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Abstract

We present a new Monte Carlo model and a new continuum theory of surface pattern formation due to “surfactant
sputtering”, i.e. erosion by ion-beam sputtering including a submonolayer coverage of additional, cosputtered sur-
factant atoms. This setup, which has been realized in recent experiments in a controlled way leads to a number of
interesting possibilities to modifiy pattern forming processing conditions. We will present three simple scenarios,
which illustrate some potential applications of the method. In all three cases, simple Bradley-Harper type ripples
appear in the absence of surfactant, whereas new, interesting structures emerge during surfactant sputtering.
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1. Introduction

The self-organized evolution of surface patterns in-
duced by ion beam sputtering (IBS) has been inten-
sively studied, both experimentally and theoretically,
under various material and processing conditions (see
Ref. [1] for a recent review). The variety and quality of
the emerging nanoscaled ripples or quantum dot struc-
tures indicate that IBS may become an efficient tool for
fabricating devices of nanotechnologies. Therefore, in-
creasing experimental effort is spent on extending and
improving the control of processing conditions leading
to taylor-made, high quality surface structures [2]. Up
to now, a wide variety of crystalline and amorphous tar-
get materials and of processing conditions, including
ion species, ion energy, temperature, angle of ion beam
incidence and ion beam profile have been used to con-
trol, vary and optimize surface structures .

Recently [3] a novel sputter erosion technique has
added further possibilities of fine-tuning processing
conditions in many ways. It prepares a submono-
layer coverage of the substrate (A) surface with “sur-
factant (B) atoms” , which are constantly redeposited by
cosputtering of a nearby surfactant target. The current
JB+ maintaining the average coverage during sputter
erosion, is tuned beyond the resputtering limit, so that
film growth of B is suppressed. Depending on diffusion,
mixing and alloying properties of surfactant and target

atoms, the surfactant distribution may tend either to a
homogeneously mixed A-B layer, or it may develop in-
homogeneous patterns by mechanisms like surface seg-
regation, island formation, clustering, diffusion instabil-
ities or attachment to surface defects. The coverage by
a surfactant density significantly changes the local sput-
tering yield of the substrate. In most cases the yield is
reduced, in exceptional cases it may also be increased
[4]. These local changes provide a feed-back mecha-
nism between the pattern formation processes of sub-
strate and of surfactant atoms. By choosing appropriate
surfactant-substrate combinations, a variety of surface
patterns may be obtained in a controlled way [3]. Fur-
thermore, the surfactant distribution may itself become
a technologically useful, self-organized structure, like
an ordered array of dots or nanowires. The technique
also allows to prepare spatial profiles ofJB+, so that
modifications of the yield from nanometer to macro-
scopic length scales can be controlled.

We have set up both a Monte Carlo simulation model
and a continuum theory of surfactant sputtering. Here,
we will only consider the special case of demixing
surfactant-substrate combinations and assume that sur-
factant atoms are always on top of the surface provided
by the substrate. In the following we present the deriva-
tions of our models and some results obtained for three
prototypical scenarios, which serve to illustrate poten-
tial applications of surfactant sputtering.
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2. Continuum theory and Monte Carlo model

The Monte Carlo model is based on the algorithm
presented in Ref. [5, 6, 7, 8]. It uses a a discrete height
profile h(x, y) of a solid-on-solid surface over aL × L
(x, y)-lattice. Each surface site is occupied either by a
substrate atom (A) or by a surfactant atom (B). Random
ion paths in direction−d (inclined byθ with respect to
the z-axis) are traced until they have traversed a length
d in the substrate and are stopped atro. A surface atom
at r = (x, y,h) is eroded with a probability proportional
to the deposited energyE arising from the stopped ion.
The spreading of energy is described by an anisotropic
Gaussian [9]E(r = r s− r0) = C exp(−r2

||
/2a2

||
− r⊥/2a2

⊥),
wherer2

||
= (r ·d)2 andr2

⊥ = r2 − (r · d)2. The sputtering
probabilities for A and B atoms may be different, but
note that only surface atoms are sputtered off. Thus a
B atom atr suppresses the A sputter yield at this site
completely. In addition, a B atom may also reduce the
sputter yield of A atoms at a nearest neighbor site by a
factor 1− Λ, 0 ≤ Λ ≤ 1. B atoms, which are sputtered
off are immediately replaced via random redeposition.
In the present work, we only consider B atoms on the
surface (i.e. we exclude B atoms in the A bulk) and re-
strict the thickness of the B-layer to at most 1. This is
achieved by forbidding any moves of atoms, which end
up on top of a B atom. All atoms perform thermally ac-
tivated hops to unoccupied nearest neighbor sites with
Arrhenius rateska = k0a exp(−βEa(i → f )), (a = A, B),
whereβ = 1/kT andEa(i → f ) denotes the barrier for
a hop of an ”a” particle from initial site i to final site f.
This barrier consists of two contributions: a term, which
counts the net number of bonds, which have to be bro-
ken by the move and an Ehrlich-Schwoebel (ES) barrier
[10]. The former is given byEb(i → f ) = E0a + ENN,
whereENN = (nA(i) − nA( f ))EaA + (nB(i) − nB( f ))EaB,
if it is positive, whereas it is zero otherwise. The barrier
E0a sets the hopping rate on a flat surface.na(i) is the
number of in-plane nearest neighbors of type ”a” and
Eab is the energy neccessary to break anab-bond. The
Ehrlich-Schwoebel barrier seen by an ”a” atom equals
the constantEES a, if f and i are in plane and f is at
the upper edge of a step on the surface, otherwise it is
zero, thus it prevents the approach of atoms towards a
downhill step edge on a terrace . We absorb the factor
Ga = exp(−βE0a) arising from substrate bonds into a
rescaled attempt ratek1a = k0aGa. The time scales are
calibrated by the incident ion fluxF (in ions per surface
atoms of a flat surce) and byk1a, such that there arek1a

diffusion step trials (for every surface atom) everyFL2

erosion steps in anL × L system. Typical default values
used in our simulations are:E0a = 0.75 eV,EAA = 0.18

eV, EES = 0.15 eV. EAB is varied from 0· · ·EAA and
EBB from EAA · · · 0.6 eV. We have studied B yields from
1 · · · 10 times the A yield

The continuum description is based on the same
physical assumptions. Its derivation starts from the bal-
ance equation of mass within a subvolumeV of the A
substrate and its surface∂V. The bulk densityρ of
the substrate is assumed to be constant, the surfactant
is characterized by a varying surface densityσ. Here,
we neglect an excess surface density of A adatoms,
which will be taken into account in forthcoming work.
If we denote the erosion velocity (normal to the sur-
face) byvn, the balance of substrate mass is expressed
asρvn = −JA − divS · jA with erosion currentJA and
surface diffusion current densityjA . divS denotes the
surface divergence. The balance equation forσ takes
on the form

DSσ

dt
= −JB + Jrd · n − divSj B (1)

Heren denotes the outward normal unit vector of the
surface. The transport derivative, based upon the results
in Ref.[11],

DSσ/dt = ∂tσ + vnn · ∇σ − σvnκ, (2)

has not yet been used in continuum theories of ion beam
sputtering. It takes into account all the temporal changes
of the surface morphology. Here,κ = div n denotes the
mean curvature of the surface.

The model is completed by expressing the currents
and current densities in terms of the surface geometry
and the surfactant density. Expressions for the erosion
currents in the absence of surfactants are available from
the theory of Bradley and Harper [12] and its general-
izations [13, 14, 15]. In addition, we take into account
modifications of the sputtering yields so that the ero-
sion currents of substrate and surfactant,JA andJB, re-
spectively, are given byJA = J0YAgA(σ)(1 − νBH) and
JB = J0YBgB(σ)(1 − νBH). J0 denotes the flux of inci-
dent ions,YA, YB are the sputtering yields of the pure A
and B system, respectively. We keep the first terms of
the standard gradient expansion of the yield modifica-
tion due to surface morphology [12, 15],

νBH = w·∇h+ax
∂2h
∂x2
+ay
∂2h
∂y2
+bx

(
∂h
∂x

)2

+by

(
∂h
∂y

)2

. (3)

The factorsgA, gB are taken to be of the formgA(σ) =
max(1 − λσ,0) and gB(σ) = σ to parametrize the
changes of sputtering yields due to small B coverages.
This choice is in accordance with the experimental find-
ings of [3] for small surfactant densities. Note that the
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nonlinearities inνBH may be kept up to any desired
order, but we have to keep the full geometrical non-
linearities in the transport derivatives, because other-
wise we would violate mass conservation during surface
diffusion.

The surface diffusion current densitiesjA andjB con-
tain near-equilibrium terms, which are driven by the
reduction of surface free energy and non-equilibrium
terms, which are driven by the external erosion and re-
deposition fluxes. Extensive discussions of these terms
are available in the literature on solid surface growth
(see, for example [16]). Here, we only take into ac-
count simple contributions arising from expansions in
∇h andσ and a simple, phenomenological expression
for the non-equilibrium Ehrlich-Schwoebel (ES) cur-
rent, so that for the simplest case of isotropic (amor-
phous) samples

divS jA ≈ K1(∇2)2 h+ KA,ES∇
2h

(
1− l2ES(∇h)2

)
(4)

and

divS jB ≈ −∇(DB∇σ)+KB,ESσ∇
2h

(
1− l2ES(∇h)2

)
(5)

Continuum models, which also consider the time evo-
lution of densities in a surface layer, have appeared in
the literature, which differ in important aspects from the
present work. In ref [17] a bulk binary alloy is consid-
ered, and in refs. [18] and [19] a layer of adatoms of
the target material is included. Both papers also differ
from the present work in the physical concepts, which
underly the evolution equation of the surface density.

In the numerical solutions presented below, we have
extended this simplest diffusion model in two ways: (i)
we explicitely took into account a (cubic) anisotropy
arising from eroding a (100) surface and (ii) we al-
lowed for clustering of the B atoms by puttingDB =

D0
B max(1−cσ, 0). Details will be presented elsewhere.

This has been done to facilitate comparisons with our
Monte Carlo simulations, which naturally include these
effects. The system of non-linear partial differential
equations, which make up the continuum model have
been soved by a finite element method using ideas from
[20]

The continuum and the MC approach are related in
the sense that both are built upon the same basic phys-
ical mechanisms of erosion and surface diffusion. The
description of erosion is in both models based upon Sig-
mund’s sputtering formula and the continuum theory
contains a large lengthscale description of the surface
diffusion of substrate and surfactant as implemented in
the MC model [5].

3. Three scenarios of surfactant sputtering

We now present three simple scenarios of IBS pattern
formation in the presence of a co-sputtered surfactant.In
all cases usual Bradley-Harper type ripples will develop
in the absence of surfactant.

In the first example, depicted in Fig. 1 we demon-
strate that the ripple pattern modulates the surface den-
sity of those surfactants, which do not significantly
change the sputter yield of the substrate. The surfactant
diffusion parameters chosen in Fig. 1 would lead to B-
clustering on a flat surface. On the rippled surface, the
surfactant accumulates on the crests of ripples, where
it tends to cluster. Note that such droplets of surfac-
tant can lead to pronounced shadowing effects, which
are not included in the continuum theory. A similar
scenario has been found experimentally on Si surfaces,
using Ag as surfactant. In fact, one expects a generic
uphill current of any surfactant, which suppresses the
yield, because it is sputtered preferrably from valleys
(Bradley Harper mechanism) but redeposited randomly.
Thus material is moved out of valleys.

The second scenario, shown in Fig. 2, demonstrates,
that a strong suppression of the substrate sputter yield
due to surfactant coverage may lead to very smooth sur-
faces, reminescent of layer-by-layer erosion, instead of
rippled topographies. In fact, we started the numerical
solution with an initially rough surface and observed a
monotonous decrease of surface roughness.

The third scenario, depicted in Fig. 3 demonstrates,
how dot-like patterns, due to Ehrlich-Schwoebel diffu-
sion, can be generated by a surfactant. Without sur-
factant, the growth of ripples is the dominant process
and typical Bradley-Harper ripples emerge , even in
the presence of Ehrlich-Schwoebel diffusion. Coverage
with a surfactant tends to suppress the Bradley-Harper
instability and Ehrlich-Schwoebel diffusion can become
the dominant, pattern-forming mechanism. Note that
the ES-type dots can form an ordered array. Ordering is
supported, if preliminary ripple structures break up into
dots. Ordered dots are more clearly visible in the con-
tinuum theory. The MC dynamics has been limited to
the erosion of 5 monolayers to keep it consistent with
the calibrated time in the continuum theory, but the ef-
fects of noise are too strong to detect dot ordering in MC
within this time interval.

In this scenario, the distribution of surfactant still de-
pends upon its diffusion and clustering properties.
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Figure captions:

Fig.(1): Lower panels: Ripple pattern of a substrate
with 0.4 monolayer coverage of surfactant withYA = YB

and strong clustering after 5 ions per surface atom,Left:
MC simulationEAB = 0,EBB = 0.6 eV, Right panel:
Continuum theory (c = 2). The direction of the ion

beam is inclined byφ = 0.2 with respect to the x-axis.
No Ehrlich-Schwoebel effects are included. The bars
mark identical regions in upper and lower panels, re-
spectively. Upper panels: Corresponding distributions
of surfactant.

Fig. (2):Upper panels: BH-type ripples without sur-
factant,left: MC simulation,right: Continuum theory.
Lower panels: Strong suppression of sputter yield of
substrate by surfactant leads to smooth surfacesleft:
Λ = 0.25 in MC. right: λ = 2 in continuum theory,
here, the height scale is enhanced by a factor 100 with
respect to the corresponding upper panel

Fig. (3):Upper panels: ES diffusion of substrate and
surfactant is chosen such that BH instability dominates.
No suppression of substrate sputter yield by surfactant.
Lower panels: Moderate suppression of substrate sput-
ter yield by surfactant (Λ = 0.1 in MC, λ = 0.6 in con-
tinuum)tends to weaken the BH instability, so that ES
diffusion can influence the pattern formation.Left pan-
els: MC simulation,Right panels: Continuum theory
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Figure 1:Lower panels: Ripple pattern .... Figure 2:Upper panels: BH-type ripples ....
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Figure 3:Upper panels: ES diffusion of .....
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