are large. Right: Finite-size scaling collapse of the data in the left
panel. Because of the large corrections to scaling, only data for L ≥ 28 are used in the scaling collapse. Data for L ≤ 24 (light
shaded) are not included in the data collapse and shown to illustrate the corrections to scaling. The best collapse is obtained
with Tc ≈ 4.481 and ν ≈ 1.39.

Combining the data in Table V with some values from
the literature38–40 we can approximate to high precision
the phase boundary for the DAFF via

(

Bc

B̃0
c

)1.81

+

(

Tc

T̃ 0
c

)3.54

= 1 (13)

with T̃ 0
c ≈ 2.980 and B̃0

c ≈ 2.31. Similarly, using
the data from Table IV and known values from the
literature41,42,45 we obtain for the RFIM

(

hc

h0
c

)1.95

+

(

Tc

T 0
c

)1.80

= 1 (14)



6

−0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.80

0.85

0.90

0.95

1.00

(B− Bc)L1 ν

g
(B

,L
)

L= 24
L= 32
L= 48
L= 72
L= 96
L= 128

FIG. 3: (Color online) Data collapse of the zero-temperature
Binder cumulant of the DAFF as a function of the reduced
scaling variable (B − Bc)L

1/ν for different system sizes. The
best collapse is obtained for B0

c ≈ 2.32 and ν ≈ 1.43.

with h0
c = 2.27 and T 0

c = 4.5115. Note that the critical
phase boundary points T 0

c and h0
c have been determined

to high precision in the literature. For the DAFF T̃ 0
c and

B̃0
c are approximated, but agree with the numerical esti-

mates we present. In Fig. 5 we show the phase boundaries
for the DAFF (left panel) and the RFIM (right panel),
together with the simulated critical points. The dashed
lines represent the simulation paths taken.

VI. DISCUSSION

Cardy17 predicted an equivalence between the DAFF
and the RFIM for small applied fields. This equivalence
is often quoted in experimental studies where materials
which are diluted antiferromagnets in a field are then
described using the RFIM (see, for example, Refs. 3,12–
15).

Equation (15) in Ref. 17 maps the RFIM onto the
DAFF:

h(T ) =
p(1 − p)(T pure

c /T )2(B/T )2

(1 − θMF /T )2
. (15)

Here, p = 0.7, T pure
c = 4.5115 and θMF = 2dJ = 6 is the

mean-field coupling strength. We can now use the ob-
tained phase boundaries [Eqs. (13) and (14)] to compare
both models. Figure 6 shows the phase boundary for the
RFIM (solid line, the circles represent the obtained crit-
ical points along the different simulation paths) together
with the phase boundary for the DAFF mapped onto
the RFIM space using Eq. (15) (dashed line, the squares

represent the obtained critical points along the differ-
ent simulation paths for the DAFF). For random-field
strengths of up to h ≈ 1.2—which means field strengths
of up to B ≈ 1.6 for the DAFF—there is an approx-
imate correspondence between both models. However,
as the figure clearly illustrates, strictly speaking the cor-
respondence only seems to work in the limit of h → 0
(h . 0.3). It is of importance to take these limita-
tions of the Cardy mapping17 into account when study-
ing diluted antiferromagnets in an external field experi-
mentally while attempting to describe the data analyt-
ically using the RFIM. Furthermore, a basic finite-size
scaling analysis leads to no systematic deviations of the
correlation-length exponent ν. Including the estimates
for rough simulations at high fields, our results support

ν = 1.36(14) (16)

for the range of fields studied, in agreement with previ-
ous studies, such as νRFIM = 1.37(9),42 ν = 1.20(5)14

from experiments on Fe0.85Zn0.15F2 (p = 0.85), or ν =
1.40(6) from the disconnected part of the susceptibility of
Fe0.93Zn0.07F2 (p = 0.93).46 Our results are summarized
in Fig. 7. As can be clearly seen, the difference between
the estimates for the critical exponent of the correlation
length for both models is marginal and within error bars.

However, the error bars are large and therefore a more
detailed study needs to be performed. To truly discern
if both models are in the same universality class, in ad-
dition of having one (apparently) agreeing critical expo-
nent, one would have to compute a second critical expo-
nent. Typically, the critical exponent η that describes
the decay of the susceptibility at criticality is computed.
However, and especially for large fields, corrections to
scaling are large for both the RFIM and the DAFF. A
different approach is the computation of the critical expo-
nent α that describes the divergence of the specific heat.
However, for both the RFIM and the DAFF α is close
to zero.30,42 Therefore, simulations of very large system
sizes which are currently not accessible numerically are
required.

Fortunately, there is a simple yet more sensitive
method to verify if two different systems share the same
universality class without having to compute any crit-
ical exponents:37,47 Both the Binder cumulant and the
two-point finite-size correlation function divided by the
system size are dimensionless quantities. By plotting one
as a function of the other, nonuniversal quantities cancel
out.37 For a given system, once large enough system sizes
are reached such that corrections to scaling are negligi-
ble, the data for all system sizes collapse onto a universal
curve within error bars. If two systems share the same
critical exponent ν, we expect that all data should col-
lapse onto the same universal curve within error bars and,
in particular, that the estimates of the Binder cumulant
and the two-point finite-size correlation function agree at
the putative critical point(s). We therefore would expect
that data sets of g(ξL/L) for both the DAFF and the
RFIM should agree for all simulated temperatures and,
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FIG. 4: (Color online) Left: Fluctuations of the staggered magnetization of the DAFF as a function of applied field B for
different system sizes. The peak positions signals the presence of a transition. The data are well described by a Gaussian close
to the peak (solid lines). To determine the thermodynamic critical field Bc we extrapolate the data to infinite system size (right
panel) using Bc(L) = Bc + aL−ω. The best fit is obtained for Bc = 2.34(2) and ω = 1.25(9). The red (filled) point represents
the thermodynamic extrapolation, Bc = 2.34(2).
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FIG. 5: (Color online) Left: Empirical phase boundary of the DAFF (p = 0.7). The red point is from Ref. 38, the coral point
from Ref. 39, and the purple points from Ref. 40. Our data agree within error bars with these previous studies. The blue
(solid) curve is given by Eq. (13). The dashed lines represent the parts of the simulation paths that cross the phase boundary.
The light shaded line is an example of the second RC that runs parallel to the approximated phase boundary to a temperature
T > Tc and B = 0 to speed up equilibration. Right: Empirical phase boundary of the RFIM. The zero-field critical temperature
is T 0

c = 4.511541 and h0
c = 2.27042 (grey open circles). The red (solid) curve is given by Eq. (14). The dashed lines represent

the parts of the simulation paths that cross the phase boundary. Again, the light shaded line shows an example of the second
RC that runs parallel to the approximated phase boundary to a temperature T > Tc and h = 0 to speed up equilibration.
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FIG. 6: (Color online) Phase boundary of the RFIM (solid
line, from Fig. 5, right panel). The temperature axis has been
normalized with Tc(h = 0) = 4.5115. The circles represent
the different estimates of the critical points along the different
simulation paths. The dashed line is the phase boundary
computed by applying Eq. (15) to the data of the DAFF.
Squares represent the different critical points simulated for the
DAFF along the different simulation paths. An approximate
correspondence between the phase boundaries only works for
fields h . 1.2 (B . 1.6 for the DAFF).

in particular for T = Tc.
Figure 8 shows the Binder cumulant as a function of

the two-point finite-size correlation function divided by
the system size for both the DAFF and the RFIM. The
left set of points (reddish/light tones, circles) are for
the RFIM. Data for the different simulation paths used
collapse onto a master curve. The right set of points
(greenish/dark tones, squares) are for the DAFF. Again,
all data collapse onto a master curve for all simulation
paths taken. However, the data sets for the RFIM and
the DAFF do not agree, except in the trivial limit where
g(T ) → 1. The large circles for the RFIM (squares for
the DAFF) represent our estimates of g(ξL/L) at T = Tc.
As can be seen, the data for both models do not agree
(i.e., a large circle should sit on top of a large square),
something which is even more clear when zooming into
the boxed area (inset). Note that the large error bars are
due to the uncertainty of the critical temperature.

VII. CONCLUSIONS

We have performed extensive Monte Carlo simulations
of the diluted antiferromagnet in a field at 30% dilution
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FIG. 7: (Color online) Critical exponent ν as function of the
field h (RFIM) and B (DAFF). The labels on the upper axis
correspond to the random-field strength h (RFIM), those on
the lower axis to the external field B (DAFF). The weighted
mean is ν = 1.36(14) (grey line) and the weighted error is
represented by the shaded (light blue) area. The difference
between ν̄DAFF (blue dashed line) and ν̄RFIM (red dashed line)
is marginal in comparison to the error-bars of the data points.
The RFIM ground-state value is taken from Ref. 42.

(p = 0.7) and the random-field Ising model. Using these
data we show that the phase boundaries for both models
are well described by ellipsoids (see Fig. 5). In addi-
tion, using zero-temperature heuristic methods, we com-
pute the zero-temperature critical point for the DAFF
with 30% dilution (p = 0.7). We expect that the phase
boundary for other dilutions will be similar, albeit with
different nonuniversal parameters.

Furthermore, we numerically study the equivalence of
the RFIM and the DAFF as predicted by Cardy.17 Our
results show that only in the limit of small fields both
phase boundaries map onto each other.

Finally, we perform a finite-size scaling analysis to de-
termine the critical exponent ν of the correlation length.
Our results from the two-point finite-size correlation
function suggest that the exponent ν agrees within error
bars for both the RFIM and the DAFF. However, error
bars are large. To circumvent this problem, we study the
Binder cumulant as a function of the two-point finite-size
correlation function divided by the system size and show
that both models apparently do not share the same uni-
versality class. Clearly, more detailed simulations need to
be performed to fully discern the critical behavior of both
models and fully determine their universality classes. It
would be interesting to also measure the critical behav-
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FIG. 8: (Color online) Binder ratio g as a function of the two-point finite-size correlation function divided by the system size
ξL/L for several system sizes and simulation paths. The data for the RFIM and DAFF collapse onto two distinct set of curves,
suggesting that both models do not share the same universality class. The left set of points (reddish/light tones, circles) are
for the RFIM. The right set of points (greenish/dark tones, squares) are for the DAFF. The large circles for the RFIM (large
squares for the DAFF) represent our estimates of g(ξL/L) at T = Tc. The inset zooms into the important region (large box),
where the Cardy Mapping should apply. Clearly, both data sets are different, suggesting that the RFIM and the DAFF do not
share the same universality class.

ior of the specific heat (critical exponent α). However,
because the exponent is close to zero for both models,
large system sizes are needed; sizes that are currently
not accessible via simulations.

We conclude by cautioning researchers when using the
equivalence of both models, in particular in experimental
studies.
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