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The Traveling Salesperson problem asks for the shortest cyclic tour visiting a set of cities given
their pairwise distances and belongs to the NP-hard complexity class, which means that with all
known algorithms in the worst case instances are not solveable in polynomial time, i.e., the problem
is hard. Though that does not mean, that there are not subsets of the problem which are easy to
solve. To examine numerically transitions from an easy to a hard phase, a random ensemble of
cities in the Euclidean plane given a parameter o, which governs the hardness, is introduced. Here,
a linear programming approach together with suitable cutting planes is applied. Such algorithms
operate outside the space of feasible solutions and are often used in practical application but rarely
studied in physics so far. We observe several transitions. To characterize these transitions, scaling
assumptions from continuous phase transitions are applied.
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The Traveling Salesperson Problem (TSP) [1] is to find
the shortest tour through a given set of cities, with known
pairwise distances, and going back to the initial city. TSP
belongs to the class of NP-hard optimization problems
[2], where so far only algorithms with exponentially grow-
ing worst-case running time are known. Thus, a good
tour optimization can not only save money when used
for real world applications, but also it has a history as a
testbed for exact [1, 3] as well as heuristic optimization
algorithms, e.g., simulated annealing [4], taboo search [5]
or ant colony algorithms [6]. Also, for the TSP there
exist specific heuristics [6-8]. For the Euclidean case
(which is still NP-hard [9]), i.e., the pairwise distances
are the Euclidean distances, a polynomial-time approx-
imation scheme [10] is known. For special corner cases
[11] even polynomial-time algorithms exist.

Interestingly, NP-complete problems often show phase
transitions [12-14] where instances are typically easy to
solve in one region and typically hard in the other region.
Some of the classical NP-complete problems [15] were
examined with respect to phase transitions with meth-
ods of statistical mechanics in Ref. [16-20]. Note that
in the statistical mechanics literature usually algorithms
like branch-and-bound [21-23], stochastic search [24] and
message-passing algorithms [25] are studied which oper-
ate inside the space of feasible configurations. In con-
trast, for practical applications, algorithms based on lin-
ear programming (LP) dominate because they are very
efficient. These LP-based algorithms operate outside the
space of feasible solutions and they should be given more
attention in the physics community. For this reasons we
study here LP algorithms with respect to phase transi-
tions for the TSP.
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In Ref. [26] the Euclidean TSP decision problem on
random realizations of cities scattered on the unit square
was under scrutiny and shows a “transition” when asking
when the tour length exceeds a certain rescaled thresh-
old. But here the two “phases” are not with respect to
basic properties of the instances, there is no parametrized
ensemble. Rather, the instances are sorted into two
classes after they are solved, basically reflecting the typ-
ical growth of the tour length. Instead, here we define a
parametrized ensemble of TSP instances. We study the
solvability by a polyonmial-time standard LP approach
together with several types of so-called cutting-planes.
We find several “easy—hard” transitions, similar to one
previously found for the vertex-cover problem [27, 28].

The two-dimensional Euclidean TSP is under scrutiny
[26, 29]. Each city from the set of cities V has coordinates
on a plane determining the pairwise distances c;; as their
Euclidean distances, in particular c¢;; = c¢;;. We gener-
ated each instance of N cities by random displacement of
cities from a well defined start configuration, chosen as N
cities lying on a circle with a circumference of 27V, i.e.,
the distance between two neighboring cities is approxi-
mately 1. Note that for the circle even the most simple
greedy heuristics, e.g., nearest neighbor, finds the optimal
tour. Further the circle fulfills the necklace condition [30]
which enables a polynomial-time solution algorithm and
all points are part of the convex hull which also solves the
tour [31]. For each city the displacement is determined
by two independent random variables from an uniform
distribution. ¢ € [0, 27) is treated as a displacement an-
gle and r € [0, 0] as a radius, such that the new position
of a city lies inside of a disk with radius ¢ around its ini-
tial position. Four sample instances together with their
optimal tours for N = 1024 cities are shown in Fig. 1.

Next, we present our numerical approach. LPs can be
solved in polynomial-time using the ellipsoid algorithm
[21]. In this study the simplex algorithm [21] imple-
mented by the commercial optimization library CPLEX



FIG. 1: Evolution of a N = 1024 and R = % ~ 160 system with increasing disorder o. These sample realizations were solved
with Concorde [3]. Obviously the leftmost configuration is easy to solve, but the other three are probably not.

is used instead, for its good runtime behavior in the typ-
ical case. If there are constraints which enforce the vari-
ables to be integer, it is called integer program (IP) which
also belongs to the class of NP-hard problems. One can
formulate the TSP as an integer program with the objec-
tive Eq. (1) and the constraints Eq. (2) to (4) [32].
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Where the variables x;; are 1 if ¢ and j are consecutive
in the tour, and 0 otherwise. The objective Eq. (1) min-
imizes the tour length. The integer constraints Eq. (2)
restrict x;; to the integers 0 and 1, the degree constraints
Eq. (3) ensure that every city has exactly two neighbors,
one for the salesperson to enter one to leave. And the
subtour elimination constraints (SEC) Eq. (4) prevent
closed subtours, i.e., loops which visit just a subset of all
cities, by forcing at least two edges to cross the bound-
aries of all sets S & V, S # &, which ensures that the
salesperson can enter and leave the set. Hence a closed
subtour would violate the constraint for the set S which
contains all cities of the subtour. Note that there are ex-
ponentially many SECs, because there are exponentially
many different subsets S C V. To solve this integer pro-
gram, it is first relaxed to a LP, i.e., Eq. (2) is replaced
by z;; € [0,1]. The solution of this LP relaxation will
always have a better or equal tour length than the solu-
tion of the TSP, but may not always be a valid tour, i.e.,
may have fractional x;;. Though, if the solution of a LP
relaxation is integer, it is guaranteed to be the optimal
tour.

Because there are exponentially many SECs, they will
not be enforced in the beginning, instead SECs will be
added if violated by the current LP solution, and the
resulting LP is solved again. The violated SECs can

be found by a global minimum cut, e.g., with the Stor-
Wagner algorithm in polynomial-time [33]. This is iter-
ated until no violated SEC exists anymore.

A measure of hardness of an instance for a given LP
algorithm is as follows: if the LP relaxation results in all
variables being integer, i.e., if the instance can be solved
in polynomial time [34-36], it is therefore easy. Also we
will look at the degree LP relaxation where the SECs
are removed and only the degree constraints (3) and the
bounds are enforced. Here, we also find instances which
are solved by this simpler algorithm. Thus, they can be
considered even easier.

Note that this algorithm can easily be extended to
find always the optimal solution, by a branch-and-cut
search [3] at the cost of a worst-case exponential running
time. Nevertheless, here we are mostly interested in the
algorithm-dependent hardness of an instance, not neces-
sarily in always finding a solution. The focus on the solv-
ability by LP methods allows reasonable big instances of
up to N = 1448 cities at 80 different o € [0, 60] and 5000
samples each. All errorbars are obtained via bootstrap
resampling [37-39] if not noted otherwise.

The probability p to find the true integer solution using
the LP relaxation is plotted in Fig. 2. For small disor-
der, p is constant at p = 1 and falls with increasing o to
p = 0. With increasing system size N the curves become
steeper. This pattern is typical for a phase transition.
Therefore, the results indicate a phase transition from
an easy phase, where the instances are typically solvable
by polynomial-time linear programming techniques, to a
hard phase. Next, we determined the transition point
olP in the limit N — oo and the exponent b°P, governing
the finite-size scaling behavior [40] near the transition
point, corresponding to the correlation-length exponent
for physical systems. For this purpose we fitted parabo-
las to the variance of p in vincinity of the maximum, see
Fig. 3. For second-order phase transitions the peak po-
sitions are expected to follow o = o + aN " which
holds well for our data as depicted in the inset of Fig. 3.

According to finite-size scaling, rescaling the ¢ axis
according to (o — aSP)N*" should yield a collapse of the
data onto one curve [41] for big values of N in vicinity of



1.0 pessessecce "
© 1.0 f——o-
- ¢ 0.8 |
0.8 %b° ) 08 ¢
0.4
0.6 F o 01t
h ¢ 0.0 1 1 I g |
04 r rer 1024 @ —10 0 10 20Cp 30
512 ® (0’ — ng)Nb
0.2 256 e
128 %
00 11 YW ) N : ) |
ag

FIG. 2: (color online) Probability p that the LP relaxation is
integer, i.e., the solution can be obtained by LP, as a function
of the displacement parameter o. The inset shows the same p
for N > 256 plotted with a rescaled o-axis with ocP = 1.07(5)
and b°? = 0.43(3) obtained by Fig. 3. Different symbols and
errorbars are omitted for clarity.
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FIG. 3: (color online) Variance of the solution probability
Var(p) as a function of the disorder o. The inset shows the
position of maximal variance of the solution probability p over
the number of cities N. The positions are obtained by second
order polynomials fitted to the 5 data points next to the peak.
The power-law o = aN~" +o¢P is fitted to the peak positions
for N > 256 to minimize the effects of corrections to scaling,
yielding o = 1.07(5) and b® = 0.43(3).

the critical point. This is true for our data as visible in
the inset of Fig. 2. confirming the values of o¢P and b°P.

To identify a region of even easier instances, we studied
also the LP with applying only the degree contraints (3),
see Fig. 4. We found a second easy—hard transition with
olP = 0.51(4) and b'* = 0.29(6).

A further class of cutting-plane inequalities for the
TSP are blossom inequalities [42] which originate from
the two-matching LP [43]. A subset, which is easy to
separate using heuristics, are fast blossoms [3], available
in Concorde [3]. Doing the same analysis as above re-
vealed a third transition (not shown) at o = 1.47(8)
with b = 0.40(3).

Next, we want to find out whether the easy—hard tran-
sitions are accompanied by changes of suitably defined
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FIG. 4: (color online) Probability p that the degree LP relax-
ation is integer. The inset shows the collapse for N > 256,
with o = 0.51(4) and b'® = 0.29(6) obtained from the same
type of analysis as in Fig. 3 for N > 512.

structural order parameters. For up to N = 180 the op-
timal tours for all studied samples were obtained by a
branch-and-cut procedure, available in CPLEX, to ex-
amine structural properties of the solutions. With in-
creasing value of o optimized tours appear to be more
“meandering” as shown in Fig. 1. As a measure of this
“meandering”, we used the tortuosity, as defined in Ref.
[44], where it was used to evaluate images of blood ves-
sels in the retina to detect vascular diseases. To calculate
7, the tour is segmented into n segments, such that each
segment has the same curvature sign and is of maximal
length. Let the arc length L; be the length of the segment
1 along the tour and let the chord length S; be the direct
distance between the first and last city of the segment ¢
and L the total length of the tour. Then the tortuosity
is defined as

n

T=”£12<§z—1>. (5)

i=1

When plotting 7 as a function of ¢ in Fig. 5, it shows
peaks near oSP. As a very rough estimate of the position
of this peak, straight lines are fitted to 7 at N = 180
left and right of the peak and their intersection is in-
terpreted as an estimate of the peak positions, with er-
rors obtained by error propagation. This is shown for
N = 180 in Fig. 5 and done for all sizes N > 64. Via
a power-law fit to 07 = o] + aN~¢, we estimated an
asymptotic o7 = 1.06(23), which is consistent with the
estimate oSP from Fig. 3, Unfortunately the fit is not
good enough to give a meaningful estimate of the more
susceptible corresponding exponent b".

Comparing the solution tour z;; to the circular shaped
optimal tour at ¢ = 0, it is expected that they are sim-
ilar at very small disorder 0. A way to measure this
similarity is to look at the number of edges occurring
in the one tour but not in the other, i.e., the Hamming
distance [45]. The tour difference d shown in Fig. 6 is
the Hamming distance normalized by 2N, such that two
tours with no common edges would result in d = 1 while
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FIG. 5: (color online) The tortuosity 7 of optimal tours as a
function of the displacement parameter o for different system
sizes N < 180 peaks at o, which coincides with o¢P deter-
mined by the fit in Fig. 3 (gray bar = mean + error). On the
right side the same is done with data from a slightly modified
model, explained later in the text.
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FIG. 6: (color online) Difference of the optimal tour to the
initial circle as a function of o.

two tours visiting the cities in the same sequence would
result in d = 0. This observable seems to be roughly
independent of N. Fig. 6 suggests that the easy—hard
transition observed when using the degree LP relaxation
alone corresponds to the structural change observed by
studying the hamming distance d.

Unfortunately, we were not able to indentify so far an
observable which corresponds to the phase transition oc-
curring when using the fast blossoms.

We performed the same analysis for a different ran-
dom ensemble, where the cities are displaced by Az and
Ay from a Gaussian distribution G(0,0) for each di-
rection. As expected for continuous phase transitions,
we obtained (not shown) the same critical exponent
bP-8 = (.45(5) within errorbars, which hints that this
model exhibits universality with respect to the type of
disorder. The resulting values are shown in Tab. I. Also
for the case of cities displaced spherical by ¢, 6 and r
from uniform distributions in three dimensions it shows
the same critical exponent b°P:3 = 0.40(4). Note that un-
like many other models (e.g. Ising ferromagnet or perco-
lation) the different dimension does not lead to a different

exponent.
Oc b
with SEC o= 1.07(5) P = 0.43(3)
ol = 1.06(23) -
o8 = 0.47(3) bPE = 0.45(5)
ot = 0.44(8) -
o3 = 1.18(8) bP3 = 0.40(4)
only degree o = 0.51(4) bP = 0.29(6)
fast blossoms ol = 1.47(8) b = 0.40(3)

TABLE I: Values of critical points and exponents grouped by
different types of transitions.

We have shown that for this random ensemble gov-
erned by the parameter o there exist various easy—hard
phase transitions. This indicates a rich behavior of the
ensemble with respect to the typical computational hard-
ness. Furthermore, at least for two cases we found
that the transitions can be correlated with measurable
changes of the solution structure, namely Hamming dis-
tance to the circle solution and tortuosity, respectively.
The transitions can be characterized by critical expo-
nents b. Within the statistical accuracy of our data, the
critical exponents for the different easy—hard transitions
are compatible within two sigma.

An interesting question for further study would be find-
ing an answer to why the tortuosity 7 peaks at o., where
the TSP becomes not solvable using LP and SEC. Un-
fortunately 7 is quite complex to measure. Therefore the
search for a simpler observable showing the transition
would be of equal interest.

Besides the blossom inequalities, there are more com-
plicated inequalities valid for the TSP establishing facets
on the polytope, which can be implemented as cutting
planes and partly already be separated in polynomial-
time [46]. It would be interesting if those would establish
a further phase transition at higher o and if the critical
exponent b stays the same.

In general, LP-based algorithms are used a lot in prac-
tice and it would be of great interest to study suit-
able ensembles of other NP-hard optimization problems
with respect to easy—hard transitions. Furthermore, a
statistical-mechanics analysis of the performance of LP-
based algorithms, like done in the past for branch-and-
bound algorithms [22, 23], would yield more insight into
the sources of computational hardness.
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