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Sequence alignment is a tool in bioinformatics that is used to find homological relationships in
large molecular databases. It can be mapped on the physical model of directed polymers in random
media. We consider the finite-temperature version of local sequence alignment for proteins and
study the transition between the linear phase and the biologically relevant logarithmic phase, where
the free-energy grows linearly or logarithmically with the sequence length. By means of numerical
simulations and finite-size scaling analysis we determine the phase diagram in the plane that is
spanned by the gap costs and the temperature. We use the most frequently used parameter set for
protein alignment. The critical exponents that describe the parameter driven transition are found
to be explicitly temperature dependent.

Furthermore, we study the shape of the (free-) energy distribution close to the transition by rare-
event simulations down to probabilities of the order 10−64. It is well known that, in the logarithmic
region, the optimal score distribution (T = 0) is described by a modified Gumbel distribution. We
confirm that this also applies for the free-energy distribution (T > 0). However, in the linear phase,
the distribution crosses over to a modified Gaussian distribution.

PACS numbers: 87.15.Qt,87.14.E-,05.70.Jk

I. INTRODUCTION

Biological sequence analysis is an interdisciplinary sci-
entific field which uses concepts from statistics, computer
science and molecular biology. Some approaches used in
the context of biological sequence analysis are, from a
conceptional point of view, related to models in statis-
tical mechanics of disordered systems. One of the most
fundamental tools in the area of sequence analysis is se-

quence alignment (see for example [1, 2]). It is used to
quantify similarities between two (or more) biological se-
quences, like DNA, proteins or RNA. Modern search tools
for large databases, like BLAST [3] or FASTA [4], heavily
rely on sequence alignment algorithms.

In this article we consider algorithms for pairwise lo-
cal protein alignment which aim at finding “conserved”
regions of two input protein sequences. The most promi-
nent example is the Smith-Waterman algorithm [5]. The
algorithm finds optimal alignments (OA) according to an
objective function. Each alignment is assigned a score
which is maximal for optimal alignments. The optimal
alignment score serves as a scalar measure of similarity of
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the input sequences. Since alignments have a geometrical
interpretation as directed paths [6], the problem of find-
ing an optimal alignment is directly related to the ground
state of directed paths in random media [7–11] (DPRM)
in 1 + 1 dimensions. From this point of view, the align-
ment score corresponds to the negative energy and the
optimal alignment to the ground state of the system.

However, in some cases optimal alignments are not de-
sirable and one is interested in ensembles of probabilistic
alignments. This is particularly the case when one wishes
to compare so called weak homologs, i.e., sequences that
are related on a relatively long evolutionary time scale. In
the literature some examples can be found, where proba-
bilistic alignments clearly outperform optimal alignments
[12–15]. From the physical perspective, a natural gener-
alization to probabilistic alignments can be achieved by
introducing a temperature and considering canonical en-
sembles of alignments for each pair of input sequences
instead of the ground state alone [12, 16, 17]. The finite
temperature approach has also interesting applications
when one wishes to assess the reliability of alignments by
so called posterior probabilities [1, 16].

For both approaches, for OA and for finite-temperature
alignments (FTA), the choice of the algorithmic param-
eters remains ambiguous. In particular, the choice of the
so called gap-costs (see below) requires some heuristic
experimentation. Interestingly, this question can be ap-
proached by the theory of critical phenomena. The study
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of sequence alignment from that perspective yields inter-
esting results that have improved the optimal choice of
parameters of sequence alignment [17–19]. The linear-

logarithmic phase transition [20–22] is the most impor-
tant aspect regarding this issue. The name stems from
the fact that there is a continuous, parameter-driven
transition between phases where the average score grows
linearly or logarithmically with sequence length, respec-
tively. There is much empirical evidence that the opti-
mal choice of scoring parameters is close to the phase
boundary on the logarithmic side [23, 24]. The underly-
ing reason is that the transition is driven by the balance
between the score matrix that measures the similarity be-
tween letters of the underlying alphabet (i.e. amino acids
in the case of protein alignment) and the gap costs. The
latter ones control how strong insertions or deletions of
subsequences are to be penalized. Hence, one would like
to identify similar regions, which means to try to avoid
gaps, giving them a penalty. On the other hand, one
would like to ignore small local evolutionary changes to
the sequences, which means one should not make the gap
penalty too strong. This leads to an optimum choice of
the gap penalty parameters at “intermediate values”.

At T = 0, i.e. for OA, Hwa and Lässig have studied
the transition by looking at the dynamic growth of the
local (and global) score when advancing in the search
space [24]. Later, the critical values were studied analyt-
ically by a self-consistent equation [22] or numerically by
a finite-size scaling analysis [25]. Both studies rely on a
simple scoring model with a single mismatch parameter.
In the latter procedure the problem was approached by
considering the linear-logarithmic phase transition as a
percolation phenomenon [26].

The aim of our study is to go beyond the models that
have been considered so far. In particular, we studied
the most widely used protein alignment model, i.e. lo-
cal alignment with the scoring matrix blosum62 [27] and
affine gap costs (see below), where the linear-logarithmic
phase transition is of actual relevance to the database
queries or alignment analysis of protein sequences.

We considered the geometrical interpretation of align-
ments and studied numerically the percolation proper-
ties of OA and FTA. This allowed us to determine criti-
cal exponents that describe the parameter driven linear-
logarithmic phase transition. Furthermore we deter-
mined the phase diagram in the plane that is spanned by
the temperature and the gap costs. Finally, we studied
the distribution of the optimal score and the free energy
close to the transitions.

In the following section we review the model and algo-
rithms to compute the partition functions and methods
to sample alignments from the canonical ensemble. The
main results for different observables and the (free-) en-
ergy distributions are presented in Sec. III, followed by
a discussion in Sec. IV.

II. PARTITION FUNCTION CALCULATION

AND SAMPLING

An alignment relates letters from one sequence a =
a1 . . . aL ∈ ΣL to a second one b = b1 . . . bM ∈
ΣM where Σ denotes the underlying alphabet. Here,
we consider protein sequences wherein Σ is given by
the 20 letter amino acid alphabet. Given the pair a

and b, an alignment A is an ordered set of pairings
{(i1, j1), . . . , (iNm

, jNm
)} with 1 ≤ ik < ik+1 ≤ L,

1 ≤ jk < jk+1 ≤ M . If aik
= bjk

the pair (ik, jk) is called
a match otherwise a mismatch. Consequently, we will
refer to Nm as the number of matches plus mismatches.
The state space of all alignments of a and b shall be
written as χa,b.

When comparing sequences, one has to account for so
called insertions or deletions of subsequences that occur
in evolutionary processes. Regarding alignments, these
processes are represented by gaps, which are defined as
follows. If ik+1 = ik + 1 and jk+1 = jk + 1 + l with l > 0
and (ik, jk), (ik+1, jk+1) ∈ A, then b is said to contain a
gap of length l between jk and jk+1 and likewise for the
sequence a. If j1 = l+1 ≥ 2, then b is said to have a gap

of length l at the begin, if jN = M − l < M , then b has
a gap of length l at the end and likewise for the sequence
a.

For the comparison of sequences its relevant to give a
measure for the similarity or the degree of conservation
between the sequences or regions of the sequences under
consideration. The classical way to accomplish this is to
assign a score for each alignment via an objective func-

tion S : χa,b → R and then maximizing S among all
alignments

S0(a,b) = max
A

S(A; a,b)

Aopt = argmaxS(A; a,b). (1)

For the choice of the objective function and its param-
eters it is necessary to decide

(i) whether we are interested in a locally conserved re-
gion or whether the entire sequences should be con-
sidered,

(ii) how matches and mismatches should be evaluated,
and

(iii) how gaps should influence the overall score oder how
a gap penalty should affect the overall score.

To address the first issue there are in principle two
types of objective functions available, namely optimal lo-

cal alignment scores Slocal
0 and optimal global alignment

scores S
global
0 . Optimal global alignment scores involve

contributions from all matches, mismatches and gaps.
Based on this, the optimal local alignment score is the
optimum of all global alignments of all possible contigu-
ous subsequences of a and b,

S
local
0 (a,b) = max

1≤i′<i≤L
1≤j′<j≤M

S
global
0 (ai′ . . . ai, bj′ . . . bj). (2)
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The second issue requires the knowledge of a relation-
ship between the letters of the underlying alphabet. This
is usually realized by substitution or score matrices that
assign each pair of letters a number σ(a, b). Here, we
use the most frequently used matrix, blosum62 [27]. In
most cases, scoring matrices are derived from biological

data by the scaled log-odd ratio Λ
Pa,b

fafb
, where Pa,b is the

probability of observing the pair of letters a and b, fa

and fb denote the background frequencies of observing
the letters a and b independently and Λ defines a scale
[1]. The entries are usually rounded to integers.

Regarding the gaps, one compromises between a com-
putational feasible and a biological evident penalty func-
tion g. That means, each gap Γ of length lΓ yields a neg-
ative contribution of −g(lΓ) to the overall score, which is
then defined as

S(A; a,b) =
∑

(i,j)∈A

σ(ai, bj) −
∑

Γ

g(lΓ) , (3)

g is usually a monotonously increasing function of the gap
length. The alignment algorithms for gaped alignments
with arbitrary gap penalties exhibit a cubic time com-
plexity (O(max(L, M)2 min(L, M))). In practice affine

gap cost functions

g(lΓ) = αopen + βext (lΓ − 1), with αopen ≥ βext > 0
(4)

are commonly used, because the computational complex-
ity then reduces to O(LM) [28]. The parameters αopen

and βext are called gap open penalty and gap extension
penalty respectively. With the above choice one mimics
the biological observations that

(i) longer gaps appear less frequently than shorter ones
and

(ii) opening a gap is less likely than extending an ex-
isiting one.

There is some evidence that this form describes the natu-
ral process of insertions and deletions quite well [29–31].

An alignment can be represented as a directed path on
a lattice of size L × M (see Fig. 1). The path is given
by the set of matches and mismatches and gaps in the
alignment A. Due to the conditions ik < ik+1 and jk <
jk+1 the path is directed. By convention, we say that
each path element may be orientated in (−1,−1), (−1, 0)
or (0,−1) direction. Diagonal elements denote matches
or mismatches and lΓ consecutive vertical or horizontal
elements correspond to gaps of length lΓ in one of the
sequences.

In order to keep the path representation for local align-
ment unique we require that

(i) the first and the last path element always points in
(−1,−1) direction, hence gaps at the begin and end
of the alignment never occur, and

(ii) a gap in the sequence b is not allowed to directly
follow a gap in sequence a (see [12]).

i

j

FIG. 1: Representation of an alignment as a directed path
in quenched disorder. The disorder is realized by random
sequences.

The optimal alignment can be computed by the dy-
namic programming algorithm (like a transfer matrix
method) by Smith and Waterman [5]. For affine gap
costs it requires three (L+1)×(M +1) matrices Di,j , Pi,j

and Qi,j that are computed iteratively [28]. The matrix
element Di,j is the optimal local alignment score of the
subsequences a1 . . . ai and b1 . . . bj given that ai and bj

are paired. Pi,j and Qi,j are auxiliary matrices storing
the optimal alignment score of the subsequences a1 . . . ai

and b1 . . . bj given that the alignment ends in a gap in
either sequence. The recursion relation to compute these
matrices reads as

Di,j = σ(ai, bj) + max



















0

Di−1,j−1

Pi−1,j−1

Qi−1,j−1

Pi,j = max











Di−1,j − αopen

Qi−1,j − αopen

Pi−1,j − βext

Qi,j = max

{

Di,j−1 − αopen

Qi,j−1 − βext (5)

with the boundary conditions

Di,0 = Pi,0 = Qi,0 = −∞ for i = 0 . . . L
D0,j = P0,j = Q0,j = −∞ for j = 0 . . .M

.

In a physical interpretation σ(ai, bj) plays the role of a
random chemical potential with quenched disorder and
the gap cost function g(lΓ) describes a line tension that
forces the alignment path on a straight diagonal line.

The optimal alignment score, which in physical terms
corresponds to the negative ground-state energy, is given
by S

local
0 (a,b) = max {maxi,j {Di,j} , 0}. If S

local
0 (a,b) =

0, the optimal alignment is the empty alignment (a path
of length 0). Otherwise the alignment starts at the po-
sition of the maximum of Di,j . The optimal alignment
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(ground state) can be determined by a backtrace pro-
cedure. Given that the current state at position (i, j)
is a match or mismatch, the path is extended in di-
agonal direction if Di,j = σ(ai, aj) + Di−1,j−1 and ac-
cordingly in vertical or horizontal direction if Di,j =
σ(ai, aj)+Pi−1,j−1 or Di,j = σ(ai, aj)+Qi−1,j−1. Similar
conditions appear, if the current state is a gap in either
sequence. This is repeated until a match/mismatch with
Di,j = σ(ai, bj) is met. In the linear phase, the ground
state might be highly degenerate. For this reason one

should include additional matrices N
(D)
i,j ,N

(P )
i,j ,N

(Q)
i,j that

account for the degeneracies of the alignments that end
at (i, j). With help of these matrices it is possible to
sample all ground states uniformly.

In the picture of DPRM one usually uses a temporal
and a spatial coordinate which are defined as

t =
1

2
(i + j) and x =

1

2
(i − j).

A local alignment problem is seen as a dynamical growth
process which starts at space-time event (t0, x0), where
the dynamic programming matrix Di,j is maximal. In
each time step described the path is extended by one di-
agonal, vertical or horizontal element. The spatial vari-
able x−x0 describes the deviation from a straight diago-
nal line for each time step. The stopping condition Di,j =
σ(ai, bj) given that the current state is a match defines
the final point (t1, x1) in the space-time. We define the
roughness of the path as the maximal deviation from a
straight diagonal line, i.e. ∆ = maxt1≤t≤t0 |x(t) − x0|.
Note that this definition refers only to the local align-
ment path and is ”time independent” in contrast to Ref.
[24].

Next, we describe the generalization of the alignment
problem to a canonical ensemble of alignments. Let us
consider the canonical ensemble of all alignments A for
a quenched pair of sequences. The partition function at
temperature T is given by

ZT =
∑

A

exp [S(A; a,b)/T ] .

This sum can be computed by a generalization of Eq. (5)
[16],

ZD
i,j =

(

1 + ZD
i−1,j−1 + ZP

i−1,j−1 + ZQ
i−1,j−1

)

· eσ(ai,bj)/T

ZP
i,j =

(

ZD
i−1,j + ZQ

i−1,j

)

· e−αopen/T + ZP
i−1,j · e

−βext/T

ZQ
i,j = ZD

i,j−1 · e
−αopen/T + ZQ

i,j−1 · e
−βext/T (6)

with the boundary conditions

ZD
i,0 = ZP

i,0 = ZQ
i,0 = 0 for i = 0 . . . L

ZD
0,j = ZP

0,j = ZQ
0,j = 0 for j = 0 . . .M.

Since an alignment may start anywhere and may also
include the empty alignment, the full partition function

is given by

Z = 1 +

L
∑

i=1

M
∑

j=1

ZDi, j.

Note that contributions from ZP and ZQ are explicitly
excluded because they are auxiliary only and contain
non-canonical alignments. In the limit T → 0 Eq. (6)
reduces to the recursion relation of the original Smith-
Waterman algorithm Eq. (5). Once the transfer matrices

ZD
i,j , ZP

i,j and ZQ
i,j are determined it is possible to di-

rectly draw alignments from the canonical distribution
PT [A] = exp [S(A; a,b)/T ] /ZT with zero autocorrela-
tion. This direct Monte Carlo algorithm was proposed
by Mückstein et. al. [12] for local alignment. A general
description of such methods are presented in the text-
book of Durbin et. al. [1].

III. RESULTS

To study properties of the linear-logarithmic phase
transition, we generated ensembles of nsample random se-
quences which were drawn from the distribution P (a) =
∏L

i=1 fai
, where f are the amino acid frequencies that

were derived together with blosum62 [27]. Furthermore
we only consider pairs of sequences of equal length, i.e.
L = M , between L = 40 and L = 5120. It turned out
that for the finite-size-scaling analysis, that is discussed
in the following, only system sizes with L ≥ 480 yield
consistent results. The number nsample of samples varied
between 6400 for L = 480 and 800 for the largest system.

For each sample, nalign = 100 alignments were drawn
from the canonical ensemble at various temperatures T
using the backtracing procedure as described above. We
used different gap-open parameters αopen and tempera-
tures T between T = 0 and T = 4. The gap extension
parameter βext was set to 1 throughout.

The case T = 0 corresponds to optimal alignments
(ground states). Note that for small gap costs (i.e. in
the linear phase) the ground-state degeneracy grows ex-
ponentially with the system size, whereas in the loga-
rithmic phase usually only a few optimal alignments are
observed. Thermal averages and averages over ground
states over a fixed realization of a sequence pairs will be
denoted as 〈·〉T and 〈·〉0, respectively. Averages over re-
alizations of random sequence pairs will be written as [·]
in the following. In statistical mechanics of disordered
systems the latter one is often called average over the
disorder.

So as to describe the linear-logarithmic transition, we
considered different observables described in the subse-
quent sections.
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FIG. 2: Results for the number Nm of aligned letters (matches
plus mismatches) as a function of gap opening penalty αopen.
Curves for different sequence lengths intersect at the criti-
cal parameter αc. For a more clear presentation, single data
points are only shown for one system size. Inset: After rescal-
ing the abscissa with appropriate values for αc and ν the data
listed in Tab. I collapses on a single master curve, as illus-
trated in the inset.

A. Geometric properties

Here, we describe the results for the number Nm of
paired letters (matches plus mismatches). This quantity
turned out to be an adequate quantity to extract proper-
ties of the phase transition, such as the critical gap costs
αc(T ) and the scaling behavior close to criticality.

We consider the averaged number [〈Nm〉T ] /L of paired
letters per sequence length as a function of gap opening
penalty αopen and temperature T . Hence, it is the frac-
tion of matches/mismatches with respect to the max-
imal possible number of pairs. This observable corre-
sponds to the percolation probability (the probability
that a geometrical object spans the entire lattice) in stan-
dard percolation theory. Usually a crossover from 1 to
0 is observed when passing the phase boundary. Here, a
perfectly percolating local alignment Nm = L is hardly
found even in the percolating phase. Nevertheless, we
applied the same finite-size-scaling analysis as for the
usual percolation probability, because [〈Nm〉T ] /L is in
the order of unity in the linear regime and vanishes in
the logarithmic regime.

Fig. 2 displays [〈Nm〉T ] /L as a function of the gap open
penalty αopen for different lengths L and zero tempera-
ture. The curves for different sequence lengths intersect
at the critical value αc as expected for a second order
phase transition. Using finite-size-scaling theory [26], we
may extrapolate data from finite sequence lengths to the
thermodynamic limit L → ∞. In this limit the observ-
able [〈Nm〉T ] /L is in the order of 1 below the threshold,
i.e. αopen < αc, and it jumps to 0 exactly at αc. In finite
systems, L < ∞, the crossover is extends over a range
∼ L−1/ν as can be seen in Fig. 2. Scaling theory leads

7.5 8 8.5αc

αopen

0

50

100

150

χ

L=5120
L=3840
L=2560
L=1920
L=1280
L= 960
L=640
L=480

100 1000 10000
L

1

10

100

χ m
ax~ L

γ/ν

FIG. 3: Critical fluctuations of Nm. The positions of the
peaks approach the critical value αc the and their heights
diverge like Lγ/ν . Inset: fit of χmax(L) to the scaling form

∼ Lγ/ν .

us to expect that the behavior of [〈Nm〉T ] (αopen; T ; L)
close to criticality is described by

[〈Nm〉T ] (αopen; T ; L)/L = f
(

(αopen − αc)L
1/ν

)

, (7)

where f is an universal scaling function and the exponent
ν describes the divergence of the ”correlation length” at
the critical point αopen = αc. We used Eq. (7) to ex-
tract numerical values for the critical exponents ν and the
critical gap costs αc with high precession from all data
for a fixed temperature simultaneously. The fit is per-
formed by minimizing a weighted-χ2-like objective func-
tion Q(αc, ν) [32], that measures the distance (in units
of the standard error) of the data from the (a prior un-
known) master curve. For the example in Fig. 2, i.e.
T = 0, we obtained αc = 8.306(4) and ν = 1.58(5) with

acceptable quality of Q̂ ≡ Q(αc, ν) = 2.2 (Q̂ should be
in the order of 1 [32]). Statistical errors have been deter-
mined by bootstrapping [33? ]. Repeating this analysis
for several temperatures one may probe the critical line
αc(T ) (see below).

We also tested a related quantity, which is defined as
the number of matches / mismatches plus the number of
gaped letters Nm + Ng , which results in the same crit-
ical exponent and critical point within error bars (not
shown). Gaps seem to play only a marginal role close to
the critical point. We observe that the roughness ∆ of
the alignment path as defined above at the critical point
diverges only logarithmically with the sequence length.
This supports the equivalence the description of the de-
scription of both variants of the this quantity.

Next, we study the critical fluctuations of Nm. We
define the susceptibility-like quantity χ = (

[

〈N2
m〉T

]

−

[〈Nm〉T ]
2
)/L as a function of αopen (see Fig. 3).

Close to the critical point χ diverges like χ ∼ Lγ/ν . In
order to extract the height of the maxima from χ(αopen)
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FIG. 4: Rescaled distributions of the observable Nm for T =
0. Inset: scaling analysis of the moments. The first moment
scales as µ1 ∼ L. Higher order moments increase slower than
µk ∼ Lk. For temperatures T & 2 all higher order moments
scale faster than µk ∼ Lk.

we performed parabolic fits in the form χ(αopen) =
−C(αc(L) − αopen)2 + χmax(L) for each system size L.
The exponent γ itself is determined by a fit of χmax(L)
to the scaling form ∼ Lγ/ν . For T = 0, we obtain
γ/ν = 0.95(1).

One may also use the scaling of αc(L) to determine the
critical value αc and the critical exponent ν as a cross
check via α0(L) = αc − AL−ν . When restricting the
range to L ≥ 1280 we obtain ν = 1.4(3) for T = 0 which
agrees within the error bars with the value stated above.
Furthermore the critical value αc agrees within 1.5 stan-
dard deviations. We also checked that those values agree
for FTA, T = 1.

Alternatively, one can determine γ from the second
moment of the averaged distribution [P (Nm)] of Nm at
αopen = αc. Hence, we performed further simulations at
criticality with a larger sample size (for the largest system
size, nsample ≈ 2× 104 for T = 0 and nsample = 1.6× 104

for T > 0). This allowed us to cross check the value of γ
and to extract higher moments of the distribution.

Fig. 4 displays distributions [P (〈Nm〉T )] for T = 0
(similar results have been obtained for T > 0). The dis-
tributions have been rescaled to zero mean and unit vari-
ance. In all cases we observe that the first moments µ1

scale as µ1 ∼ L1+ε with ε = 0 within the errorbars. For
the second moment one would expect the scaling behav-
ior µ2 ≡ Lχ ∼ L1+γ/ν . Indeed we find γ/ν = 0.955(8)
for OA by a least square fit. This is consistent with the
numerical value obtained by the height of maxima. The
third and the fourth moment scale as µ3 ∼ L2+γ3 and
µ4 ∼ L3+γ4 respectively. For temperatures T < 2 both
exponents γ3 and γ4 agree within the statistical errors.

The resulting critical values αc and critical exponents
ν, γ, γ3,γ4 are summarized in Tab. I. All ratio of expo-
nents, γ/ν, γ3/ν and γ4/ν, are in the order of 1 and seem

0 1 2 3 4 5
T

8

12

16

20

αop
en

1.3
1.4
1.5
1.6

ν

0 1 2 3 4
T

0.75

0.8

0.85

0.9

0.95

γ / ν
γ3 / ν
γ4 / ν

linear
phase

logarithmic
phase

FIG. 5: Results for FTA. Left: Phase diagram for FTA. The
linear phase is located below the critical line. Right: critical
exponents as a function of the temperature.

to increase with the temperature. Note that for a per-
fectly one-parameter scaling of the complete distribution
with µ1 ∼ L one would expect γ/ν = γ3/ν = γ4/ν =
. . . = 1. This property is only approximately fulfilled ac-
cording to our data. This is shown in Fig. 5, where also
the resulting phase diagram is displayed.

The standard order parameter in percolation problems
is the relative size of the largest cluster. Since local se-
quence alignments (and its interpretation as DPRM) ex-
hibits one spacial dimension, the observable Nm/L can
also be interpreted as order parameter, which is one if the
alignment covers the entire sequences. The usual finite-
size-scaling ansatz for the relative size of the largest clus-
ter order parameter reads as

[〈Nm〉T ] (αopen; T ; L)/L = L−βgeo/νf
(

(αopen − αc)L
1/ν

)

,

(8)
where the exponent βgeo describes the divergence of the
largest cluster. By comparing this relation with Eq. (7)
we may infer βgeo = 0 and verify that the scaling relation
γ +2βgeo = dν [26] (with d = 1 in our case) is again only
approximately fulfilled. We confirmed that β = 0 within
the errorbars by considering β as free parameter in the
finite-size-scaling analysis for Nm.

As mentioned above, the roughness only grows loga-
rithmically with the system size. This implies that the
fractal dimension dr of the alignment path equals the
topological dimension d = 1, which is in agreement with
the scaling relation dr = d − βgeo/ν in a trivial way.

B. Energetic properties

As mentioned above, the size of the largest cluster is
usually regarded as the order parameter in percolation
problems. In the non-percolating phase, the size of the
largest cluster typically grows logarithmically with the
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T αc ν γ/ν γ3/ν γ4/ν

0.00 8.306(4) 1.58(5) 0.955(8) 0.920(5) 0.903(9)

0.50 8.450(2) 1.54(1) 0.947(6) 0.92(1) 0.91(1)

1.00 8.871(4) 1.55(2) 0.946(6) 0.92(1) 0.91(1)

1.33 9.339(3) 1.53(2) 0.948(8) 0.92(1) 0.91(1)

2.00 10.791(3) 1.51(2) 0.931(9) 0.92(1) 0.89(1)

2.50 12.296(4) 1.50(4) 0.921(9) 0.92(1) 0.88(1)

3.50 16.227(1) 1.46(1) 0.87(1) 0.870(8) 0.80(1)

4.00 18.557(2) 1.38(5) 0.84(2) 0.924(5) 0.76(2)

TABLE I: Critical gap open penalty αc and critical exponents
ν, γ, γ3,γ4 for the observable Nm.
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FIG. 6: Finite-size-scaling analysis for the average score per
length.

system size whereas in the percolating phase its exten-
sion is comparable to the system size [26]. The aver-
age score of local alignments exhibits the same crossover
when crossing the linear-logarithmic boundary. For this
reason we regard the average score [S] /L (OA), or free
energy [FT ] /L (FTA), per length as a second order pa-
rameter, as in [25]. Note that there is no direct geomet-
rical interpretation for this quantity.

Scaling theory states that the order parameter scales
as

[FT ] /L = L−β/νf
(

(α − αc)L
1/ν

)

(9)

with some universal scaling function f . This allows one to
extract the critical value αc and exponents ν and β from
the data with the same method as described above. Here,
we fixed αc and ν with the values that have been obtained
from the data collapse for the observable Nm and regard
β/ν as a free parameter. The result for T = 0 is shown in

Fig. 6. The quality of these fits varied between Q̂ = 1.58
for T = 1.00 and Q̂ = 7.49 for T = 4.00.

By regarding ν and β as free parameters, we also used
the scaling form Eq. (9) as a second cross check for the
exponent ν. Within the error bars it is comparable with

T β/ν ω

0.00 0.6324(07) 0.386(5)

0.50 0.6406(10) 0.391(5)

1.00 0.6443(11) 0.387(6)

1.33 0.6564(09) 0.380(9)

2.00 0.6835(10) 0.36(1)

2.50 0.7081(08) 0.33(1)

3.50 0.7691(06) 0.23(2)

4.00 0.7958(05) 0.20(2)

TABLE II: Critical exponents for the average score / free
energy per length. β/ν was obtained from finite-size scaling
(see Fig. 6) and cross checked via the scaling of the first
moment of the score distribution at criticality α = αc. The
exponent ω describe the fluctuations of the score distribution
at α = αc.

-2 0 2 4
(S - µ)/σ

0.0001

0.001

0.01

0.1

1

σ 
P

[S
]

L=5120
L=2560
L=1280
L=640

T = 0.00,
α = αc

FIG. 7: Rescaled score distributions T = 0. The free-energy
distributions of FTA look comparable.

the results of the finite-size-scaling analysis for the ob-
servable Nm (for example ν = 1.50(7) for T = 0). For
larger temperatures (T ≥ 2) only system sizes L ≥ 1280
led to convincing results for this kind of check.

As can be seen in the second column of table Tab. II,
the free energy per length [FT ] /L decreases like ∼ L−β/ν ,
where β/ν increases monotonously with the temperature
from 0.6324(7) to 0.7958(5). For small temperatures, i.e.
T < 2, the exponent β ≈ 1 is not temperature dependent.
Hence the phase behavior regarding the exponent β is not
universal any more when exceeding T = 2.

C. Free-energy distributions close to criticality

In analogy to the distribution of the observable Nm

in Fig. 4, the resulting rescaled score distributions right
at αopen = αc are shown in Fig. 7. Simulations for
FTA yield comparable results. We performed an analy-
sis of the moments of P [S] and P [F ] respectively. The
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T λ 104λ2 s0

0.00 0.2966(4) 3.182(1) 37.4(1)

1.00 0.2924(1) 2.900(5) 24.6(1)

2.00 0.2907(2) 3.122(7) 31.56(6)

2.50 0.2980(2) 3.16(1) 38.29(7)

TABLE III: Fit parameters of least χ2-fits of the free-energy
distributions to the modified Gumbel distribution Eq. (11) for
L = 120 in the logarithmic phase.

first moment scales as µ1 ∼ L1−β/ν as expected from the
finite-size analysis shown in Fig. 6. We checked that the
fit parameters agree with those from finite-size scaling.

Regarding the second moment, no divergence was ob-
served. Its scaling behavior is given by µ2 ∼ L1−ω with
ω > 0. The resulting fit parameters are listed in Tab.
II. In the limit αopen → ∞ and L → ∞, the score distri-
bution is predicted to follow a Gumbel distribution

Pgumbel(S) = λ exp [−λ(S − S0) − exp(−λ(S − S0))]
(10)

(according to the Karlin-Altschul-Dembo theory [34–
36]).

In the linear phase the conditions of this theory are
not valid any more. Interestingly, right at the critical
point, the shape of the distributions are well described
by a Gumbel distribution, at least in the high probability
region (down to P [S] ∼ 10−4). In previous studies we
observed parabolic corrections to Eq. (10) that occur in
the far right tail of the optimal score distribution [37, 38].
The corrected distribution is empirically well described
by

P (S) =
1

z′
Pgumbel(S) exp

[

−λ2(S − S0)
2
]

, (11)

where λ2 is a correction parameter and the normaliza-
tion constant z′ is indistinguishable from 1. We found
evidence that λ2 vanishes for L → ∞ but persists even
for gapless alignment αopen = ∞ [38].

Here, we extend this study to finite-temperature align-
ment, i.e. to the free-energy distribution as a general-
ization of the score distribution. We employed gener-
alized ensemble Monte-Carlo simulations combined with
Wang-Landau sampling [39] in the sequence space (de-
tails can be found elsewhere [40]). The (production) run
for L = 120 employed 4.8 × 107 Monte Carlo steps for
each distribution over the disorder.

In the following, we use the phase diagram as a guide
to study the free-energy distribution for various tempera-
tures. We kept the gap-costs fixed (αopen = 12, βext = 1)
and only varied the temperature (between T = 0 and
T = 5). The interpolating points are indicated by stars
in the phase diagram in Fig. 5.

In the logarithmic regime (T = 0, 1, 2, 2.5) the free-
energy distribution is well described by the modified
Gumbel distribution Eq. (11) (see Fig. 8). Note that

0 20 40 60 80
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FIG. 8: Rescaled free-energy distribution of finite-
temperature alignments. At T = 2.50 and below, the data is
well described by a modified Gumbel distribution. For large
temperatures an exponential tail is observed.
Inset: The same data shown with a linear ordinate. In the
high probability region the data for T = 5.00 is well described
by a Gaussian distribution.

we have again rescaled the distributions to unit variance
and zero mean. The fit parameters only change slightly
with the temperature (see Tab. III).

The crossover from the logarithmic to the linear regime
comes along with a change of the skewness, as can be
seen in the inset of Fig. 8. In the high probability re-
gion, for a large value T = 5.00, a Gaussian distribu-
tion describes the data well. This was confirmed by a
Kolmogorov-Smirnov test that yielded a p-value of 0.14.
For T = 1/0.275 ≈ 3.64 the evidence for a Gaussian dis-
tribution is much smaller (a p-value of 2 × 10−11). We
also checked that the change of the shape is accompanied
by a change from logarithmic to linear growth of typical
free energies (the position of the maximum) with the se-
quence length, i.e. the free energy becomes extensive (not
shown here). This result can be understood in the fol-
lowing way: The partition functions that appears in the
transfer matrix calculation Eq. (6) become (more or less)
independent and hence factorize in the linear phase. The
total free energy decomposes into a sum of independent
contributions and the central limit theorem applies.

When considering the rare-event tail at higher temper-
atures, the free-energy distribution is rather exponential
than Gaussian, as can be seen in the main plot of Fig.
8. Hence, we observe a crossover from a Gaussian dis-
tribution in the high probability region to the character-
istic exponential tail of the Gumbel distribution. With
the same argumentation as for the optimal alignment,
sequence pairs appearing in the tail feature high similar-
ities. The overall free energy is dominated by the ground
state. This was confirmed by looking at the difference
between the free energy and the ground-state energy for
those sequences that occur in the tail of the distribution.
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The summation in the transfer matrix are virtually re-
placed by maximization yielding an exponential tail. The
finite-size effect, that is responsible for the curvature of
the optimal alignment statistics seems to be of marginal
order in this case.

IV. SUMMARY

We presented a finite-size-scaling analysis of the linear-
logarithmic phase transition of finite-temperature protein
sequence alignment. This phase transition is crucial to
determine the set of parameters where the alignment is
of highest sensitivity. We have used the blosum62 scor-
ing matrix together with affine gap costs, which is the
most frequently used scoring system for actual database
queries. This goes much beyond previous studies, which
have investigated only simple scoring systems.

Two order parameters were studied in detail: the num-
ber of matches (i.e. the alignment length) and the aver-
age free energy per length. We have analyzed the phase
transition using finite-size scaling techniques. Using so-
phisticated algorithms, large systems could be studied,
such that corrections to finite-size scaling are negligible.
The resulting critical line ac(T ) in the range T = 0 . . . 4

provides a guide for biological applications, where sub-
optimal alignments play an important role.

Numerical values of the critical exponents ν, γ and β
suggest that the percolation transition is not universal
with respect to different temperature values.

The free-energy distribution, which can be seen as a
generalization of the score distribution over random se-
quences, crosses over from a modified Gumbel distri-
bution with a parabolic correction in the tail given by
Eq. (11) in the logarithmic phase to a modified Gaus-
sian distribution with a linear rare-event tail in the lin-
ear phase. This is another example showing that the
large-deviations properties of order-parameter distribu-
tions change significantly close to phase transitions.
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