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We study the energy landscape of the Traveling Salesperson problem (TSP) using exact ground
states and a novel linear programming approach to generate excited states. We look at some
different ensembles, notably the classic finite dimensional Euclidean TSP and the mean-field (1, 2)-
TSP, which has its origin directly in the mapping of the Hamiltonian circuit problem on the TSP.
Our data supports previous conjectures that the Euclidean TSP does not show signatures of replica
symmetry breaking neither in two nor in higher dimension. On the other hand the (1,2)-TSP
exhibits a signature of broken replica symmetry.

Introduction The concept of replica symmetry break-
ing (RSB) was introduced in the context of spin
glasses [1, 2], where it has a long history of debate to
which models it applies [3]. RSB is an assumption about
the structure of the phase space (or “energy landscape”),
which leads to the correct results for the Sherrington-
Kirkpatrick (SK) spin glass [4]. RSB basically means
that the phase space is hierarchically structured such
that two configurations of very similar energy may be
far away from each other in the configuration space. The
phase space becomes complex.

The physics-inspired analysis of the phase-space struc-
ture has also been applied to combinatorial optimiza-
tion problems, namely problems belonging to the class of
nondeterministic polymonial (NP)-hard [5–7] problems
(or the corresponding decision problems belonging to
the class of NP-complete problems). For NP-hard prob-
lems currently only algorithms are known which exhibit a
worst-case running time which grows exponentially with
system size. Examples of NP-hard problems are satisfia-
bility [8] and vertex cover [9]. Here, ensembles are known
where replica symmetry (RS) breaks at some value of a
control parameter [10–12]. This appears not to be sur-
prising to many researchers because intuitively a hard
optimization problem may correspond to a non-trivial
energy landscape. This prompted many attempts to dis-
tinguish easy from hard instances or explore the energy
landscape of such problems [13–19].

One of the best-known NP-hard combinatorial opti-
mization problems is the Traveling Salesperson Problem
(TSP) [20]. Somewhat surprisingly, in contrast to the
aforementioned problems, only indications for RS have
been found within studies of some TSP ensembles so
far [21–24]. Nevertheless, for these analytical and nu-
merical studies various approximations had to be used,
somehow questioning the previous claims for RS.

In this work, by calculating numerically exact ground
states and excitations, we confirm the previous results
for theses specific ensembles. But on the other hand we
show that there are indeed ensembles also for the TSP

where RSB seems to be present, namely the (1, 2)-TSP
ensemble [25]. In particular, in contrast to previous nu-
merical studies, which used heuristics to generate tours
near the optimum [23, 24], we use an exact algorithm
to find the true optimum and very specific excitations.
This approach is facilitated by the combination of flexi-
bility and high performance (compared to other exact al-
gorithms for the TSP) of linear programming (LP) with
branch and cut. Combined with the general increase in
computing power and the improvement of algorithms for
TSP optimization, it enables us to simulate compara-
tively large instances.

Model The Traveling Salesperson problem [26, 27] is
defined on a complete weighted graph, where the vertices
are usually called cities and the symmetric edge weights
cij = cji distances or costs. On this graph one searches
for the shortest cyclic path through all N cities, which
is called tour and can be represented by a set of edges
T . An equivalent representation is through an symmetric
adjacency matrix {xij} where xij = 1 if city i is followed
by city j on the tour and xij = 0 else. The length of the
tour, which we will also call energy, is thus

L =
∑
{i,j}∈T

cij =
∑

i

∑
j<i

cijxij .

Note that an instance of the problem is completely en-
coded in the distance matrix cij .

To compare two tours T1 and T2, their distance or
difference d is defined as the number of edges, which are
in T1 but not in T2 [13]

d =
∑

{i,j}∈T1

1− x(2)
ij ,

where x(2)
ij is the adjacency matrix corresponding to T2.

Like the link overlap for spin glasses is robust against
the flipping of compact clusters with a low domain-wall
energy, this observable is robust against partial reversals
of the tour. If one considered instead the order of the
cities in the tour, roughly equivalent to the spin overlap
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used for spin glasses, this could introduce a difference in
the order of N by just changing two links.

Here, we study various enembles. First, the most in-
tuitive and probably the most scrutinized [15, 20, 28–31]
ensemble is the Euclidean TSP (ETSP). Here a Pois-
son point process in a square determines the locations
of the cities and the distance matrix is filled with their
Euclidean distances. We use periodic boundary condi-
tions. An example for an optimal tour in such a config-
uration is shown in Fig. 1(a). It is straight forward to
generalize this in higher dimensions using a Poisson point
process in a hypercube and the corresponding Euclidean
distances. The random link model (RLTSP) [13, 32] is an
approximation, which disregards any correlations of the
distance and therefore does not obey the triangular in-
equality. For this approximation in the statistical physics
literature solutions were obtained under the premise that
replica symmetry holds based on the replica method [21]
and cavity method [24, 32, 33]. For our work, we stud-
ied the original ETSP ensemble, in which the density of
the cities is constant, such that the average optimal tour
length Lo ∼ N [28], i.e., the energy is extensive.

The (1, 2)-TSP is the result of the classical mapping of
the Hamilton circuit problem (HCP) onto the TSP [6].
The HCP is whether a cycle visiting every vertex exactly
once exists on a given graph. The mapping from HCP to
TSP is simply assigning the distance matrix as

cij =

{
1, if i and j are adjacent,
2, otherwise.

A Hamiltonian cycle exists, iff the length of the optimal
tour is equal N . For simplicity sake, the ensemble we are
looking at, is derived from an Erdős-Rényi graph where
edges occur with probability p = 1/N , which results in an
average degree of 1. Note that both limiting cases p = 0
and p = 1 are trivial since every tour will be optimal with
length 2N , respectively N . p = 1/N was chosen since it
is the percolation threshold, i.e., the graph is a forest like
structure and to form a cycle almost surely non existent
edges, i.e., distance 2, need to be used.

Like other studies on the solution space structure
of different optimization problems, we look at excita-
tions [34–36]. To detect signatures of RSB, we use a
criterion introduced in the context of TSP by Mézard
and Parisi in Ref. [22]. A configuration is called quasi-
optimal if the relative difference of its energy L∗ to the
optimal energy Lo behaves as

L∗ − Lo

Lo
= O

(
1
N

)
. (1)

According to Ref. [22], replica symmetry is broken, if
there exists a quasi-optimal configuration, whose differ-
ence to the optimum goes as

d(T o, T ∗)
N

= O(1). (2)

Intuitively this means, that a finite, i.e., O(1), energy is
sufficient to change a finite fraction, i.e., O(N), of the
system [34]. Furthermore, we have to ensure that some
kind of order exists in the ground state, since an un-
ordered system, where every edge has equal length and
the solution space structure is trivial since every tour is
identical, also fulfills the criterion. While a random tour
and the optimal tour in this degenerate ensemble behave
the same in every aspect, this is not true for the (1,2)-
TSP, where a random tour has O(1) edges of length one
but a optimal tour has O(N) edges of length one. Our
measurements show the number of length one edges to be
0.4218(3)N , corresponding to an ordered ground state.
The ETSP shows a very similar behavior [37].

Note that degeneracy alone does not mean that a so-
lution space structure is trivial, since a the degenerate
solutions may be contained in one big cluster, at least in
the thermodynamic limit. Famous examples, where this
is the case include the two-dimensional Ising spin glass
with ±1 couplings [38] and the satisfiability problem in
the range of few constraints [39].

Algorithms To solve an instance of the TSP, the fol-
lowing integer program, i.e., an LP with additional inte-
ger constraints Eq. (6), can be used [40]

minimize
∑

i

∑
j<i

cijxij (3)

subject to
∑

j

xij = 2 i = 1, 2, ..., N (4)

∑
i∈S,j /∈S

xij ≥ 2 ∀S ⊂ V, (5)

xij ∈ {0, 1} (6)

where xij is the searched for adjacency matrix defining
the tour. Eq. (3) minimizes the tour length, Eq. (4) en-
sures that the number of incident edges into every city
is two, such that the salesperson enters every city once
and leaves it again. Eq. (5) are the subtour elimination
constraints (SEC), which prevent the tour to fragment
into multiple not-connected subtours.

To construct the excitations T ∗, we modify the linear
program formulation using the obtained optimal tour T o.
This allows us to construct excitations with very spe-
cific properties. Since we want to check the criterions
Eq. (1) and (2), we construct a very specific integer pro-
gram which fixes Eq. (1) to be fulfilled and maximizes
Eq. (2). If the replica symmetry of the problem is bro-
ken, the result should show the criterion to be fulfilled.

So we fix the allowed energy difference L∗ − Lo = ε
to a constant, which will lead to the desired relative en-
ergy difference Eq. (1) if the energy is extensive. For this
reason our definitions of the ensembles are formulated
in a way that leads to extensive energy, i.e., 〈Lo〉 ∼ N .
Within this excitation energy window ε, the number of
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(a) ETSP, optimal (b) ETSP, MaxDiff (c) ETSP, difference

FIG. 1: (color online) (a) and (b) show a configuration with
N = 400 of the ETSP. Left is the optimal tour, right the
MaxDiff excitation with d = 129 difference to the optimum.
(c) shows the difference of the optimum and the excitation,
red edges are removed, green are added for the excitation.

common edges with the optimal tour needs to be min-
imized to maximize the distance of the configurations.
Thus replacing the objective with

minimize
∑

{i,j}∈T o

xij (7)

and adding the additional constraint∑
i

∑
j<i

cijxij ≤ Lo + ε (8)

results in a suitable LP. We will call this LP MaxDiff.
An exemplary solution of this LP is visualized in Fig. 1
in comparison to the optimal tour.

Results All values which are shown in this section are
usually averaged over 102 to 103 exact solutions of re-
alizations of the ensembles. Also note that due to the
nature of the TSP and our solution approach, some real-
izations take far more computational resources than most
and could not be solved in reasonable time respectively
memory. The shown data is only for runs where more
than 80% of instances were solved. We had to discard
these few instances only for the largest system sizes any-
way. For example, of the (1, 2)-TSP instances every sin-
gle one with N ≤ 256 was solved exactly. To test whether
this still has a slight influence on the results, we cre-
ated a biased sample by artificially discarding that half
of the sample which consumed the most running time,
respectively which needed the most memory, for the sys-
tem sizes where every instance was solved exactly within
the limits of the computational resources. For all tests
the resulting distances d of the exact sample and the bi-
ased sample coincide within statistical errors, with no
obvious trend. Also comparison with literature values
for known values of the Beardwood-Halton-Hammersley
constant β [28] match within 2 standard errors. Thus
we are confident that the obtained statistics are robust
against this sampling bias. As a technical detail, we use
distances rounded to integers. To avoid effects of this dis-
cretization, we choose the range of values large. Hence
this should not introduce notable effects. We use Con-
corde [41] to generate optimal tours, which implements

this procedure at its core but also extends it with heuris-
tics to speed up the process. For the excitations we use
a custom implementation of the LP. Both programs use
CPLEX [42] as the LP solver or for branch and cut.
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FIG. 2: (color online) The relative difference of the optimum
and the MaxDiff excitation decreases as a power law with the
system size N . For large N , the difference vanishes which
is a hint for replica symmetry and a trivial solution space
structure. The inset shows that the premise Eq. (1) is fulfilled.
The higher dimensional cases have a 10 times larger ε.

The results for the MaxDiff excitation simulations for
the two-dimensional ETSP are shown in Fig. 2. We found
a 1/N behavior of the relative energy difference (inset) as
required. Nevertheless the difference d of the tours also
vanishes in the large N limit as a power law. So to change
a finite fraction of an infinite system, a finite energy ε
does not suffice. Thus, the results do not show the sig-
nature of replica symmetry breaking, hinting at a trivial
solution space structure. This is consistent with previ-
ous studies expecting the ETSP to be replica symmetric.
Results for the RLTSP lead to the same conclusion (not
shown, but see Tab. I).

The same behavior indicating RS is present for the
8-dimensional and 20-dimensional ETPS, also shown in
Fig. 2. Thus a simple increase in dimensionality does ap-
parently not change the behavior regarding replica sym-
metry much. This is in strong contrast to spin glasses,
where in high dimensions above the upper critical di-
mension the system is believed to behave [43–46] like the
mean-field SK model [1, 2], corresponding to RSB.

Next, we will look at an ensemble which is closer to a
direct mapping from the Hamilton circuit, which is usu-
ally used to prove the TSP NP-complete. The mapping
creates an instance of the (1, 2)-TSP. For three tested
values of the finite excitation energy ε ∈ {20, 30, 60}, we
calculated the difference between the optimal and excited
tours d, shown in Fig. 3. First, see inset, the relative en-
ergy difference decreases as 1/N as required. The mea-
sured difference d does not follow a pure power law, but
seems to converge to a non-zero offset. Extrapolating the
difference for large N with d

N = aN b +D∞ (cf. Ref. [34])
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FIG. 3: (color online) Statistics of the (1, 2)-TSP for a con-
nectivity of Np = 1. The MaxDiff constraints with the fi-
nite excitation energy ε ∈ {20, 30, 60} are used for the three
curves respectively. The distance of the excitation to the op-
timal tour is extrapolated with an offsetted power law ansatz
d
N

= aNb+D∞. The fit parameters are obtained for N > 256.
All three result in a convergence to a finite D∞ for large N ,
i.e., a finite fraction, indicating RSB. The inset shows the
relative energy difference of the optimum and the excitation,
showing a perfect 1/N form, as required by the RSB criterion.

leads to an offset for each ε, which are consistent with
the most accurate value we obtained D∞ = 0.652(2) and
exponents consistent with b = −1. All values are shown
in Table I. Note that for small N finite size effects are
visible, where ε is of the order of the optimal length and
the excitation can differ in every single edge. Therefore,
the difference is clamped at d/N = 1. For larger N this
does not seem to play a role anymore. In particular, dif-
ferent values of ε lead to consistent results. According
to the criterion Eq. (2) our results indicate that replica
symmetry is actually broken for this ensemble.

To further test these results, we conducted simulations
above the percolation threshold, for p = 3/N , and below
the threshold for p = 1/2N . The results exhibit quali-
tatively the same behavior (not shown), but with differ-
ent values of the asymptotic D∞. Apart from the limits
p→ 0 and p→ 1, where every tour is optimal, the precise
structure of the graph does not seem to have a critical
influence on this result. As another test, we can lift the
degeneracy by adding a slight perturbation on each edge.
Therefore we scale the edge weights and ε by 5 · 105 and
add a random disturbance U(−250, 250) to each edge.
Except for a vanishing degeneracy Ddegeneracy at ε = 0,
this procedure also does not change the results beyond
statistical errors (not shown).

Conclusion To summarize, we tested multiple ensem-
bles of the TSP by applying sophisticated exact combina-
torial optimization algorithms. As suspected before, we
find evidence for the replica symmetry of the Euclidean
TSP and the related random link model. Interestingly,
we find this results also in very large space dimensions, in
contrast to spin glasses where RSB is believed to appear

TABLE I: Values of the fit parameters extrapolating the be-
havior of d/N . Interestingly all ensembles, converging to a
finite value of D∞, show an exponent consistent with b = −1.

b D∞ RSB

ETSP, 2D −0.24(2) −0.08(5) -
ETSP, 8D −0.267(/) 0.08(/) -

ETSP, 20D −0.27(5) −0.05(10) -
RLTSP, pseudo 1D −0.350(4) 0.019(4) -
(1, 2)-TSP, ε = 20 −1.04(20) 0.650(8) X
(1, 2)-TSP, ε = 30 −1.04(6) 0.652(2) X
(1, 2)-TSP, ε = 60 −1.01(5) 0.652(5) X

cij = 1 - 1 disordered

above the upper critical dimension du = 6. Our results
strengthen the conjecture that replica symmetry holds
for the these ensembles, which is often used to tackle
this problem from a statistical mechanics point of view.

One the other hand, the (1,2)-TSP, inspired by the
classical mapping of the Hamilton circuit to the TSP,
shows signs of replica symmetry breaking. Thus, we pro-
vide the first evidence for a complex phase-space behavior
of this classical NP-hard optimization problem.

For future work, especially for the degenerate case of
the (1,2)-TSP it would be interesting to study the so-
lution space structure with a focus on clustering. One
could define a neighborhood relationship in the configu-
ration space, e.g. k-opt moves [47], and search for clusters
of configurations which can be reached from each other
by paths traversing only neighboring instances [8, 48–50].

The linear programming approach we used is very gen-
eral and can be applied to a large range of problems.
Since for many problems mappings to integer programs
are already known and it is quite straight forward to
formulate additional constraints enforcing some specific
excitations, this technique could be quite generally used
to explore a very specific range of the energy landscape
of many problems.
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