A practical guide to computer simulations *

Alexander K. Hartmann
University of Géttingen, Germany

hartmann@theorie.physik.uni-goettingen.de

Heiko Rieger
University of Saarbriicken, Germany

rieger@lusi.uni-sb.de

December 7, 2001

Abstract

Here practical aspects of conducting research via computer simulations
are discussed. The following issues are addressed: software engineering,
object-oriented software development, programming style, macros, make
files, scripts, libraries, random numbers, testing, debugging, data plot-
ting, curve fitting, finite-size scaling, information retrieval, and preparing
presentations.

Because of the limited space, usually only short introductions to the
specific areas are given and references to more extensive literature are
cited. All examples of code are in C/C++.

Contents

1 Software Engineering

2 Object-oriented Software Development
3 Programming Style

4 Programming Tools

41 UsingMacroso oL e
4.2 Make Files
4.3 Scripts

*Taken from the book: A.K. Hartmann and H. Rieger, Optimization Algorithms in Physics,

(Wiley-VCH, Berlin, Weinheim 2001), ISBN 3-527-40307-8, with permission of Wiley-VCH,

see http://www.wiley-vch.de.

non-electronic form, provided that no changes are performed to it.

This document may be distributed freely in electronic and

5 Libraries 29

5.1 Numerical Recipes 29
52 LEDA e 31
5.3 Creating your own Libraries 33
6 Random Numbers 34
6.1 Generating Random Numbers 35
6.2 Inversion Method 38
6.3 Rejection Method oL, 40
6.4 The Gaussian Distribution 41
7 Tools for Testing 42
T1 gdb e e 43
T2 ddd. e 45
7.3 checkergec 45
8 Evaluating Data 49
81 DataPlotting 49
82 CurveFitting 51
8.3 Finite-size Scaling 95
9 Information Retrieval and Publishing 57
9.1 Searching for Literature 58
9.2 Preparing Publications L. 61

Here practical aspects of conducting research via computer simulations are dis-
cussed. It is assumed that you are familiar with an operating system such as
UNIX (e.g. Linux), a high-level programming language such as C, Fortran or
Pascal and have some experience with at least small software projects.
Because of the limited space, usually only short introductions to the specific ar-
eas are given and references to more extensive literature are cited. All examples
of code are in C/C++.

First, a short introduction to software engineering is given and several hints
allowing the construction of efficient and reliable code are stated. In the second
section a short introduction to object-oriented software development is pre-
sented. In particular, it is shown that this kind of programming style can be
achieved with standard procedural languages such as C as well. Next, practical
hints concerning the actual process of writing the code are given. In the fourth
section macros are introduced. Then it is shown how the development of larger
pieces of code can be organized with the help of so called make files. In the sub-
sequent section the benefit of using libraries like Numerical Recipes or LEDA
are explained and it is shown how you can build your own libraries. In the
sixth section the generation of random numbers is covered while in the eighth
section three very useful debugging tools are presented. Afterwards, programs
to perform data analysis, curve fitting and finite-size scaling are explained. In
the last section an introduction to information retrieval and literature search in
the Internet and to the preparation of presentations and publications is given.

1 Software Engineering

When you are creating a program, you should never just start writing the code.
In this way only tiny software projects such as scripts can be completed success-
fully. Otherwise your code will probably be very inflexible and contain several
hidden errors which are very hard to find. If several people are involved in a
project, it is obvious that a considerable amount of planning is necessary.

But even when you are programming alone, which is not unusual in physics,
the first step you should undertake is just to sit down and think for a while.
This will save you a lot of time and effort later on. To emphasize the need
for structuring in the software development process, the art of writing good
programs is usually called software engineering. There are many specialized
books in this fields, see e.g. Refs. [1, 2]. Here just the steps that should be
undertaken to create a sophisticated software development process are stated.
The following descriptions refer to the usual situation you find in physics: one
or a few people are involved in the project. How to manage the development of
big programs involving many developers is explained in literature.

e Definition of the problem and solution strategies
You should write down which problem you would like to solve. Drawing
diagrams is always helpful! Discuss your problem with others and tell
them how you would like to solve it. In this context many questions may
appear, here some examples are given:

— What is the input you have to supply? In case you have only a few
parameters, they can be passed to the program via options. In other
cases, especially when chemical systems are to be simulated, many
parameters have to be controlled and it may be advisable to use extra
parameter files.

— Which results do you want to obtain and which quantities do you have
to analyze? Very often it is useful to write the raw results of your
simulations, e.g. the positions of all atoms or the orientations of all
spins of your system, to a configuration file. The physical results can
be obtained by post-processing. Then, in case new questions arise, it
is very easy to analyze the data again. When using configuration files,
you should estimate the amount of data you generate. Is there enough
space on your disk? It may be helpful, to include the compression of
the data files directly in your programs!.

— Can you identify “objects” in your problem? Objects may be physical
entities like atoms or molecules, but also internal structures like nodes
in a tree or elements of tables. Seeing the system and the program as
a hierarchical collection of objects usually makes the problem easier
to understand. More on object-oriented development can be found
in Sec. 2.

In C this can be achieved by calling system("gzip -f <filename>"); after the file has
been written and closed.

— Is the program to be extended later on? Usually a code is “never”
finished. You should foresee later extensions of the program and set
up everything in a way it can be reused easily.

— Do you have existing programs available which can be included into

the software project? If you have implemented your previous projects
in the above mentioned fashion, it is very likely that you can recy-
cle some code. But this requires experience and is not very easy to
achieve at the beginning. But over the years you will have a grow-
ing library of programs which enables you to finish future software
projects much quicker.
Has somebody else created a program which you can reuse? Some-
times you can rely on external code like libraries. Examples are the
Numerical Recipes [3] and the LEDA library [4] which are covered
in Sec. 5.

— Which algorithms are known? Are you sure that you can solve the
problem at all? Many other techniques have been invented already.
You should always search the literature for solutions which already
exist. How searches can be simplified by using electronic data bases
is covered more deeply in Sec. 9.

Sometimes it is necessary to invent new methods. This part of a
project may be the most time consuming.

e Designing data structures
Once you have identified the basic objects in your systems, you have to
think about how to represent them in the code. Sometimes it is sufficient
to define some struct types in C (or simple classes in C++). But usually
you will need to design a large set of data structures, referencing each
other in a complicated way.

A sophisticated design of the data structures will lead to a better organized
program, usually it will even run faster. For example, consider a set of
vertices of a graph. Then assume that you have several lists L; each
containing elements referencing the vertices of degree i. When the graph
is altered in your program and thus the degrees of the vertices change,
it is sometimes necessary to remove a vertex from one list and insert it
into another. In this case you will gain speed, when your vertices data
structures also contain pointers to the positions where they are stored in
the lists. Hence, removing and inserting vertices in the lists will take only
a constant amount of time. Without these additional pointers, the insert
and delete operations have to scan partially through the lists to locate the
elements, leading to a linear time complexity of these operations.

Again, you should perform the design of the data structures in a way,
that later extensions are facilitated. For example when treating lattices of
Ising spins, you should use data structures which are independent of the
dimension or even of the structure of the lattice, an example is given in
Sec. 4.1.

When you are using external libraries, usually they have some data types
included. The above mentioned LEDA library has many predefined data
types like arrays, stacks, lists or graphs. You can have e.g. arrays of
arbitrary objects, for example arrays of strings. Furthermore, it is possible
to combine the data types in complicated ways, e.g. you can define a stack
of graphs having strings attached to the vertices.

Defining small tasks

After setting up the basic data types, you should think about which basic
and complex operations, i.e. which subroutines, you need to manipulate
the objects of your simulation. Since you have already thought a lot about
your problem, you have a good overview, which operations may occur.
You should break down the final task “perform simulation” into small
subtasks, this means you use a top down approach in the design process.
It is not possible to write a program in a sequential way as one code. For
the actual implementation, a bottom up approach is recommended. This
means you should start with the most basic operations. Later on you can
use them to create more complicated operations. As always, you should
define the subroutines in a way that they can be applied in a flexible way
and extensions are easy to perform.

But it is not necessary that you must identify all basic operations at
the beginning. During the development of the code, new applications
may arise, which lead to the need for further operations. Also it may be
required to change or extend the data structures defined before. However,
the more you think in advance, the less you need to change the program
later on.

As an example, the problem of finding ground states in Ising spin glasses
via simulated annealing is considered. Some of basic operations are:

— Set up the data structures for storing the realizations of the interac-

tions and for storing the spin glass configurations.

— Create a random realization of the interactions.

— Initialize a random spin configuration.

— Calculate the energy of a spin in the local field of its neighbors.

— Calculate the total energy of a system.

— Calculate the energy changes associated with a spin flip.

— Execute a Monte Carlo step.

— Execute a whole annealing run.

— Calculate the magnetization.

— Save a realization and corresponding spin configurations in a file.

It is not necessary to define a corresponding subroutine for all operations.
Sometimes they require only a few numbers of lines in the code, like the

calculation of the energy of one spin in the example above. In this case,
such operations can be written directly in the code, or a macro (see Sec.
4.1) can be used.

Distributing work

In case several people are involved in a project, the next step is to split up
the work between the coworkers. If several types of objects appear in the
program design, a natural approach is to make everyone responsible for one
or several types of objects and the related operations. The code should be
broken up into several modules (i.e. source files), such that every module
is written by only one person. This makes the implementation easer and
also helps testing the code (see below). Nevertheless, the partitioning
of the work requires much care, since quite often some modules or data
types depend on others. For this reason, the actual implementation of a
data type should be hidden. This means that all interactions should be
performed through exactly defined interfaces which do not depend on the
internal representation, see also Sec. 2 on object-oriented programming,.

When several people are editing the same files, which is usually necessary
later on, even when initially each file was created by only one person,
then you should use a source-code management system. It prevents several
people from performing changes on the same file in parallel, which would
cause a lot of trouble. Additionally, a source-code management system
enables you to keep track of all changes made. An example of such a
system is the Revision Control System (RCS), which is freely available
through the GNU project [5] and part of the free operating system Linuz.

Implementing the code

With good preparation, the actual implementation becomes only a small
part of the software development process. General style rules, guarantee-
ing clear structured code, which can even be understood several months
later, are explained in Sec. 3. You should use a different file, i.e. a different
module, for each coherent unit of data structures and subroutines; when
using an object oriented language you should define different classes (see
Sec. 2). This rule should be obeyed for the case of a one-person project as
well. Large software projects containing many modules are easily main-
tained via makefiles (see Sec. 4.2).

Each subroutine and each module should be tested separately, before in-
tegrating many modules into one program. In the following some general
hints concerning testing are presented.

Testing

When performing tests on single subroutines, standard cases usually are
used. This is the reason why many errors become apparent much later.
Then, because the modules have already been integrated into one single
program, errors are much harder to localize. For this reason, you should

always try to find special and rare cases as well when testing a subroutine.
Consider for example a procedure which inserts an element into a list.
Then not only inserting in the middle of the list, but also at the beginning,
at the end and into an empty list must be tested. Also, it is strongly
recommended to read your code carefully once again before considering it
finished. In this way many bugs can be found easily which otherwise must
be tracked down by intensive debugging.

The actual debugging of the code can be performed by placing print in-
structions at selected positions in the code. But this approach is quite
time consuming, because you have to modify and recompile your program
several times. Therefore, it is advisable to use debugging tools like a
source-code debugger and a program for checking the memory manage-
ment. More about these tools can be found in Sec. 7. But usually you
also need special operations which are not covered by an available tool.
You should always write a procedure which prints out the current instance
of the system that is simulated, e.g. the nodes and edges of a graph or
the interaction constants of an Ising system. This facilitates the types of
tests, which are described in the following.

After the raw operation of the subroutines has been verified, more complex
tests can be performed. When e.g. testing an optimization routine, you
should compare the outcome of the calculation for a small system with
the result which can be obtained by hand. If the outcome is different
from the expected result, the small size of the test system allows you to
follow the execution of the program step by step. For each operation you
should think about the expected outcome and compare it with the result
originating from the running program.

Furthermore, it is very useful to compare the outcome of different methods
applied to the same problem. For example, you know that there must be
something wrong, in case an approximation method finds a better value
than your “exact” algorithm. Sometimes analytical solutions are avail-
able, at least for special cases. Another approach is to use invariants.
For example, when performing a Molecular Dynamics simulation of an
atomic/molecular system (or a galaxy), energy and momentum must be
conserved; only numerical rounding errors should appear. These quan-
tities can be recorded very easily. If they change in time there must be
a bug in your code. In this case, usually the formulas for the energy and
the force are not compatible or the integration subroutine has a bug.

You should test each procedure, directly after writing it. Many developers
have experienced that the larger the interval between implementation and
tests is, the lower the motivation becomes for performing tests, resulting
in more undetected bugs.

The final stage of the testing process occurs when several modules are inte-
grated into one large running program. In the case where you are writing
the code alone, not many surprises should appear, if you have performed

many tests on the single modules. If several people are involved in the
project, at this stage many errors occur. But in any case, you should al-
ways remember: there is probably no program, unless very small, which is
bug free. You should know the following important result from theoretical
computer science [6]: it is impossible to invent a general method, which
can prove automatically that a given program obeys a given specification.
Thus, all tests must be designed to match the current code.

In case a program is changed or extended several times, you should always
keep the old versions, because it is quite common that by editing new bugs
are introduced. In that case, you can compare your new code with the
older version. Please note that editors like emacs only keep the second
latest version as backup, so you have to take care of this problem yourself
unless you use a source-code management system, where you are lucky,
because it keeps all older version automatically.

For C programmers, it is always advisable to apply the -Wall (warning
level: all) option. Then several bugs already show up during the compiling
process, for example the common mistake to use '=’in comparisons instead
of ’==’, or the access to uninitialized variables?.

In C++, some bugs can be detected by defining variables or parameter as
const, when they are considered to stay unchanged in a block of code or
subroutine. Here again, already the compiler will complain, if attempts
to alter the value of such a variable are tried.

This part finishes with a warning: never try to save time when performing
tests. Bugs which appear later on are much much harder to find and you
will have to spend much more time than you have “saved” before.

e Writing documentation
This part of the software development process is very often disregarded,
especially in the context of scientific research, where no direct customers
exist. But even if you are using your own code, you should write good
documentation. It should consist of at least three parts:

— Comments in the source code: You should place comments at the
beginning of each module, in front of each subroutine or each self-
defined data structure, for blocks of the code and for selected lines.
Additionally, meaningful names for the variables are crucial. Fol-
lowing these rules makes later changes and extension of the program
much more straightforward. You will find in more hints on how a
good programming style can be achieved Sec. 3.

— On-line help: You should include a short description of the program,
its parameters and its options in the main program. It should be
printed, when the program is called with the wrong number/form of
the parameters, or when the option -help is passed. Even when you

2But this is not true for some C++ compilers when combining with option -g.

are the author of the program, after it has grown larger it is quite
hard to remember all options and usages.

— Ezxternal documentation: This part of the documentation process is
important, when you would like to make the program available to
other users or when it grows really complex. Writing good instruc-
tions is really a hard job. When you remember how often you have
complained about the instructions for a video recorder or a word
processor, you will understand why there is a high demand for good
authors of documentation in industry.

e Using the code
Also the actual performance of the simulation usually requires careful
preparation. Several question have to be considered, for example:

— How long will the different runs take? You should perform simula-
tions of small systems and extrapolate to large system sizes.

— Usually you have to average over different runs or over several re-
alizations of the disorder. The system sizes should also be chosen
in a way that the number of samples is large enough to reduce the
statistical fluctuations. It is better to have a reliable result for a
small system than to treat only a few instances of a large system.
If your model exhibits self averaging, the larger the sample, the less
the number of samples can be. But, unfortunately, usually the nu-
merical effort grows stronger than the system size, so there will be a
maximum system size which can be treated with satisfying accuracy.
To estimate the accuracy, you should always calculate the statistical
error bar o(A) for each quantity A3.

A good rule of a thumb is that each sample should take not more
than 10 minutes. When you have many computers and much time
available, you can attack larger problems as well.

— Where to put the results? In many cases you have to investigate your
model for different parameters. You should organize the directories
where you put the data and the names of the files in such a way that
even years later the former results can be found quickly. You should
put a README file in each directory, explaining what it contains.
If you want to start a sequence of several simulations, you can write
a short script, which calls your program with different parameters
within a loop.

— Logfiles are very helpful, where during each simulation some infor-
mation about the ongoing processes are written automatically. Your
program should put its version number and the parameters which
have been used to start the simulation in the first line of each logfile.
This allows a reconstruction of how the results have been obtained.

3The error bar is o(A) = \/Var(A)/(N — 1), where Var(A) = £+ SN a? — (£ TN, a;)?

is the variance of the N values a1,...,an.

The steps given do not usually occur in linear order. It is quite common that
after you have written a program and performed some simulations, you are not
satisfied with the performance or new questions arise. Then you start to define
new problems and the program will be extended. It may also be necessary to
extend the data structures, when e.g. new attributes of the simulated models
have to be included. It is also possible that a nasty bug is still hidden in the
program, which is found later on during the actual simulations and becomes
obvious by results which cannot be explained. In this case changes cannot be
circumvented either.

In other words, the software development process is a cycle which is traversed
several times. As a consequence, when planning your code, you should always
keep this in mind and set up everything in a flexible way, so that extensions and
code recycling can be performed easily.

2 Object-oriented Software Development

In recent years object-oriented programming languages like C++, Smalltalk or
Eiffel became very popular. But, using an object-oriented language and de-
veloping the program in an object-oriented style are not necessarily the same,
although they are compatible. For example, you can set up your whole project
by applying object-oriented methods even when using a traditional procedural
programming language like C, Pascal or Fortran. On the other hand, it is pos-
sible to write very traditional programs with modern object-oriented languages.
They help to organize your programs in terms of objects, but you have the
flexibility to do it in another way as well. In general, taking an object-oriented
viewpoint facilitates the analysis of problems and the development of programs
for solving the problems. Introductions to object-oriented software development
can be found e.g. in Refs. [7, 8, 9]. Here just the main principles are explained:

e Objects and methods

The real world is made of objects such as traffic-lights, books or computers.
You can classify different objects according to some criteria into classes.
This means different chairs belong to the class “chairs”. The objects of
many classes can have internal states, e.g. a traffic-light can be red, yellow
or green. The state of a computer is much more difficult to describe. Fur-
thermore, objects are useful for the environment, because other objects
interact via operations with the object. You (belonging to the class “hu-
man”) can read the state of a traffic light, some central computer may set
the state or even switch the traffic light off.

Similar to the real world, you can have objects in programs as well. The
internal state of an object is given by the values of the variables describing
the object. Also it is possible to interact with the objects by calling
subroutines (called methods in this context) associated with the objects.

Objects and the related methods are seen as coherent units. This means
you define within one class definition the way the objects look, i.e. the data

10

structures, together with the methods which access/alter the content of the
objects. The syntax of the class definition depends on the programming
language you use. Since implementational details are not relevant here,
the reader is referred to the literature.

When you take the viewpoint of a pure object-oriented programmer, then
all programs can be organized as collections of objects calling methods of
each other. This is derived from the structure the real world has: it is a
large set of interacting objects. But for writing good programs it is as in
real life, taking an orthodox position imposes too many restrictions. You
should take the best of both worlds, the object-oriented and the procedural
world, depending on the actual problem.

Data capsuling

When using a computer, you do not care about the implementation.
When you press a key on the keyboard, you would like to see the result on
the screen. You are not interested in how the key converts your pressing
into an electrical signal, how this signal is sent to the input ports of the
chips, how the algorithm treats the signal and so on.

Similarly, a main principle of object-oriented programming is to hide the
actual implementation of the objects. Access to them is only allowed via
given interfaces, i.e. via methods. The internal data structures are hidden,
this is called private in C++. The data capsuling has several advantages:

— You do not have to remember the implementation of your objects.
When using them later on, they just appear as a black box fulfilling
some duties.

— You can change the implementation later on without the need to
change the rest of the program. Changes of the implementation may
be useful e.g. when you want to increase the performance of the code
or to include new features.

— Furthermore, you can have flexible data structures: several different
types of implementations may coexist. Which one is chosen depends
on the requirements. An example are graphs which can be imple-
mented via arrays, lists, hash tables or in other ways. In the case
of sparse graphs, the list implementation has a better performance.
When the graph is almost complete, the array representation is fa-
vorable. Then you only have to provide the basic access methods,
such as inserting/removing/testing vertices/edges and iterating over
them, for the different internal representations. Therefore, higher-
level algorithms like computing a spanning tree can be written in a
simple way to work with all internal implementations. When using
such a class, the user just has to specify the representation he wants,
the rest of the program is independent of this choice.

— Last but not least, software debugging is made easier. Since you
have only defined ways the data can be changed, undesired side-

11

effects become less common. Also the memory management can be
controlled easier.

For the sake of flexibility, convenience or speed it is possible to declare
internal variables as public. In this case they can be accessed directly
from outside.

Inheritance

inheritance This means lower level objects can be specializations of higher
level objects. For example the class of (German) “ICE trains” is a subclass
of “trains” which itself is a subclass of “vehicles”.

In computational physics, you may have a basic class of “atoms” contain-
ing mass, position and velocity, and built upon this a class of “charged
atoms” by including the value of the charge. Then you can use the subrou-
tines you have written for the uncharged atoms, like moving the particles
or calculating correlation functions, for the charged atoms as well.

A similar form of hierarchical organization of objects works the other way
round: higher level objects can be defined in terms of lower level objects.
For example a book is composed of many objects belonging to the class
“page”. Each page can be regarded as a collection of many “letter” objects.

For the physical example above, when modeling chemical systems, you
can have “atoms” as basic objects and use them to define “molecules”.
Another level up would be the “system” object, which is a collection of
molecules.

Function/operator overloading

This inheritance of methods to lower level classes is an example of oper-
ator overloading. Tt just means that you can have methods for different
classes having the same name, sometimes the same code applies to several
classes. This applies also to classes, which are not connected by inher-
itance. For example you can define how to add integers, real numbers,
complex numbers or larger objects like lists, graphs or documents. In lan-
guage like C or Pascal you can define subroutines to add numbers and
subroutines to add graphs as well, but they must have different names.
In C++ you can define the operator “+” for all different classes. Hence,
the operator-overloading mechanisms of object-oriented languages is just
a tool to make the code more readable and clearer structured.

Software reuse

Once you have an idea of how to build a chair, you can do it several
times. Because you have a blueprint, the tools and the experience, building
another chair is an easy task.

This is true for building programs as well: both data capsuling and inheri-
tance facilitate the reuse of software. Once you have written your class for

12

e.g. treating lists, you can include them in other programs as well. This is
easy, because later on you do not have to care about the implementation.
With a class designed in a flexible way, much time can be saved when
realizing new software projects.

As mentioned before, for object-oriented programming you do not necessarily
have to use an object-oriented language. It is true that they are helpful for the
implementation and the resulting programs will look slightly more elegant and
clear, but you can program everything with a language like C as well. In C an
object-oriented style can be achieved very easily. As an example a class histo
implementing histograms is outlined, which are needed for almost all types of
computer simulations as evaluation and analysis tools.

First you have to think about the data you would like to store. That is the
histogram itself, i.e. an array table of bins. Each bin just counts the number of
events which fall into a small interval. To achieve a high degree of flexibility, the
range and the number of bins must be variable. From this, the width delta of
each bin can be calculated. For convenience delta is stored as well. To count the
number of events which are outside the range of the table, the entries low and
high are introduced. Furthermore, statistical quantities like mean and variance
should be available quickly and with high accuracy. Thus, several summarized
moments sum of the distribution are stored separately as well. Here the number
of moments HISTO_NOM. is defined as a macro, converting this macro to variable
is straightforward. All together, this leads to the following C data structure:

#define _HISTO_NOM_ 9 /* No. of (statistical) moments
/* holds statistical informations for a set of numbers: */
/* histogram, # of Numbers, sum of numbers, squares, ... x*/
typedef struct
{

double from, to; /* range of histogram

double delta; /* width of bins

int n_bask; /* number of bins

double *table; /* bins

int low, high; /* No. of data out of range

double sum[_HISTO_NOM_]; /* sum of 1s, numbers, numbers~2 ..
} histo_t;

Here, the postfix _t is used to stress the fact that the name histo_t denotes a
type. The bins are double variables, which allows for more general applications.
Please note that it is still possible to access the internal structures from outside,
but it is not necessary and not recommended. In C++, you could prevent this
by declaring the internal variables as private. Nevertheless, everything can
be done via special subroutines. First of all one must be able to create and
delete histograms, please note that some simple error-checking is included in
the program:

13

*/
*/
*/
*/
*/

%/

/** creates a histo-element, where the empirical histogram **/
/** table covers the range [’from’, ’to’] and is divided **/

/** into ’n_bask’ bins. *x /
/** RETURNS: pointer to his-Element, exit if no memory. x% /
histo_t *histo_new(double from, double to, int n_bask)
{

histo_t *his;

int t;

his = (histo_t *) malloc(sizeof (histo_t));
if (his == NULL)

{
fprintf(stderr, "out of memory in histo_new");
exit (1)
}
if (to < from)
{
double tmp;
tmp = to; to = from; from = tmp;
fprintf (stderr, "WARNING: exchanging from, to in histo_new\n");
}

his->from = from;
his->to = to;
if (n_bask <= 0)
{
n_bask = 10;
fprintf(stderr, "WARNING: setting n_bask=10 in histo_new()\n");
}
his->delta = (to-from)/(double) n_bask;
his->n_bask = n_bask;
his->low = 0;
his->high = 0;
for(t=0; t< _HISTO_NOM_ ; t++) /* initialize summarized moments */
his->sum[t] = 0.0;
his->table = (double *) malloc(n_baskx*sizeof (double));
if (his->table == NULL)

{
fprintf(stderr, "out of memory in histo_new");
exit(1);
}
else
for(t=0; t<n_bask; t++)
his->table[t] = 0;
}
return(his) ;
}

14

/** Deletes a histogram ’his’ x% /
void histo_delete(histo_t *his)
{
free(his->table);
free(his);
}

All histogram objects are created dynamically by calling histonew(), this cor-
responds to a call of the constructor or new in C++. The objects are addressed
via pointers. Whenever a method, i.e. a procedure in C, of the histo class
is called, the first argument will always be a pointer to the corresponding his-
togram. This looks slightly less elegant than writing histo.method() in C++,
but it is really the same. When avoiding direct access, the realization using C is
perfectly equivalent to C++ or other object-oriented languages. Inheritance can
be implemented, by including pointers to histo_t objects in other type defini-
tions. When these higher level objects are created, a call to histonew() must
be included, while a call to histo_delete(), corresponding to the destructor in
C++, is necessary, to implement a correct deletion of the more complex objects.
As a final example, the procedures for inserting an element into the table and
calculating the mean are presented. It is easy to figure out how other subroutines
for e.g. calculating the variance/higher moments or printing a histogram can be
realized. The complete library can be obtained for free [10].

/** inserts a ’number’ into a histogram ’his’. **/
void histo_insert(histo_t *his, double number)
{

int t;

double value;

value = 1.0;

for (t=0; t< _HISTO_NOM_; t++)

{
his->sum[t]+= value;; /* raw statistics */
value *= number;

}

if (number < his->from) /* insert into histogram */

his->low++;
else if (number > his->to)
his->high++;

else if (number == his->to)
his->table[his->n_bask-1]++;
else

his->table[(int) floor((number - his->from) / his->delta)]++;

15

/** RETURNS: Mean of Elements in ’his’ (0.0 if his=empty) **/
double histo_mean(histo_t *his)
{
if (his->sum[0] == 0)
return(0.0);
else
return(his->sum[1] / his->sum[0]);

3 Programming Style

The code should be written in a style that enables the author, and other people
as well, to understand and modify the program even years later. Here briefly
some principles you should follow are stated. Just a general style of description
is given. Everybody is free to choose his/her own style, as long as it is precise

and consistent.

e Split your code into several modules. This has several advantages:

— When you perform changes, you have to recompile only the modules
which have been edited. Otherwise, if everything is contained in a
long file, the whole program has to be recompiled each time again.

— Subroutines which are related to each other can be collected in single
modules. It is much easier to navigate in several short files than in
one large program.

— After one module has been finished and tested it can be used for
other projects. Thus, software reuse is facilitated.

— Distributing the work among several people is impossible if every-
thing is written into one file. Furthermore, you should use a source-
code management system (see Sec. 1) in case several people are in-
volved in avoiding uncontrolled editing.

e To keep your program logically structured, you should always put data
structures and implementations of the operations in separate files. In
C/C++ this means you have to write the data structures in a header (.h)
file and the code into a source code (.c/ .cpp) file.

Try to find meaningful names for your variables and subroutines. There-
fore, during the programming process it is much easier to remember their
meanings, which helps a lot in avoiding bugs. Additionally, it is not nec-
essary to look up the meaning frequently. For local variables like loop
counters, it is sufficient and more convenient to have short (e.g. one let-
ter) names.

In the beginning this might seem to take additional time (writing e.g.
’kinetic_energy’ for a variable instead of ’x10’). But several months

16

after you have written the program, you will appreciate your effort, when
you read the line

kinetic_energy += 0.5*atom[i] .mass*atom[i].veloc*atom[i].veloc;
instead of
x10 += 0.5%x34[i].a*x34[i].b*x34[i] .b;

You should use proper indentation of your lines. This helps a great deal
in recognizing the structure of a program. Many bugs are caused by
misaligned braces forming a block of code. Furthermore, you should place
at most one command per line of code. The reader will probably agree
that

for(i=0; i<number_nodes; i++)
{
degree[i] = 0;
for(j=0; j<number_nodes; j++)
if (edgel[i] [j]1 > 0)
degree[i]++;

}
is much faster to understand than

for(i=0; i<number_nodes; i++) { degreel[i] = 0; for(j=0;
j<number_nodes; j++) if(edgelil[j] > 0) degree[il++; }

Avoid jumping to other parts of a program via the “goto” command. This
is bad style originating from programming in assembler or BASIC. In
modern programming languages, for every logical programming construct
there are corresponding commands. “Goto” commands make a program
harder to understand and much harder to debug if it does not work as it
should.

In case you want to break out of a loop, you can use a while/until loop
with a flag that indicates if the loop is to be stopped. In C, if you are
lazy, you can use the commands break or continue.

Do not use global variables. At first sight the use of global variables may
seem tempting: you do not have to care about parameters for subroutines,
everywhere the variables are accessible and everywhere they have the same
name. Programming is done much faster.

But later on you will have a bad time: many bugs are created by improper
use of global variables. When you want to check for a definition of a
variable you have to search the whole list of global variables, instead of

17

just checking the parameter list. Sometimes the range of validity of a
global variable is overwritten by a local variable. Furthermore, software
re-usage is almost impossible with global variables, because you always
have to check all variables used in a module for conflicts and you are not
allowed to employ the name for another object. When you want to pass
an object to a subroutine via a global variable, you do not have the choice
of how to name the object which is to be passed. Most important, when
you have a look onto a subroutine after some months, you cannot see
immediately which objects are changed in the subroutine, instead you will
have to read the whole subroutine again. If you avoid this practice, you
just have to look at the parameter list. Finally, when a renaming occurs,
you have to change the name of a global variable everywhere in the whole
program. Local variables can be changed with little effort.

Finally, an issue of utmost importance: Do not be economical with com-
ments in your source code! Most programs, which may appear logically
structured when writing them, will be a source of great confusion when
being read some weeks later. Every minute you spend on writing rea-
sonable comments you will save later on several times over. You should
consider different types of comments.

— Module comments: At the beginning of each module you should state
its name, what the module does, who wrote it and when it was writ-
ten. It is a useful practice to include a version history, which lists the
changes that have been performed. A module comment might look

like this:

ok ks ok ok ok o o ok sk sk sk ok o ok ok sk o ok skok ok o ok ok ok o ok sk ok ok ke sk ok ok o sk sk ok o ok sk ok ok ok ok sk ok ok /
/*** Functions for spin glasses. *okok /
/**x 1. loading and saving of configurations *okok /
/*%%x 2. initialization *okok /
/*x*x 3. evaluation functions *okk /
[®x% *xk [
/**x A.K. Hartmann January 1996 *kk /
/*** Version 7.0 03.07.2000 *kk /
VELE: *okk /

/***/

/**x Vers. History: *kok /
/*x* 1.0 feof-check in lsg_load...() included 02.03.96 *x*x*/
/*** 2.0 comment for cs2html added 12.05.96 *x*x/
/**x 3.0 1lsg_load_bond_n() added 03.03.97 *xx*/
/**x 4.0 lsg_invert_plane() added 12.08.98 *x*x/
/**x 5.0 lsg_write_gen() added 15.09.98 *x*x/
/**x 6.0 lsg_energy_B_hom() added 20.11.98 *%x/
/**x 7.0 lsg_frac_frust() added 03.07.00 *%x/

18

— Type comments: For each data type (a struct in C or class in C++)
which you define in a header file, you should attach several lines of
comments describing the data type’s structure and its application.
For a class definition, also the methods which are available should
be described. Furthermore, for a structure, each element should be
explained. A nice arrangement of the comments makes everything
more readable. An example of what such a comment may look like
can be seen in Sec. 2 for the data type histo_t.

— Subroutine comments: For each subroutine, its purpose, the meaning
of the input and output variables and the preconditions which have
to be fulfilled before calling must be stated. In case you are lazy and
do not write a man page, a comment atop of a subroutine is the only
source of information, should you want to use the subroutine later
on in another program.

If you use some special mathematical methods or clever algorithms
in the subroutine, you should always cite the source in the comment.
This facilitates later on the understanding of how the methods works.

The next example shows what the comment for a subroutine may
look like:

/3% ok sk sk sk sk ok ok ok kokskokskokkkokkokok T dinicd () sokoskokskskok skokskok ok okokokk /

/*x Calculated maximum flow using Dinics algorithm *% /
/** See: R.E.Tarjan, Data Structures and Network *%/
/** Algorithms, p.104f. *% /
/*% *x/
/** PARAMETERS: (*)= return-parameter/altered var’s *x*/
VAL N: number of inner nodes (without s,t) *% /
VAL dim: dimension of lattice *% /
VAL next: gives neighbors next[0..N][0..2%dim+1] *x*/
/** c: capacities c[0..N]J[0..2xdim+1] *% /
/% (x) f: flow values f£[0..N][0..2*dim+1] *x/
/** use_flow: 0-> flow set to zero before used. *x/
[*x *% /
/*x RETURNS: *% /
/*% 0 -> 0K *x/

/3 3k sk sk ok sk sk sk o ok ok sk ok sk 3 o o ok ok sk ok kK K K 3 o o ok ok ok sk ok Kk K ok 3 o ook ok ok ok koK kK k ok ok ok ok ok /
int mf_dinic1(int N, int dim, int *next, int *c,
int *f, int use_flow)

— Block comments: You should divide each subroutine, unless it is very
short, into several logical blocks. A rule of thumb is that no block
should be longer than the number of lines you can display in your
editor window. Within one or two lines you should explain what is
done in the block. Example:

/* go through all nodes except source s and sink t in */
/* reversed topological order and set capacities */

19

for (t2=num_nodes-2; t2>0; t2--)

— Line comments: They are the lowest level comments. Since you are
using (hopefully) sound names for data types, variables and subrou-
tines, many lines should be self explanatory. But in case the meaning
is not obvious, you should add a small comment at the end of a line,
for example:

C(t, SOURCE) = cap_s2t[t]; /* restore capacities */

Aligning all comments to the right makes a code easier to read. Please
avoid unnecessary comments like

counter++; /* increase counter */
or unintelligible comments like

minimize_energy(spin, N, next, 5); /* I try this one */

The line containing C(t, SOURCE) is an example of the application of a macro.
This subject is covered in the following section.

4 Programming Tools

Programming languages and UNIX/Linux offer many concepts and tools which
help you to perform large simulation projects. Here, three of them are presented:
magcros, which are explained first, makefiles and scripts.

4.1 Using Macros

Macros are shortcuts for code sequences in programming languages. Their pri-
mary purpose is to allow computer programs to be written more quickly. But
the main benefit comes from the fact that a more flexible software develop-
ment becomes possible. By using macros appropriately, programs become better
structured, more generally applicable and less error-prone. Here it is explained
how macros are defined and used in C, a detailed introduction can be found in
C textbooks such as Ref. [11]. Other high-level programming languages exhibit
similar features.

In C a macro is constructed via the #define directive. Macros are processed in
the preprocessing stage of the compiler. This directive has the form

#define name definition

Each definition must be on one line, without other definitions or directives. If
the definition extends over more than one line, each line except the last one has
to be ended with the backslash \ symbol. The simplest form of a macro is a
constant, e.g.

#define PI 3.1415926536

20

You can use the same sorts of names for macros as for variables. It is convention
to use only upper-case letters for macros. A macro can be deleted via the #undef
directive.

When scanning the code, the preprocessor just replaces literally every oc-
currence of a macro by its definition. If you have for example the ex-
pression 2.0*PI*omega in your code, the preprocessor will convert it into
2.0%3.1415926536*omega. You can use macros also in the definition of other
macros. But macros are not replaced in strings, i.e. printf ("PI"); will print
PI and not 3.1415926536 when the program is running.

It is possible to test for the (non)existence of macros using the #ifdef and
#ifndef directives. This allows for conditional compiling or for platform-
independent code, such as e.g. in

#ifdef UNIX

#endif

#ifdef MSDOS

#endif

Please note that it is possible to supply definitions of macros to the compiler
via the -D option, e.g. gcc -o program program.c -DUNIX=1. If a macro is
used only for conditional #ifdef/#ifndef statements, an assignment like =1 can
be omitted, i.e. -DUNIX is sufficient.

When programs are divided into several modules, or when library functions are
used, the definition of data types and functions are provided in header files
(-h files). Each header file should be read by the compiler only once. When
projects become more complex, many header files have to be managed, and it

may become difficult to avoid multiple scanning of some header files. This can
be prevented automatically by this simple construction using macros:

/** example .h file: myfile.h #*x/

#ifndef _MYFILE_H_
#define _MYFILE_H_

(rest of .h file)
(may contain other #include directives)

#endif /* _MYFILE_H_ */

After the body of the header file has been read the first time during a compilation
process, the macro _MYFILE_H_ is defined, thus the body will never read be
again.

So far, macros are just constants. You will benefit from their full power when
using macros with arguments. They are given in braces after the name of the
macro, such as e.g. in

21

#define MIN(x,y) ((x)<(y) ? (x):(y))

You do not have to worry more than usual about the names you choose for the
arguments, there cannot be a conflict with other variables of the same name,
because they are replaced by the expression you provide when a macro is used,
e.g. MIN(4x*a, b-32) will be expanded to (4*a)<(b-32) 7 (4*a):(b-32).
The arguments are used in braces () in the macro, because the comparison <
must have the lowest priority, regardless which operators are included in the
expressions that are supplied as actual arguments. Furthermore, you should
take care of unexpected side effects. Macros do not behave like functions. For
example when calling MIN (a++,b++) the variable a or b may be increased twice
when the program is executed. Usually it is better to use inline functions (or
sometimes templates in C++) in such cases. But there are many applications
of macros, which cannot be replaced by incline functions, like in the following
example, which closes this section.

T A

N

Figure 1: A square lattice of size 10 x 10 with periodical boundary conditions.
The arrows indicate the neighbors of the spins.

The example illustrates how a program can be written in a clear way using
macros, making the program less error-prone, and furthermore allowing for a
broad applicability. A system of Ising spins is considered, that is a lattice where
at each site ¢ a particle o; is placed. Each particle can have only two states
o; = £1. It is assumed that all lattice sites are numbered from 1 to N. This is
different from C arrays, which start at index 0, the benefit of starting with index
1 for the sites will become clear below. For the simplest version of the model
only neighbors of spins are interacting. With a two-dimensional square lattice
of size N = L x L a spin 4, which is not at the boundary, interacts with spins
i+ 1 (+z-direction), ¢ — 1 (—z-direction), ¢ + L (+y-direction) and ¢ — L (—y-

22

direction). A spin at the boundary may interact with fewer neighbors when free
boundary conditions are assumed. With periodic boundary conditions (pbc),
all spins have exactly 4 neighbors. In this case, a spin at the boundary interacts
also with the nearest mirror images, i.e. with the sites that are neighbors if you
consider the system repeated in each direction. For a 10 x 10 system spin 5,
which is in the first row, interacts with spins 5+1=6,5—-1=4,5+10=15
and through the pbc with spin 95, see Fig. 1. The spin in the upper left corner,
spin 1, interacts with spins 2,11,10 and 91. In a program pbc can be realized
by performing all calculations modulo L (for the +xz-directions) and modulo L2
(for the +y-directions), respectively.

This way of realizing the neighbor relations in a program has several disadvan-
tages:

e You have to write the code everywhere where the neighbor relation is
needed. This makes the source code larger and less clear.

e When switching to free boundary conditions, you have to include further
code to check whether a spin is at the boundary.

e Your code works only for one lattice type. If you want to extend the
program to lattices of higher dimension you have to rewrite the code or
provide extra tests/calculations.

e Even more complicated would be an extension to different lattice struc-
tures such as triangle or face-center cubic. This would make the program
look even more confusing.

An alternative is to write the program directly in a way it can cope with almost
arbitrary lattice types. This can be achieved by setting up the neighbor relation
in one special initialization subroutine (not discussed here) and storing it in an
array next[]. Then, the code outside the subroutine remains the same for all
lattice types and dimensions. Since the code should work for all possible lattice
dimensions, the array next is one dimensional. It is assumed that each site has
num_n neighbors. Then the neighbors of site i can be stored in next [i*numn],
next[i*num n+1], ..., next[i*num n+num n-1]. Please note that the sites are
numbered beginning with 1. This means, a system with N spins needs an ar-
ray NEXT of size (N+1)*numn. When using free boundary conditions, missing
neighbors can be set to 0. The access to the array can be made easier using a
macro NEXT:

#define NEXT(i,r) next[(i)*num_n + r]

NEXT(i,r) contains the neighbor of spin i in direction r. For e.g. a quadratic
system, r=0 is the +z-direction, r=1 the —z-direction, r=2 the +y-direction and
r=3 the —y-direction. However, which convention you use depends on you, but
you should make sure you are consistent. For the case of a quadratic lattice,
it is num n=4. Please note that whenever the macro NEXT is used, there must
be a variable num_n defined, which stores the number of neighbors. You could

23

include num_n as a third parameter of the macro, but in this case a call of the
macro looks slightly more confusing. Nevertheless, the way you define such a
magcro depends on your personal preferences.

Please note that the NEXT macro cannot be realized by an inline function, in
case you want to set values directly like in NEXT(i,0)=i+1. Also, when using an
inline function, you would have to include all parameters explicitly, i.e. num_n
in the example. The last requirement could be circumvented by using global
variables, but this is bad programming style as well.

When the system is an Ising spin glass, the sign and magnitude of the interaction
may be different for each pair of spins. The interaction strengths can be stored
in a similar way to the neighbor relation, e.g. in an array j[1. The access can
be simplified via the macro J:

#define J(i,r) jl[(i)*num_n + r]

A subroutine for calculating the energy H =) (irj Jijo;0; may look as follows,
please note that the parameter N denotes the number of spins and the values of
the spins are stored in the array sigmal[]:

double spinglass_energy(int N, int num_n, int *next, int *j,
short int *sigma)

{
double energy = 0.0;
int i, r; /* counters
for(i=1; i<=N; i++) /* loop over all lattice sites
for(r=0; r<num_n; r++) /* loop over all neighbors
energy += J(i,r)*sigmali]l*sigma[NEXT(i,r)];
return(energy/2) ; /* each pair has appeared twice in the sum
}

For this piece of code the comments explaining the parameters and the purpose
of the code are just missing for convenience. In the actual program it should be
included.

The code for spinglass_energy() is very short and clear. It works for all
kinds of lattices. Only the subroutine where the array next[] is set up has
to be rewritten when implementing a different type of lattice. This is true for
all kinds of code realizing e.g. a Monte Carlo scheme or the calculation of a
physical quantity. For free boundary conditions, additionally sigma[0]=0 must
be assigned to be consistent with the convention that missing neighbors have
the id 0. This is the reason, why the spin site numbering starts with index 1
while C arrays start with index 0.

4.2 Make Files

If your software project grows larger, it will consist of several source-code files.
Usually, there are many dependencies between the different files, e.g. a data

24

*/

*/
*/

*/

type defined in one header file can be used in several modules. Consequently,
when changing one of your source files, it may be necessary to recompile several
parts of the program. In case you do not want to recompile your files every time
by hand, you can transfer this task to the make tool which can be found on
UNIX operating systems. A complete description of the abilities of make can be
found in Ref. [12]. You should look on the man page (type man make) or in the
texinfo file [13] as well. For other operating systems or software development
environments, similar tools exists. Please consult the manuals in case you are
not working with a UNIX type of operating system.

The basic idea of make is that you keep a file which contains all dependencies
between your source code files. Furthermore, it contains commands (e.g. the
compiler command) which generate the resulting files called targets, i.e. the final
program and/or object (.o) files. Each pair of dependencies and commands is
called rule. The file containing all rules of a project is called makefile, usually
it is named Makefile and should be placed in the directory where the source
files are stored.

A rule can be coded by two lines of the form

target : sources

<tab> command(s)

The first line contains the dependencies, the second one the commands. The
command line must begin with a tabulator symbol <tab>. It is allowed to have
several targets depending on the same sources. You can extend the lines with
the backslash “\” at the end of each line. The command line is allowed to be
left empty. An example of a dependency/command pair is

simulation.o: simulation.c simulation.h
<tab> cc —-c simulation.c

This means that the file simulation.ohas to be compiled if either simulation.c
or simulation.h have been changed. The make program is called by typing
make on the command line of a UNIX shell. It uses the date of the last changes,
which is stored along with each file, to determine whether a rebuild of some
targets is necessary. Each time at least one of the source files are newer than
the corresponding target files, the commands given after the <tab> are called.
Specifically, the command is called, if the target file does not exist at all. In
this special case, no source files have to be given after the colon in the first line
of the rule.

It is also possible to generate meta rules, which e.g. tell how to treat all files
which have a specific suffix. Standard rules, how to treat files ending for example
with .c are already included, but can be changed for each file by stating a
different rule. This subject is covered in the man page of make.

The make tool always tries to build only the first object of your makefile, unless
enforced by the dependencies. Hence, if you have to build several independent
object files objectl, object2, object3, the whole compiling must be toggled
by the first rule, thus your makefile should read like this

25

all: objectl object2 object3

objectl: <sources of objectl>

<tab> <command to generate objectl>
object2:

<tab> <command to generate object2>
object3 ...

<tab> <command to generate object3>

It is not necessary to separate different rules by blank lines. Here it is just
for better readability. If you want to rebuild just e.g. object3, you can call
make object3. This allows several independent targets to be combined into
one makefile. When compiling programs via make, it is common to include
the target “clean” in the makefile such that all objects files are removed when
make clean is called. Thus, the next call of make (without further arguments)
compiles the whole program again from scratch. The rule for ‘clean‘ reads like

clean:
<tab> rm -f *.0

Also iterated dependencies are allowed, for example

objectl: object2

object2: object3
<tab> ...

object3:
<tab> ...

The order of the rules is not important, except that maeke always starts with
the first target. Please note that the make tool is not just intended to manage
the software development process and toggle compile commands. Any project
where some output files depend on some input files in an arbitrary way can
be controlled. For example you could control the setting of a book, where you
have text-files, figures, a bibliography and an index as input files. The different
chapters and finally the whole book are the target files.

Furthermore, it is possible to define variables, sometimes also called macros.
They have the format

variable=definition

Also variables belonging to your environment like $HOME can be referenced in
the makefile. The value of a variable can be used, similar to shells variables, by
placing a $ sign in front of the name of the variable, but you have to embrace

26

the name by (...) or {...}. There are some special variables, e.g. $@ holds
the name of the target in each corresponding command line, here no braces are
necessary. The variable CC is predefined to hold the compiling command, you
can change it by including for example

CC=gcc

in the makefile. In the command part of a rule the compiler is called via $(CC).
Thus, you can change your compiler for the whole project very quickly by al-
tering just one line of the makefile.

Finally, it will be shown what a typical makefile for a small software project
might look like. The resulting program is called simulation. There are two
additional modules init.c, run.c and the corresponding header .h files. In
datatypes.h types are defined which are used in all modules. Additionally, an
external precompiled object file analysis.o in the directory $HOME/1ib is to be
linked, the corresponding header file is assumed to be stored in $HOME/include.
For init.o and run.o no commands are given. In this case make applies the
predefined standard command for files having .o as suffix, which reads like

<tab> $(CC) $(CFLAGS) -c $@

where the variable CFLAGS may contain options passed to the compiler and is
initially empty. The makefile looks like this, please note that lines beginning
with “#” are comments.

#

sample make file

#

OBJECTS=simulation.o init.o rumn.o
OBJECTSEXT=$ (HOME) /1ib/analysis.o
CC=gcc

CFLAGS=-g -Wall -I$(HOME)/include
LIBS=-1m

simulation: $(0BJECTS) $(OBJECTSEXT)
<tab> $(CC) $(CFLAGS) -o $@ $(0BJECTS) $(0BJECTSEXT) $(LIBS)

$(0BJECTS) : datatypes.h

clean:
<tab> rm -f *.0

The first three lines are comments, then five variables 0BJECTS, 0BJECTSEXT,
CC, CFLAGS and LIBS are assigned. The final part of the makefile are the rules.
Please note that sometimes bugs are introduced, if the makefile is incomplete.
For example consider a header file which is included in several code files, but
this is not mentioned in the makefile. Then, if you change e.g. a data type in the

27

header file, some of the code files might not be compiled again, especially those
you did not change. Thus the same objects files can be treated with different
formats in your program, yielding bugs which seem hard to explain. Hence,
in case you encounter mysterious bugs, a make clean might help. But most
of the time, bugs which are hard to explain are due to errors in your memory
management. How to track down those bugs is explained in Sec. 7.

The make tool exhibits many other features. For additional details, please con-
sult the references given above.

4.3 Scripts

Scripts are even more general tools than make files. They are in fact small
programs, but they are usually not compiled, i.e. they are quickly written but
they run slowly. Scripts can be used to perform many administration tasks like
backing up data, installing software or running simulation programs for many
different parameters. Here only an example concerning the last task is presented.
For a general introduction to scripts, please refer to a book on UNIX/Linux.
Assume that you have a simulation program called coversim21 which calculates
vertex covers of graphs. In case you do not know what a vertex cover is, it does
not matter, just regard it as one optimization problem characterized by some
parameters. You want to run the program for a fixed graph size L, for a fixed
concentration c of the edges, average over num realizations and write the results
to a file, which contains a string appendix in its name to distinguish it from
other output files. Furthermore, you want to iterate over different relative sizes
x. Then you can use the following script run.scr:

#!/bin/bash
L=$1
c=$2
num=$3
appendix=$4
shift
shift
shift
shift
for x
do
${HOME}/cover/coversim21 -mag $L $c $x $num > \
mag_${c}_${x}${appendix}.out

done

The first line starting with “#” is a comment line, but it has a special meaning.
It tells the operating system the language in which the script is written. In this
case it is for the bash shell, the absolute pathname of the shell is given. Each
UNIX shell has its own script language, you can use all commands which are
allowed in the shell. There are also more elaborate script languages like perl or
phyton, but they are not covered here.

28

Scripts can have command line arguments, which are referred via $1, $2, $2
etc., the name of the script itself is stored in $0. Thus, in the lines 2 to 5, four
variables are assigned. In general, you can use the arguments everywhere in the
script directly, i.e. it is not necessary to store them in other variables. It is done
here because in the next four lines the arguments $1 to $4 are thrown away by
four shift commands. Then, the argument which was on position five at the
beginning is stored in the first argument. Argument zero, containing the script
name, is not affected by the shift.

Next, the script enters a loop, given by “for x; do ... done”. This con-
struction means that iteratively all remaining arguments are assigned to the
variable “x” and each time the body of the loop is executed. In this case, the
simulation is started with some parameters and the output directed to a file.
Please note that you can state the loop parameters explicitly like in “for size
in 10 20 40 80 160; do ... domne”.

The above script can be called for example by

run.scr 100 0.5 1000 testA 0.20 0.22 0.24 0.26 0.28 0.30

which means that the graph size is 100, the fraction of edges is 0.5, the number
of realizations per run is 100, the string testA appears in the output file name
and the simulation is performed for the relative sizes 0.20, 0.22, 0.24, 0.26, 0.28,
0.30.

5 Libraries

Libraries are collections of subroutines and data types, which can be used in
other programs. There are libraries for numerical methods such as integration
or solving differential equations, for storing, sorting and accessing data, for
fancy data types like lists or trees, for generating colorful graphics and for
thousands of other applications. Some can be obtained for free, while other,
usually specialized libraries have to be purchased. The use of libraries speeds
up the software development process enormously, because you do not have to
implement every standard method by yourself. Hence, you should always check
whether someone has done the jobs for you already, before starting to write a
program. Here, two standard libraries are briefly presented, providing routines
which are needed for most computer simulations.

Nevertheless, sometimes it is inevitable to implement some methods by yourself.
In this case, after the code has been proven to be reliable and useful for some
time, you can put it in a self-created library. How to create libraries is explained
in the last part of this section.

5.1 Numerical Recipes

The Numerical Recipes (NR) [3] contain a huge number of subroutines to solve
standard numerical problems. Among them are:

29

e solving linear equations

e performing interpolations

e evaluation and integration of functions
¢ solving nonlinear equations

e minimizing functions

o diagonalization of matrices

e Fourier transform

e solving ordinary and partial differential equations.

The algorithms included are all state of the art. There are several libraries ded-
icated to similar problems, e.g. the library of the Numerical Algorithms Group
[14] or the subroutines which are included with the Maple software package [15].
To give you an impression how the subroutines can be used, just a short example
is presented. Consider the case that a symmetrical matrix is given and that all
eigenvalues are to be determined. For more information on the library the
reader should consult Ref. [3]. There it is not only shown how the library can

be applied, but also all algorithms are explained.
The program to calculate the eigenvalues reads as follows.

#include <stdio.h>
#include <stdlib.h>
#include "nrutil.h"
#include "nr.h"

int main(int argc, char *argv[])

{
float *xm, *d, x*e; /* matrix, two vectors
long n = 10; /* size of matrix
int i, j; /* loop counter
m = matrix(1, n, 1, n); /* allocate matrix
for(i=1; i<=n; i++) /* initialize matrix randomly
for(j=i; j<=n; j++)
{
m[i] [j] = drand48(Q);
m[j]1[i] = m[i1[j]; /* matrix must be symmetric here
}
d = vector(1l,n); /* contains diagonal elements
e = vector(1l,n); /* contains off diagonal elements
tred2(m, n, d, e); /* convert symmetric m. -> tridiagonal
tqli(d, e, n, m); /* calculate eigenvalues

30

*/
*/
*/

*/
*/

*/

*/
*/
*/
*/

for(j=1; j<=n; j++) /* print result stored now in array ’d’*/
printf("ev %d = %f\n", j, d[j1);

free_vector(e, 1, n); /* give memory back */
free_vector(d, 1, n);

free_matrix(m, 1, n, 1, n);

return(0) ;

}

In the first part of the program, an n X n matrix is allocated via the subroutine
matrix () which is provided by Numerical Recipes. It is standard to let a vector
start with index 1, while in C usually a vector starts with index 0.

In the second part a matrix is initialized randomly. Since the following subrou-
tines work only for symmetric real matrices, the matrix is initialized symmet-
rically. The Numerical Recipes also provide methods to diagonalize arbitrary
matrices, for simplicity this special case is chosen here .

In the third part the main work is done by the Numerical Recipes subrou-
tines tred2() and tqli(). First, the matrix is written in tridiagonal form by
a Householder transformation (tred2()) and then the actual eigenvalues are
calculated by calling tqli(d, e, n, m). The eigenvalues are returned in the
vector d[] and the eigenvectors in the matrix m[] [] (not used here), which is
overwritten. Finally the memory allocated for the matrix and the vectors is
freed again.

This small example should be sufficient to show how simply the subroutines
from the Numerical Recipes can be incorporated into a program. When you
have a problem of this kind you should always consult the NR library first,
before starting to write code by yourself.

5.2 LEDA

While the Numerical Recipes are dedicated to numerical problems, the Library
of Efficient Data types and Algorithms (LEDA) [4] can help a great deal in
writing efficient programs in general. It is written in C++, but it can be used
by C style programmers as well via mixing C++ calls to LEDA subroutines
within C code. LEDA contains many basic and advanced data types such as:

e strings

e numbers of arbitrary precision

e one- and two-dimensional arrays

e lists and similar objects like stacks or queues
e sets

e trees

e graphs (directed and undirected, also labeled)

31

e dictionaries, there you can store objects with arbitrary key words as indices

e data types for two and three dimensional geometries, like points, segments
or spheres

For most data types, it is possible to create arbitrary complex structures by using
templates. For example you can make lists of self defined structures or stacks of
trees. The most efficient implementations known in literature so far are taken for
all data structures. Usually, you can choose between different implementations,
to match special requirements. For every data type, all necessary operations
are included; e.g. for lists: creating, appending, splitting, printing and deleting
lists as well as inserting, searching, sorting and deleting elements in a list, also
iterating over all elements of a list. The major part of the library is dedicated to
graphs and related algorithms. You will find for example subroutines to calculate
strongly connected components, shortest paths, maximum flows, minimum cost
flows and (minimum) matchings.

Here again, just a short example is given to illustrate how the library can be
utilized and to show how easy LEDA can be used. A list of a self defined
class Mydatatype is considered. Each element contains the data entries info
and flag. In the first part of the program below, the class Mydatatype is
partly defined. Please note that input and output stream operators <</>> must
be provided to be able to create a list of Mydatatype elements, otherwise the
program will not compile. In the main part of the program a list is defined via
the LEDA data type 1ist. Elements are inserted into the list with append().
Finally an iteration over all list elements is performed using the LEDA macro
forall. The program leda_test.cc reads as follows:

#include <iostream.h>
#include <LEDA/list.h>

class Mydatatype // self defined example class

{

public:
int info; // user data 1
short int flag; // user data 2
Mydatatype() {info=0; flag=0;}; // constructor
“Mydatatype() {}; // destructor

friend ostream& operator<<(ostream& 0, const Mydatatype& dt)
{ D0 << "info: " << dt.info << " flag: " << dt.flag << "\n";

return(0) ;}; // output operator
friend istream& operator>>(istream &I, Mydatatype& dt)
{return(I);}; // dummy

32

int main(int argc, char *argv[])

{
list<Mydatatype> 1; // list with elements of ’Mydatatype’
Mydatatype element;
int t;

for (t=0; t<10; t++) // create list
{
element.info = t;
element.flag = t%2;
1.append(element) ;
}
forall(element, 1) // iterate over all elements
if (element.flag) // print only ’even’ elements
cout << element;
return(0) ;

}

The program has to be compiled with a C++ compiler. Depending on your
system, you have to specify some compiler flags to include LEDA, please con-
sult your systems documentation or the system administrator. The compile
command may look like this:

g++ -I$LEDAROOT/incl -L$LEDAROOT -o leda_test leda_test.cc -1G -1L

The -1 flag specifies where the compiler searches for header files like LEDA/1ist . h,
the -L flag tells where the libraries (-1G -1L) are located. The environment
variable LEDAROOT must point to the directory where LEDA is stored in your
system.

Please note that using Numerical Recipes and LEDA together results in conflicts,
since the objects vector and matrix are defined in both libraries. You can
circumvent this problem by taking the source code of Numerical Recipes (here:
nrutil.c, nrutil.h) and rename the subroutines matrix() and vector(),
compile again and include nrutil.o directly in your program.

Here, it should be stressed: Before trying to write everything by yourself, you
should check whether someone else has done it for you already. LEDA is a
highly effective and very convenient tool. It will save you a lot of time and
effort when you use it for your program development.

5.3 Creating your own Libraries

Although many useful libraries are available, sometimes you have to write some
code by yourself. Over the years you will collect many subroutines, which —
if properly designed — can be included in other programs, in which case it is
convenient to put these subroutines in a library. Then you do not have to include
the object file every time you compile one of your programs. If your self-created

33

library is put in a standard search path, you can access it like a system library,
you even do not have to remember where the object file is stored.

To create a library you must have an object file, e.g. tasks.o, and a header file
tasks.h where all data types and function prototypes are defined. Furthermore,
to facilitate the use of the library, you should write a man page, which is not
necessary for technical reasons but results in a more convenient usage of your
library, particularly should other people want to benefit from it. To learn how
to write a man page you should consult man man and have a look at the source
code of some man pages, they are stored e.g. in /usr/man.

A library is created with the UNIX command ar. To include tasks.o in your
library 1ibmy.a you have to enter

ar r libmy.a tasks.o

In a library several object files may be collected. The option “r” replaces the

given object files, if they already belong to the library, otherwise they are added.
If the library does not exist yet it is created. For more options, please refer to
the man page of ar.

After including an object file, you have to update an internal object table of the
library. This is done by

ar s libmy.a
Now you can compile a program prog.c using your library via
cc -o prog prog.c libmy.a

In case 1ibmy.a contains several object files, it saves some typing by just writing
libmy.a, furthermore you do not have to remember the names of all your object
files.

To make the handling of the library more comfortable, you can create a directory,
e.g. ~/1ib and put your libraries there. Additionally, you should create the
directory ~/include where all personal header files can be collected. Then
your compile command may look like this:

cc -o prog prog.c -I$HOME/include -L$HOME/1lib -1lmy

The option -I states the search path for additional header files, the -L option
tells the linker where your libraries are stored and via -1my the library 1ibmy.a
is actually included. Please note that the prefix 1ib and the postfix .a are
omitted with the -1 option. Finally, it should be pointed out, that the compiler
command given above works in all directories, once you have set up the structure

as explained. Hence, you do not have to remember directories or names of object
files.

6 Random Numbers

For many simulations in physics, random numbers are necessary. Quite often
the model itself exhibits random parameters which remain fixed throughout

34

the simulation, one speaks of quenched disorder. A famous example are spin
glasses. In this case one has to perform an average over different realizations of
the disorder, to obtain physical quantities.

But even when the system which is treated is not random, very often random
numbers are required by the algorithms, e.g. to realize a finite-temperature en-
semble or when using randomized algorithms. In this section an introduction to
the generation of random numbers is given. First it is explained how they can
be generated at all on a computer. Then, different methods for obtaining num-
bers are explained, which obey a given distribution: the inversion method, the
Boz-Miiller method and the rejection method. More comprehensive information
about these and similar techniques can be found in Refs. [3, 16].

In this section it is assumed that you are familiar with the basic concepts of
probability theory and statistics.

6.1 Generating Random Numbers

First, it should be pointed out that standard computers are deterministic ma-
chines. Thus, it is completely impossible to generate true random numbers, at
least not without the help of the user. It is for example possible to measure
the time interval between successive keystrokes, which is randomly distributed
by nature. But they depend heavily on the current user and it is not possible
to reproduce an experiment in exactly the same way. This is the reason why
pseudo random numbers are usually taken. They are generated by deterministic
rules, but they look like and have many of the properties of true random num-
bers. One would like to have a random number generator rand (), such that
each possible number has the same probability of occurrence. Each time rand ()
is called, a new random number is returned. Additionally, if two numbers r;, ry,
differ only slightly, the random numbers ;41,71 returned by the respective
subsequent calls should have a low correlation.

The simplest methods to generate pseudo random numbers are linear congruen-
tial generators. They generate a sequence Iy, I, . .. of integer numbers between
0 and m — 1 by a recursive recipe:

Int1 = (al, + ¢)modm (1)

To generate random numbers r distributed in the interval [0, 1) one has to divide
the current random number by m. It is desirable to obtain equally distributed
values in the interval, i.e. a uniform distribution. Below, you will see, how
random numbers obeying other distributions can be generated from uniformly
distributed numbers.

The real art is to choose the parameters a,c,m in a way that “good” random
numbers are obtained, where “good” means “with less correlations”. In the past
several results from simulations have been turned out to be wrong, because of
the application of bad random number generators [17].

35

Example: Bad and good generators

To see what “bad generator” means, consider as an example the
parameters a = 12351,¢ = 1,m = 2!% and the seed value I, =
1000. 10000 random numbers are generated, by dividing each of
them by m, they are distributed in the interval [0,1). In Fig. 6.1 the
distribution of the random numbers is shown.

2 T T T T

18 a
16 a
14 - a
12 a

1 A

p(x)

0.8 .
0.6 .
04 - .
0.2 + .

O Il Il Il Il

Figure 2: Distribution of random numbers in the interval [0, 1).
They are generated using a linear congruential generator with the
parameters a = 12351,¢ = 1,m = 215,

The distribution looks rather flat, but by taking a closer look
some regularities can be observed. These regularities can be
studied by recording k-tuples of k successive random numbers
(TisTit1,-- - Tivk—1). A good random number generator, exhibit-
ing no correlations, would fill up the k-dimensional space uniformly.
Unfortunately, for linear congruential generators, instead the points
lie on (k — 1)-dimensional planes. It can be shown that there are
at most of the order m'/* such planes. A bad generator has much
fever planes. This is the case for the example studied above, see top
part of Fig. 6.1

The result for a = 123450 is even worse, only 15 different “random”
numbers are generated (with seed 1000), then the iteration reaches
a fixed point (not shown in a figure).

If instead a = 12349 is chosen, the two-point correlations look like
that shown in the bottom half of Fig. 6.1. Obviously, the behavior is

36

Xi+1(xi)

Xi+l(xi)

<
N

A
8 2
'..‘f‘.m.-..&
RE
Ayt 398
g

8.

PR A,

S
X

A

Figure 3: Two point correlations z;y1(x;) between successive ran-

dom numbers z;,z; 1. The top case is generated using a linear con-
gruential generator with the parameters a = 12351,¢ = 1,m = 2'%,
the bottom case has instead a = 12349.

much more irregular, but poor correlations may become visible for
higher k-tuples. m|

37

A generator which has passed several theoretical test is a = 7° = 16807, m =
231 — 1, ¢ = 0. When implementing this generator you have to be careful,
because during the calculation numbers are generated which do not fit into 32
bit. A clever implementation is presented in Ref. [3]. Finally, it should be
stressed that this generator, like all linear congruential generators, has the low-
order bits much less random than the high-order bits. For that reason, when
you want to generate integer numbers in an interval [1,N], you should use

r = 1+(int) (N*(I_n)/m);

instead of using the modulo operation as with r=1+(In % N);.

So far it has been shown how random numbers can be generated which are dis-
tributed uniformly in the interval [0,1). In general, one is interested in obtaining
random numbers which are distributed according to a given probability distri-
bution with density p(z). In the next sections, several techniques performing
this task for continuous probability distributions are presented.

In case of discrete distributions, one has to create a table of the possible out-
comes with their probabilities p;. To draw a number, one has to draw a random
number v which is uniformly distributed in [0,1) and take the entry j of the
table such that the sum > 7_, p; of the preceding probabilities is larger than u,
but 24:—11 pi < u. In the following, we concentrate on techniques for generating
continuous random variables.

6.2 Inversion Method

Given is a random number generator drand() which is assumed to generate
random numbers U which are distributed uniformly in [0,1). The aim is to
generate random numbers Z with probability density p(z). The corresponding
distribution function is

P(z) =Prob(Z < z) = /j dz'p(z") (2)

The target is to find a function g(X), such that after the transformation Z =
g(U), the values of Z are distributed according to (2). It is assumed that g can
be inverted and is strongly monotonically increasing, then one obtains

P(z) = Prob(Z < z) = Prob(g(U) < z) = Prob(U < g7 %(2)) 3)

Since the distribution function F'(u) = Prob(U < u) for a uniformly distributed
variable is just F'(u) = u (u € [0,1]), one obtains P(z) = g~*(z). Thus, one just
has to choose g(z) = P~1(z) for the transformation function, in order to obtain
random numbers, which are distributed according the probability distribution
P(z). Of course, this only works if P can be inverted.

38

Example: Exponential distribution

Let us consider the exponential distribution with parameter A, with
probability density
p(z) = Aexp(—Az) (4)

and distribution function P(z) = 1 — exp(—Az). Therefore, one can
obtain exponentially distributed random numbers Z, by generating

uniform distributed random numbers U and choosing Z = —In(1 —
U)/ A
100 T T T T
10" F 1
107 :
S
o o
10° b % 1
[eNe) el
° [e]
10° F > 4
O 00
Il Il Il Il
0 2 4 6 8 10
z

Figure 4: Histogram of random numbers generated according to
an exponential distribution (A = 1) compared with the probability
density (straight line) in a logarithmic plot.

In Fig. 6.2 a histogram for 10° random numbers generated in this way
and the exponential probability function for A = 1 are shown with a
logarithmically scaled y-axis. Only for larger values are deviations
visible. They are due to statistical fluctuations since p(z) is very
small there.

For completeness, this example is finished by mentioning that by
summing n independent exponentially distributed random numbers,
the result is gamma distributed [16]. O

39

6.3 Rejection Method

As mentioned above, the inversion method works only when the distribution
function P can be inverted. For distributions not fulfilling this condition, some-
times this problem can be overcome by drawing several random numbers and
combining them in a clever way, see e.g. the next subsection.

0.2 - — —
. T IR T R T T+ 1 o
* + et e + + +
+ + + . .
+ + 4 o
+ # + + o+ + &
PR +4 *4 + * -+ LA
o + PE N
.o P .t
A +y PR + A
F+ + + b +
+ oo . ot ey + A
+ + + +
+ PN +4 .+
+ + o s +
.o 1% + &
R + oo Y
0.2 et Tty
. . .t M 4 +4e A
+ e + s o . ot
R Lo Wt EN P
P +
T e e e WY + + aoFal e s
e e . A A
+ + + +
o + + 4
F23 + s + * +
+ G +
S, . R £y AR
. + N . .
b AR + 4 +t,
~~ g LAV Y + + o +
N et + + oot MES +
- + + % -
N o1 T o P
o # s b + . O
% + 4 ohs + . +
+ e + + .
sy + + + .
s+ et e et e ety
E %1 .+
T p ot
: + o+ 4 + St 4y
s FR + PR RagY
+ PO R M .
A
. + e,
+
+
ta L+
R
0.1 v
. S
+ ot
+
*oe
+
e
o,
4 0t +
t
+
0.0 *

Figure 5: The rejection method: points (z,y) are scattered uniformly over a
bounded rectangle. The probability that y < p(z) is proportional to p(z).

The rejection method, which is presented in this section, works for random vari-
ables where the probability distribution p(z) fits into a box [2g,Z1) X [0, Zmax),
ie. p(z) = 0 for z & [x9,21] and p(2) < Zmax- The basic idea of generating a
random number distributed according to p(z) is to generate random pairs (z,y),
which are distributed uniformly in [zg, 1] X [0, Zmax] and accept only those val-
ues ¢ where y < p(z) holds, i.e. the pairs which are located below p(z), see Fig.
5. Therefore, the probability that z is drawn is proportional to p(x), as desired.
The algorithm for the rejection method is:

40

algorithm rejection_method(2max, p)
begin
found := false;
while not found do
begin
w; := random number in [0, 1);
x =20 + (X1 — To) X U;
ug := random number in [0, 1);
Y 1= Zmax X U2;
if y < p(z) then
found := true;
end;
return(x);
end

The rejection method always works if the probability density is boxed, but it
has the drawback that more random numbers have to be generated than can be
used.

In case neither the distribution function can be inverted nor the probability fits
into a box, special methods have to be applied. As an example a method for
generating random numbers distributed according to a Gaussian distribution is
considered. Other methods and examples of how different techniques can be
combined, are collected in Ref. [16].

6.4 The Gaussian Distribution

The probability density for the Gaussian distribution with mean m and width
o is (see also Fig. 6)

o) ®)

(2) = —
)= ex
PG mo P 252

It is, apart from uniform distributions, the most common distribution being
applied in simulations.

Here, the case of a normal distribution (m = 0, ¢ = 1) is considered. If
you want to realize the general case, you have to draw a normally distributed
number z and then use oz + m which is distributed as desired.

Since the normal distribution extends over an infinite interval and cannot be
inverted, the methods from above are not applicable. The simplest technique to
generate random numbers distributed according to a normal distribution makes
use of the central limit theorem. It tells us that any sum of N independently
distributed random variables u; (with mean m and variance v) will converge
to a Gaussian distribution with mean Nm and variance Nv. If again w; is
taken take to be uniformly distributed in [0,1) (which has mean m = 0.5 and
variance v = 1/12), one can choose N = 12 and Z = Y .°, u; — 6 will be
distributed approximately normally. The drawback of this method is that 12

41

05 T T T

ps(X)

0.2 -

0.1 -

Figure 6: Gaussian distribution with zero mean and unit width. The circles
represent a histogram obtained from 10* values drawn with the Box-Miiller
method.

random numbers are needed to generate one final random number and that
values larger than 6 never appear.

In contrast to this technique the Box-Miiller method is exact. You need two uni-
formly in [0, 1) distributed random variables Uy, Us to generate two independent
normal variables N1, Na. This can be achieved by setting

N, = /—2log(1 —u1) cos(2muz)
Ny = /—2log(l — uq)sin(2muz)

A proof that N; and N, are indeed distributed according to (5) can be found
in Refs. [3, 16], where also other methods for generating Gaussian random
numbers, some even more efficient, are explained. A method which is based on
the simulation of particles in a box is explained in Ref. [18]. In Fig. 6 a histogram
of 10* random numbers drawn with the Box-Miiller method is shown.

7 Tools for Testing

In Sec. 1 the importance of thorough testing has already been stressed. Here
three useful tools are presented which significantly assist in facilitating the de-
bugging process. Please note again that the tools run under UNIX/Linux op-
erating systems. Similar programs are available for other operating systems as
well. The tools covered here are gdb, a source-code debugger, ddd, a graphic

42

front-end to gdb, and checkergce, which finds bugs resulting from bad memory
management.

7.1 gdb

The gdb gnu debugger tool is a source code debugger. Its main purpose is
that you can watch the execution of your code. You can stop the program
at arbitrarily chosen points by setting breakpoints at lines or subroutines in the
source code, inspect variables/data structures, change them and let the program
continue (e.g. line by line). Here some examples for the most basic operations
are given, detailed instructions can be obtained within the program via the help
command.

As an example of how to debug, please consider the following little program
gdbtest.c:

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])

{
int t, *array, sum = O;
array = (int *) malloc (100*sizeof (int));
for (t=0; t<100; t++)
array[t] = t;
for (t=0; t<100; t++)
sum += arrayl[t];
printf ("sum= %d\n", sum);
free(array) ;
return(0) ;
}

When compiling the code you have to include the option -g to allow debugging:
cc -o gdbtest -g gdbtest.c

The debugger is invoked using gdb <programname>, i.e.

gdb gdbtest

Now you can enter commands, e.g. list the source code of the program via the
list command, it is sufficient to enter just 1. By default always ten lines at
the current position are printed. Therefore, at the beginning the first ten lines
are shown (the first line shows the input, the other lines state the answer of the
debugger)

43

(gdb) 1

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 int main(int argc, char *argv[])

5 {

6 int t, *array, sum = O;

7

8 array = (int *) malloc (100*sizeof (int));
9 for(t=0; t<100; t++)

10 array[t] = t;

When entering the command again the next ten lines are listed. Furthermore,
you can refer to program lines of the code in the form list <from>, <to> or
to subroutines by typing list <name of subroutine>. More information can
be obtained by typing help list.

To let the execution stop at a specific line one can use the break command
(abbreviation b). To stop the program before line 11 is executed, one enters

(gdb) b 11
Breakpoint 1 at 0x80484b0: file gdbtest.c, line 11.

Breakpoints can be removed via the delete command. All current breakpoints
are displayed by entering info break.

To start the execution of the program, one enters run or just r. As requested
before, the program will stop at line 11:

(gdb) r
Starting program: gdbtest

Breakpoint 1, main (argc=1, argv=0xbffff384) at gdbtest.c:11
11 for(t=0; t<100; t++)

Now you can inspect for example the content of variables via the print com-
mand:

(gdb) p array

$1 = (int *) 0x8049680
(gdb) p array[99]

$2 = 99

To display the content of a variable permanently, the display command is
available. You can change the content of variables via the set command

(gdb) set array[99]1=98

You can continue the program at each stage by typing next, then just the next
source-code line is executed:

44

(gdb) n

12 sum += array[t];

Subroutines are regarded as one source-code line as well. If you want to de-
bug the subroutine in a step-wise manner as well you have to enter the step
command. By entering continue, the execution is continued until the next
breakpoint, a severe error, or the end of the program is reached, please note the
the output of the program appears in the gdb window as well:

(gdb) c
Continuing.
sum= 4949

Program exited normally.

As you can see, the final value (4949) the program prints is affected by the
change of the variable array[99].

The above given commands are sufficient for most of the standard debugging
tasks. For more specialized cases gdb offers many other commands, please have
a look at the documentation [5].

7.2 ddd

Some users may find graphical user interfaces more convenient. For this reason
there exists a graphical front-end to the gdb, the data display debugger (ddd).
On UNIX operating systems it is just invoked by typing ddd (see also man page
for options). Then a nice windows pops up, see Fig. 7. The lower part of the
window is an ordinary gdb interface, several other windows are available. By
typing file <program> you can load a program into the debugger. Then the
source code is shown in the main window of the debugger. All gdb commands
are available, the most important ones can be entered via menus or buttons
using the mouse. For example to set a breakpoint it is sufficient to place the
cursor in a source-code line in the main ddd window and click on the break
button. A good feature is that the content of a variable is shown when moving
the mouse onto it. For more details, please consult the online help of ddd.

7.3 checkergcc

Most program bugs are revealed by systematically running the program and
cross-checking with the expected results. But other errors seem to appear in a
rather irregular and unpredictable fashion. Sometimes a program runs without a
problem, in other cases it crashes with a Segmentation fault at rather puzzling
locations in the code. Very often a bad memory management is the cause of such
a behavior. Writing beyond the boundaries of an array, reading uninitialized
memory locations or addressing data which has been freed already are the most
common bugs of this class. Since the operating system organizes the memory in
a different way each time a program is run, it is rather unpredictable whether

45

-8l DDD: ‘home/hartmann/texte/seminar/qdbtest.c SE

File Edit View Program Commands Status Source Data

(J:|gdbtest.c:16§ 0 W8 W

Lookup Findw BremK WBTCH PN DR

#Finclude <stdio.h>
#Finclude <stdlib.h>

int main(int arge, char *argv[])
int t, *array, sum = O;

array = (int *) mallec (100%sizeof(intly;
for(t=0; t<100; t++)

array[t] = T;
for(t=0; t<100; t++)

sum += array[t];
printf("sum= %d\n", sumd; Run
fres(array);
return(0];

A
o
s
©
X

ki
COD 3.1.4 (i588—pc-linux—gnu), by Dorothea Latkehaus and Andreas Zeller.
Copyright @ 1999 Technische Universitat Braunschweig, Germany.
(gdn) file gdbtest
Reading symbols from gdbtest...done.
(gdb) | E
A Setting buttons...done. J|:

Figure 7: The data display debugger (ddd). In the main window the source
code is shown. Commands can be invoked via a mouse or by entering them into
the lower part of the window.

these errors become apparent or not. Furthermore it is very hard to track them
down, because the effect of such errors most of the time becomes visible at
positions different from where the error has occurred.

As an example, the case where it is written beyond the boundary of an array
is considered. If in the heap, where all dynamically allocated memory is taken
from, at the location behind the array another variable is stored, it will be
overwritten in this case. Hence, the error becomes visible the next time the other
variable is read. On the other hand, if the memory block behind the array is
not used, the program may run that time without any problems. Unfortunately,
the programmer is not able to influence the memory management directly.

To detect such types of nasty bugs, one can take advantage of several tools. A
list of free and commercial tools can be found in Ref. [19]. Here checkergcc is
considered, which is a very convenient tool and freely available. It works under

46

UNIX and is included by compiling everything with checkergcc instead of cc
or gcc. Unfortunately, the current version does not have full support for C++,
but you should try it on your own project. The checkergcc compiler replaces all
memory allocations/deallocations and accesses by its own routines. Any access
to non-authorized memory locations is reported, regardless of the positions of
other variables in the memory area (heap).

As an example, the program from Sec. 7.1 is considered, which is slightly mod-
ified; the memory block allocated for the array is now slightly too short (length
99 instead of 100):

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv([])

{
int t, *array, sum = O;
array = (int *) malloc (99*sizeof(int));
for(t=0; t<100; t++)
array[t] = t;
for(t=0; t<100; t++)
sum += array[t];
printf ("sum= %d\n", sum);
free(array) ;
return(0);
}

The program is compiled via
checkergcc -o gdbtest -g gdbtest.c

Starting the program produces the following output, the program terminates
normally:

Sisko:seminar>gdbtest

Checker 0.9.9.1 (i686-pc-linux-gnu) Copyright (C) 1998 Tristan Gingold.
This program has been compiled with ’checkergcc’ or ’checkerg++’.
Checker is a memory access detector.

Checker is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

For more information, set CHECKEROPTS to ’--help’

From Checker (pid:30448): ‘gdbtest’ is running

From Checker (pid:30448): (bvh) block bounds violation in the heap.

When Writing 4 byte(s) at address 0x0805fadc, inside the heap (sbrk).
0 byte(s) after a block (start: 0x805f950, length: 396, mdesc: 0x0).

47

The block was allocated from:
pc=0x080554f9 in chkr_malloc at stubs-malloc.c:57
pc=0x08048863 in main at gdbtest.c:8
pc=0x080555a7 in this_main at stubs-main.c:13
pc=0x40031c7e in __divdi3 at stubs/end-stubs.c:7
pc=0x08048668 in *unknown* at *unknown*:0
Stack frames are:
pc=0x080489¢c3 in main at gdbtest.c:10
pc=0x080555a7 in this_main at stubs-main.c:13
pc=0x40031c7e in __divdi3 at stubs/end-stubs.c:7
pc=0x08048668 in *unknown* at *unknown*:0
From Checker (pid:30448): (bvh) block bounds violation in the heap.
When Reading 4 byte(s) at address 0x0805fadc, inside the heap (sbrk).
0 byte(s) after a block (start: 0x805f950, length: 396, mdesc: 0x0).
The block was allocated from:
pc=0x00000063 in *unknown* at *unknownx:0
pc=0x08048863 in main at gdbtest.c:8
pc=0x080555a7 in this_main at stubs-main.c:13
pc=0x40031c7e in __divdi3 at stubs/end-stubs.c:7
pc=0x08048668 in *unknown* at *unknown*:0
Stack frames are:
pc=0x08048cb5 in main at gdbtest.c:12
pc=0x080555a7 in this_main at stubs-main.c:13
pc=0x40031c7e in __divdi3 at stubs/end-stubs.c:7
pc=0x08048668 in *unknown* at *unknown*:0

Two errors are reported, each message starts with “From checker”. Both errors
consist of accesses to an array beyond the border (block bound violation).
For each error both the location in the source code where the memory has
been allocated and the location where the error occurred (Stack frames) are
given. In both cases the error is concerned with what was allocated at line
8 (pc=0x08048863 in main at gdbtest.c:8). The bug appeared during the
loops over the array, when the array is initialized (line 10) and read out (line
12).

Other common types of errors are memory leaks. They appear when a previously
used block of memory has been forgotten to be freed again. Assume that this
happens in a subroutine which is called frequently in a program. You can
imagine that you will quickly run out of memory. Memory leaks are not detected
using checkergcee by default. This kind of test can be turned on by setting
a special environment variable CHECKEROPTS, which controls the behavior of
checkergcc. To enable checking for memory leaks at the end of the execution,
one has to set

export CHECKEROPTS="-D=end"

Let us assume that the bug from above is removed and instead the free (array) ;
command at the end of the program is omitted. After compiling with checkergcc,
running the program results in:

48

From Checker (pid:30900): ‘gdbtest’ is running

sum= 4950

Initialization of detector...

Searching in data

Searching in stack

Searching in registers

From Checker (pid:30900): (gar) garbage detector results.

There is 1 leak and O potential leak(s).

Leaks consume 400 bytes (0 KB) / 132451 KB.

(0.00% of memory is leaked.)

Found 1 block(s) of size 400.

Block at ptr=0x805£8f0
pc=0x08055499 in chkr_malloc at stubs-malloc.c:57
pc=0x08048863 in main at gdbtest.c:8
pc=0x08055547 in this_main at stubs-main.c:13
pc=0x40031c7e in __divdi3 at stubs/end-stubs.c:7
pc=0x08048668 in *unknown* at *unknownx:0

Obviously, the memory leak has been found. Further information on the various
features of checkergcc can be found in Ref. [20]. A last hint: you should always
test a program with a memory checker, even if everything seems to be fine.

8 Evaluating Data

To analyze and plot data, several commercial and non-commercial programs are
available. Here three free programs are discussed, gnuplot, xmgr and fsscale.
Gnuplot is small, fast, allows two- and three-dimensional curves to be generated
and to fit arbitrary functions to the data. On the other hand zmgr is more
flexible and produces better output. It is recommended that gnuplot is used
for viewing and fitting data online, while xmgr is to be preferred for producing
figures to be shown in talks or publications. The program fsscale has a special
purpose. It is very convenient for performing finite-size scaling plots.

First, gnuplot and xmgr are introduced with respect to drawing figures. In
the next subsection, data fitting is covered. Finally, it is shown how finite-size
scaling plots can be created. In all three cases only very small examples can be
presented. They should serve just as a motivation to study the documentation,
then you will learn about the manifold potential the programs offer.

8.1 Data Plotting

The program gnuplot is invoked by entering gnuplot in a shell, for a complete
manual see Ref. [13]. As always, our examples refer to a UNIX window system
like X11, but the program is available for almost all operating systems. After
startup, the prompt (e.g. gnuplot>) appears and the user can enter commands
in textual form, results are shown in windows or are written into files. Before

49

giving an example, it should be pointed out that gnuplot scripts can be gener-
ated by simply writing the commands into a file, e.g. command.gp, and calling
gnuplot command.gp.

The typical case is that you have a data file of x — y data and you want to
plot the figure. Your file might look like this, it is the ground-state energy of a
three-dimensional +J spin glass as a function of the linear system size L. The
filename is sg_e0_L.dat. The first column contains the L values, the second the
energy values and the third the standard error of the energy, please note that
lines starting with “#” are comment lines which are ignored on reading:

ground state energy of +-J spin glasses

L e_0 error
3 -1.6710 0.0037
4 -1.7341 0.0019
5 -1.7603 0.0008
6 -1.7726 0.0009
8 -1.7809 0.0008
10 -1.7823 0.0015
12 -1.7852 0.0004
14 -1.7866 0.0007

To plot the data enter
gnuplot> plot "sg_eO_L.dat" with yerrorbars

which can be abbreviated as p "sg.e0_L.dat" w e. Please do not forget the
quotation marks around the file name. Next, a window pops up, showing the
result, see Fig. 8.

For the plot command many options and styles are available, e.g. with lines
produces lines instead of symbols. It is possible to read files with multi columns
via the using option, e.g.

gnuplot> plot "test.dat" using 1:4:5 w e

displays the fourth column as a function of the first, with error bars given by the
5th column. Among other options, it is possible to redirect the output, for ex-
ample to an encapsulated postscript file (by setting set terminal postscript
and redirecting the output set output "test.eps"). Also several files can be
combined into one figure. You can set axis labels of the figure by typing e.g.
set xlabel "L", which becomes active when the next plot command is exe-
cuted. Online help on the plot command and its manifold options is available
via entering help plot. Also three-dimensional plotting is possible using the
splot command (enter help splot to obtain more information). For a general
introduction you can type just help. Since gnuplot commands can be entered
very quickly, you should use it for online viewing data and fitting (see Sec. 8.2).

The zmgr (x motiv graphic) program is much more powerful than gnuplot and
produces nicer output, commands are issued by clicking on menus and buttons.

50

— : o ol
-1,66 T T T T

"sg_el_L,dat" ——

-1.68 F

Lyt

1,7t

1,74 |

-1.76 3

-1,78 5

-1,8 1 1 1 1 1

Figure 8: Gnuplot window showing the result of a plot command.

On the other hand its handling is a little bit slower and the program has the
tendency to fill your screen with windows. To create a similar plot to that above,
you have to go (after staring it by typing xmgr into a shell) to the files menu
and choose the read submenu and the sets subsubmenu. Then a file selection
window will pop up and you can choose the data file to be loaded. The situation
is shown in Fig. 9.

The xmgr program offers almost every feature you can imagine for two-dimen-
sional data plots, including multiple plots, fits, many styles for lines, symbols,
bar charts etc. Also you can create manifold types of labels or legends and it
is possible to add elements like strings, lines or other geometrical objects in the
plot. For more information, please consult the online help.

8.2 Curve Fitting

Both programs presented above, gnuplot and zmgr, offer fitting of arbitrary
functions. It is advisable to use gnuplot, since it offers a higher flexibility for
that purpose and gives you more information useful to estimate the quality of
a fit.

As an example, let us suppose that you want to fit an algebraic function of the
form f(L) = e + aL? to the data set of the file sg_e0_L.dat shown above.
First, you have to define the function and supply some roughly (non-zero) esti-

51

== Untitled SE

File Data Plot Options

mm‘
GO:X. Y = [142111, —1.79178] 1
Draw
Af A
Zz SlReadsets |
] -1.6E |

b ' Filter
L A | t = | ,’h0mE,’hartmannltextefseminar,’dataff
AutoT |
e el B Directories Files
Autol |} itexte/seminar/data/. 4] mag3.dat =
ZX| Z¥Y L |texte/seminar/data/.. | mag3.dat~
ax| Ay mag5.dat
— —| | mag5.dat~
PZ| Pu| =l | sample08. dat
Po| Cy | sg2dl16a.dat
=Py r | s92di16a.dat~
oLl lllsg co Laa IS
CW:0 = = =
. ¥ CEE— T
xi

[File format: XY DY

=T B [_ _
File Source: # Disk -~ Pipe
Read to graph: Current
-1.85m : ' ‘
5 10 Autoscale on read
Selection

‘ ‘hartmann/texte/seminar/data/sg_e0_L.daf

Filter Cancel Help

Figure 9: The xmgr program, just after a data file has been loaded, and the AS
button has been pressed to adjust the figure range automatically.

Sisko, Torres.theorie.physik.uni-goettingen.de.:0.0, Mon Dec 4 12:37:46 2000, Untitle

mations for the unknown parameters, please note that the exponential operator
is denoted by ** and the standard argument for a function definition is x, but
this depends only on your choice:

gnuplot> f(x)=e+a*x**xb
gnuplot> e=-1.8
gnuplot> a=1

gnuplot> b=-1

The actual fit is performed via the fit command. The program uses the non-
linear least-squares Marquardt-Levenberg algorithm [3], which allows a fit ac-
cording to almost all arbitrary functions. To issue the command, you have to
state the fit function, the data set and the parameters which are to be adjusted.
For our example you enter:

gnuplot> fit f(x) "sg_eO_L.dat" via e,a,b

52

Then gnuplot writes log information to the output describing the fitting process.
After the fit has converged it prints for the given example:

After 17 iterations the fit converged.
final sum of squares of residuals : 7.55104e-06
rel. change during last iteration : -2.42172e-09

degrees of freedom (ndf) : 5
rms of residuals (stdfit) = sqrt(WSSR/ndf) : 0.00122891
variance of residuals (reduced chisquare) = WSSR/ndf : 1.51021e-06

Final set of parameters Asymptotic Standard Error
e = -1.78786 +/- 0.0008548 (0.04781%)
a = 2.5425 +/- 0.2282 (8.976%)
b = -2.80103 +/- 0.08265 (2.951%)

correlation matrix of the fit parameters:

e a b
e 1.000
a 0.708 1.000
b -0.766 -0.991 1.000

The most interesting lines are those where the results for your parameters along
with the standard error are printed. Additionally, the quality of the fit can be
estimated by the information provide in the three lines beginning with “degree
of freedom”. The first of these lines states the number of degrees of freedom,
which is just the number of data points minus the number of parameters in the
fit. The deviation of the fit function f(z) from the data points (z;,y; + o)

2
(i=1,...,N) is given by x? = Zf;l [%(w)] , which is denoted by WSSR
in the gnuplot output. A measure of the quality of the fit is the probability @
that the value of x2 is worse than in the current fit, given the assumption that
the datapoints y; are Gaussian distributed with mean f(z;) and variance one
[3]. The larger the value of @, the better is the quality of the fit. To calculate

@ you can use the little program Q.c

53

#include <stdio.h>
#include "nr.h"
int main(int argc, char **argv)
{
float ndf, chi2_per_df;
sscanf (argv[1], "/%f", &ndf);
sscanf (argv[2], "/f", &chi2_per_d4f);
printf ("Q=Y%e\n", gammq(0.5*ndf, 0.5*ndf*chi2_per_df));
return(0) ;

}

which uses the gammaq function from Numerical Recipes [3]. The program is
called in the form Q <ndf> <WSSR/ndf>, which can be taken from the gnuplot
output.

To watch the result of the fit along with the original data, just enter

gnuplot> plot "sg_eO_L.dat" w e, f(x)

The result looks like that shown in Fig. 10

g D = E o
-1,66 T T T T

"sg_e0_L.dat" —s—

% Fix

-lLE3 F

-7
1,74 |
1,76 | 5

1,78 | e

-1.8

Figure 10: Gnuplot window showing the result of a fit command along with the
input data.

Please note that the convergence depends on the initial choice of the parameters.
The algorithm may be trapped into a local minimum in case the parameters are

54

too far away from the best values. Try the initial values e=1, a=-3 and b=1!
Furthermore, not all function parameters have to be subjected to the fitting.
Alternatively, you can set some parameters to fixed values and omit them from
the list at the end of the fit command. You should also know that in the example
given above all data points enter into the result with the same weight. You can
tell the algorithm to consider the error bars by typing fit f(x) "sg.-e0_L.dat"
using 1:2:3 via a,b,c. Then, data points with larger error bars have less
influence on the results. More on how to use the fit command can be found
out when entering help fit.

8.3 Finite-size Scaling

Statistical physics describes the behavior of systems with many particles. Usu-
ally, realistic system sizes cannot be simulated on current computers. To cir-
cumvent this problem, the technique of finite-size scaling has been invented,
for an introduction see e.g. Ref. [21]. The basic idea is to simulate systems of
different sizes and extrapolate to the large volume limit. Here it is shown how
finite-size scaling can be performed with the help of gnuplot [13] or with the
special-purpose program fsscale [22]

m(p.L)

Il Il
0.1 0.15 0.2 0.25 0.3

Figure 11: Average ground-state magnetization m of a three-dimensional +J
spin glass with fractions p of antiferromagnetic bonds. Lines are guides to the
eyes only.

As an example, the average ground-state magnetization m of a three-dimensional
+.J spin glass with fractions p of antiferromagnetic and 1 — p of ferromagnetic
bonds is considered. For small values of p the system is expected to have a

55

ferromagnetically ordered state. This can be observed in Fig. 11, where the
results [23] for different system sizes L = 3,5, 14 are shown.

The critical concentration p., where the magnetization m vanishes, and the
critical behavior of m near the transition are to be obtained. From the theory
of finite-size scaling, it is known that the average magnetization m = (M) obeys
the finite-size scaling form [24]

m(p, L) = L™/ (L (p — pc)) (6)

where mm is a universal, i.e. non size-dependent, function. The exponent § char-
acterizes the algebraic behavior of the magnetization near p., while the exponent
v describes the divergence of the correlation length when p, is approached. From
Eq. (6) you can see that when plotting L?/*m(p, L) against L'/*(p — p.) with
correct parameters §3,v the data points for different system sizes should col-
lapse onto a single curve. A good collapse can be obtained by using the values
pe = 0.222, v = 1.1 and = 0.27. The determination of p. and the exponents
can be performed via gnuplot. For that purpose you need a file m scaling.dat
with three columns, where the first column contains the system sizes L, the
second the values of p and the third contains magnetization m(p, L) for each
data point. First, assume that you know the values for p., v and §. In this case,
the actual plot is done by entering:

gnuplot> b=0.27

gnuplot> n=1.1

gnuplot> pc=0.222

gnuplot> plot [-1:1] "m_scale.dat" u (($2-pc)*$1**x(1/n)): ($3*$1**(b/n))

The plot command makes use of the feature that with the u(sing) option you
can transform the data of the input in an arbitrary way. For each data set,
the variables $1,$2 and $3 refer to the first, second and third columns, e.g.
$1**(1/n) raises the system size to the power 1/v. The resulting plot is shown
in Fig. 12. Near the transition p — p. = 0 a good collapse of the data points can
be observed.

In case you do not know the values of p, 3, v you can start with some estimated
values, perform the plot, resulting probably in a bad collapse. Then you may
alter the parameters iteratively and watch the resulting changes by plotting
again. In this way you can converge to a set of parameters, where all data
points show a satisfying collapse.

The process of determining the finite-size scaling parameters can be performed
more conveniently by using the special purpose program fsscale. It can be
obtained free of charge from [22]. This tool allows the scaling parameters to
be changed interactively by pressing buttons on the keyboard, making a finite-
size scaling fit very convenient to perform. Several different scaling forms are
available. To obtain more information, start the program, with fsscale -help.
A sample screen-shot is shown in Fig. 13

Please note that the data have to be presented to fsscale in a file containing
three columns, where the first column contains the system size, the second the

56

—+ [T

L.t T T T
ieand R dat' o SO A LR A risTes mhen 2
-
LEF v 4iE |
5 .
*
14F ¥, b
-
3 ¥ i
o
s J
L.If z
»*
o
+
1k F J
{6&\.
#
bl L -
£
=t
e
wel " 1
ae
S
10
0.d p Sy -
* H
%
w
[# % .
B . L L

Figure 12: Gnuplot output of a finite-size scaling plot. The ground-state mag-
netization of a three-dimensional +.J spin glass as a function of the concen-
tration p of the antiferromagnetic bonds is shown. For the fit, the parameters
pe = 0.222, 8 = 0.27 and v = 1.1 have been used.

z-value and the third the y-value. If you have only data files with more columns,
you can use the standard UNIX tool awk to project out the relevant columns.
For example, assume that your data file results.dat has 10 columns, and your
are interested in columns 3,8, and 9. Then you have to enter:

awk ’{print $3,$8,$9}’ results.dat > projected.dat

You can also use awk to perform calulations with the values in the columns,
similar to gnuplot, as in

awk ’{print $1+$2, 2.0*$7, $8*$1}’ results.dat

9 Information Retrieval and Publishing

In this section some basic information regarding searching for literature and
preparing your own presentations and publications is given.

57

Figure 13: Screen-shot from a window running the fsscale tool.

9.1 Searching for Literature

Before contributing to the physical community and even publishing your results,
you should be aware of what exists already. This prevents you from redoing
something which has been done before by someone else. Furthermore, knowing
previous results and many simulation techniques allows you to conduct your own
research projects better. Unfortunately, much information cannot be found
in textbooks. Thus, you must start to look at the literature. With modern
techniques like CD-ROMs and the Internet this can be achieved very quickly.
Within this section, it is assumed that you are familiar with the Internet and
are able to use a browser. In the following list several sources of information
are contained.

e Your local (university) library
Although the amount of literature is limited from space constraints, you
should always check your local library for suitable textbooks concerning
your area of research. Also many old issues of scientific journals are yet not
available through the Internet, thus you may have to copy some articles
in the library.

58

e Literature databases

In case you want to obtain all articles from a specific author or all ar-
ticles on a certain subject, you should consult a literature database. In
physics the INSPEC [25] database is the appropriate source of informa-
tion. Unfortunately, the access is not free of charge. But usually your
library should allow access to INSPEC, either via CD-ROMS or via the
Internet. If your library/university does not offer an access you should
complain.

INSPEC frequently surveys almost all scientific journals in the areas of
physics, electronics and computers. For each paper that appears, all bib-
liographic information along with the abstract are stored. You can search
the database for example for author names, keywords (in the abstract or
title), publication years or journals. Via INSPEC it is possible to keep
track of recent developments happening in a certain field.

There are many other specialized databases. You should consult the web
page of your library, to find out to which of them you can access. Mod-
ern scientific work is not possible without regularly checking literature
databases.

e Preprint server

In the time of the Internet, speed of publication becomes increasingly
important. Meanwhile, many researchers put their publications on the Los
Alamos Preprint server [26], where they become available world wide at
most 72 (usually 24) hours after submission. The database is free of charge
and can be accessed from almost everywhere via a browser. The preprint
database is divided into several sections such as astrophysics (astro-ph),
condensed matter (cond-mat) or quantum physics (quant-ph). Similar to a
conventional literature database, you can search the database, eventually
restricted to a section, for author names, publication years or keywords in
the title/abstract. But furthermore, after you have found an interesting
article, you can download it and print it immediately. File formats are
postscript and pdf. The submission can also be in TEX/ITEX (see Sec.
9.2).

Please note that there is no editorial processing at all, that means you
do not have any guarantee on the quality of a paper. If you like, you
can submit a poem describing the beauty of your garden. Nevertheless,
the aim of the server is to make important scientific results available very
quickly. Thus, before submitting an article, you should be sure that it is
correct and interesting, otherwise you might get a poor reputation.

The preprint server also offers access via email. It is possible to subscribe
to a certain subject. Then every working day you will receive a list of all
new papers which have been submitted. This is a very convenient way
of keeping track of recent developments. But be careful, not everyone
submits to the preprint server. Hence, you still have to read scientific
journals regularly.

59

e Scientific journals
Journals are the most important resources of information in science. Most
of them allow access via the Internet, when your university or institute
has subscribed to them. Some of the most important physical journals,
which are available online, are published by (in alphabetical order)

— the American Institute of Physics [27]

— the American Physical Society [28]

— Elsevier Science (Netherlands) [29]

— the European Physical Society [30]

the Institute of Physics (Great Britain) [31]
Springer Science (Germany) [32]

— Wiley-VCH (USA/Germany) [33]

— World-Scientific (Singapore) [34]

e Citation databases

In every scientific paper some other articles are cited. Sometimes it is
interesting to get the reverse information, i.e. to obtain all papers which
are citing a given article A. This can be useful, if one wants to learn about
the most recent developments which are triggered by article A. In that
case you have to access a citation index. For physics, probably the most
important is the Science Citation Index (SCI) which can be accessed via
the Web of Science [35]. You have to ask your system administrator or
your librarian whether and how you can access it from your site.

The American Physical Society (APS) [28] also includes links to citing
articles with the online versions of recent papers. If the citing article is
available via the APS as well, you can immediately access the article from
the Internet. This works not only for citing papers, but also for cited
articles.

e Phys Net
If you want to have access to the web pages of a certain physics depart-
ment, you should go via your web browser to the Phys Net pages [36].
They offer a list of all physics departments in the world. Additionally,
you will find lists of forthcoming conferences, job offers and many other
useful links. Also, the home page of your department probably offers many
interesting links to other web pages related to physics.

¢ Web browsing
Except for the sources mentioned so far, nowadays much information is
available on net. Many researchers present their work, their results and
their publications on their home pages. Quite often talks or computer
codes can also be downloaded.

In case you cannot find a specific page through the Phys Net (see above), or
you are interested in obtaining all web pages concerning a specific subject,

60

you should ask a search engine. There are some very popular all purpose
engines like Yahoo [37] or Alta Vista [38]. A very convenient way to start
a query on several search engines in parallel is a meta search engine, e.g.
Metacrawler [39]. To find out more, please contact a search engine.

9.2 Preparing Publications

In this section tools for two types of presenting your results are covered: via an
article/report or in a talk. For writing papers, it is recommended that you use
TEX/ETgX. Data plots can be produced using the programs explained in the
last section. For drawing figures and making transparencies, the program zfig
offers a large functionality. To create three-dimensional perspective images, the
program Povray can be used. KBTEX, zfig and Povray are introduced in this
section.

First, TEX/ITEX is explained. It is a typesetting system rather than a word
processor. The basic program is TEX, ITEX is an extension to facilitate the
application. In the area of theoretical computer science, the combination of TEX
and BWTEX is a widespread standard. When submitting an article electronically
to a scientific journal usually I’ TEX has to be used. Unlike the conventional office
packages, with IATEX you do not see the text in the form it will be printed, i.e.
BTEX is not a WYSIWYG (“What you see is what you get”) program. The
text is entered in a conventional text editor (like Emacs) and all formatting
is done via special commands. An introduction to the BTEX language can be
found e.g. in Refs. [40, 41]. Although you have to learn several commands, the
use of IATEX has several advantages:

e The quality of the typesetting is excellent. It is much better than self-
made formats. You do not have to care about the layout. But still, you
are free to change everything according to your requirements.

e Large projects do not give rise to any problems, in contrast to many
commercial office programs. When treating a IATEX text, your computer
will never complain when your text is more than 300 pages or contains
many huge post-script figures.

e Type setting of formulae is very convenient and fast. You do not have to
care about sizes of indices of indices etc. Furthermore, in case you want
for example to replace all « in your formulae with 3, this can be done
with a conventional replace, by replacing all \alpha strings by a \beta
strings. For the case of an office system, please do not ask how to do this
conveniently.

e There are many additional packages for enhanced styles such as letters,
transparencies or books. The bibtex package is very convenient, which
allows a nice literature database to be build up.

e Since you can use a conventional editor, the writing process is very fast.
You do not have to wait for a huge packet to come up.

61

e On the other hand, if you still prefer a WYSIWYG (“what you see is
what you get”) system, there is a program called lyz [42] which oper-
ates like a conventional word processor but creates IATEX files as output.
Nevertheless, once you get used to IATEX, you will never want to loose it.

Please note that this text was written entirely with ATEX. Since I’TEX is a type
setting language, you have to compile your text to create the actual output.
Now, an example is given of what a ITEX text looks like and how it can be
compiled. This example will just give you an impression of how the system
operates. For a complete reference, please consult the literature mentioned
above.

The following file example.tex produces a text with different fonts and a for-
mula:

\documentclass[12pt]{article}

\begin{document}

This is just a small sample text. You can write some words {\em
emphasized}\/, or in {\bf bold face}. Also different {\small sizes}
are possible.

An empty line generates a new paragraph. \LaTeX\ is very convenient
for writing formulae, e.g.

\begin{equation}

M_i(t) = \frac{1}{L"3} \int_V x_i \rho(\vec{x},t) d"3\vec{x}
\end{equation}

\end{document}

The first line introduces the type of the text (article, which is the standard)
and the font size. You should note that all tex commands begin with a backslash
(\), in case you want to write a backslash in your text, you have to enter
\backslash. The actual text is written between the lines starting with
\begin{document} and ending with \end{document}. You can observe some
commands such as \em, \bf or \small. The { } braces are used to mark blocks
of text. Mathematical formulae can be written e.g. with \begin{equation}
and \end{equation}. For the mathematical mode a huge number of commands
exists. Here only examples for Greek letters (\alpha), subscripts (x-i), fractions
(\frac), integrals (\int) and vectors (\vec) are given.
The text can be compiled by entering latex example.tex. This is the com-
mand for UNIX, but BTEX exists for all operating systems. Please consult the
documentation of your local installation.
The output of the compiling process is the file example.dvi, where “dvi” means
“device independent”. The .dvi file can be inspected on screen by a viewer
via entering xdvi example.dvi or converted into a postscript file via typing
dvips -o example.ps example.dvi and then transferred to a printer. On
many systems it can be printed directly as well. The result will look like this:

This is just a small sample text. You can write some words empha-
sized, or in bold face. Also different sizes are possible.

62

An empty line generates a new paragraph. IWTEX is very convenient
for writing formulae, e.g.

Mi(t) = 7 /V (@O E (7)

This example should be sufficient to give you an impression of what the phi-
losophy of IATEX is. Comprehensive instructions are beyond the scope of this
section, please consult the literature [40, 41].

Under UNIX /Linux, the spell checker ispell is available. It allows a simple spell
check to be performed. The tool is built on a dictionary, i.e. a huge list of
known words. The program scans any given text, also a special I’TEX mode is
available. Every time a word occurs, which is not contained in the list, ispell
stops. Should similar words exist in the list, they are suggested. Now the user
has to decide whether the word should be replaced, changed, accepted or even
added to the dictionary. The whole text is treated in this way. Please note
that many mistakes cannot be found in this way, especially when the misspelled
word is equal to another word in the dictionary. However, at least ispell finds
many spelling mistakes quickly and conveniently, so you should use the tool.
Most scientific texts do not only contain text, formulae and curves, but also
schematic figures showing the models, algorithms or devices covered in the pub-
lication. A very convenient but also simple tool to create such figures is zfig.
It is a window based vector-oriented drawing program. Among its features are
the creation of simple objects like lines, arrows, polylines, splines, arcs as well
as rectangles, circles and other closed, possibly filled, areas. Furthermore you
can create text or include arbitrary (eps, jpg) pictures files. You may place the
objects on different layers which allows complex sceneries to be created. Differ-
ent simple objects can be combined into more complex objects. For editing you
can move, copy, delete, rotate or scale objects. To give you an impression what
zfig looks like, in Fig. 14 a screen-shot is shown, displaying zfig with the picture
that is shown in Fig. 1. Again, for further help, please consult the online help
function or the man pages.

The figures can be saved in the internal fig format, and exported in several file
formats such as (encapsulated) postscript, BWTEX, Jpeg, Tiff or bitmap. The
zfig program can be called in a way that it produces just an output file with
a given fig input file. This is very convenient when you have larger projects
where some small picture objects are contained in other pictures and you want
to change the appearance of the small objects in all other files. With the help
of the make program pretty large projects can be realized.

Also, zfig is very convenient when creating transparencies for talks, which is
the standard method of presenting results in physics. With different colors,
text sizes and all the objects mentioned before, very clear transparencies can
be created quickly. The possibility of including picture files, like postscript files
which were created by a data plotting program such as xmgr, is very helpful.
In the beginning it may seem that more effort is necessary than when creating
the transparencies by hand. However, once you have a solid base of transparen-
cies you can reuse many parts and preparing a talk may become a question of

63

E"\-- A 232 poichlew =l 2 [Profscosl 327 0=
I KT I I e T s f-p.--'!'_u---.-.i-.l'lu daa. BALAR -
|.11r.--|-i|;|£ E N H AN KR EEE i T Tt o I-,F_.Lh.l.Ln-m: | | |

L L I L e Lt e L L B LR U LU I ROV [+ [T CR 1 :

I NN O T I T N T O I O O O O O O O N W N | ||I| v -1 un

Doiiioiiioiiicl o

i = F 0

I £ 20

I F 40

I 0

L I E 0

et [] B

1 | iy

I F 0

I C 1

|

o).

o).

o

= i

Figure 14: A sample screen-shot showing the zfig program.

minutes. In particular, when your handwriting looks awful, the audience will
be much obliged for transparencies prepared with zfig.

Last but not least, please note that zfig is vector oriented, but not pixel oriented.
Therefore, you cannot treat pictures like jpg files (e.g. photos) and apply oper-
ations like smoothing, sharpening or filtering. For these purposes the package
gimp is suitable. It is freely available again from GNU [5].

64

It is also possible to draw three-dimensional figures with zfig, but there is no
special support for it. This means, zfig has only a two-dimensional coordinate
system. A very convenient and powerful tool for making three-dimensional
figures is Povray (Persistence Of Vision RAYtraycer). Here, again, only a short
example is given, for a detailed documentation please refer to the home page
[43], where the program can be downloaded for many operating systems free of
charge.

Pouwray is, as can be realized from its name, a raytracer. This means you
present a scene consisting of several objects to the program. These objects have
characteristics like color, reflectivity or transparency. Furthermore the position
of one or several light sources and a virtual camera have to be defined. The
output of a raytracer is a photo-realistic picture of the scene, seen through the
camera. The name “raytracer” originates from the fact that the program creates
a picture by starting several rays of light at the light sources and traces their
way through the scene, where they may be absorbed, reflected or refracted,
until they hit the camera, disappear into infinity or become too weak. Hence,
the creation of a picture may take a while, depending on the complexity of the
scene.

A scene is described in a human readable file, it can be entered with any text
editor. But for more complex scenes, special editors exist, which allow a scene to
be created interactively. Also several tools for making animations are available
on the Internet. Here, a simple example is given. The scene consists of three
spheres connected by two cylinders, forming a molecule. Furthermore, a light
source, a camera, an infinite plane and the background color are defined. Please
note that a sphere is defined by its center and a radius and a cylinder by two
end points and a radius. Additionally, for all objects color information has to
be included, the center sphere is slightly transparent. The scene description file
testl.pov reads as follows:

#include "colors.inc"
background { color White }

sphere { <10, 2, 0>, 2
pigment { Blue } }

cylinder { <10, 2, 0>, <0, 2, 10>, 0.7
pigment { color Red } }

sphere { <0, 2, 10>, 4
pigment { Green transmit 0.4} }

cylinder { <0, 2, 10>, <-10, 2, 0>, 0.7
pigment { Red } }

sphere { <-10, 2, 0>, 2

65

pigment { Blue } }

plane { <0, 1, 0>, -5
pigment { checker color White, color Blackl}}

light_source { <10, 30, -3> color White}

camera {location <0, 8, -20>
look_at <0, 2, 10>
aperture 0.4}

The creation of the picture is started by calling (here on a Linux system via
command line) x-povray +I testl.pov. The resulting picture is shown in Fig.
15, please note the shadows on the plane.

Figure 15: A sample scene created with Povray.

Pouwray is really powerful. You can create almost arbitrarily shaped objects,
combine them into complex objects and impose many transformations. Also
special effects like blurring or fog are available. All features of Povray are de-
scribed in a 400 page manual. The use of Povray is widespread in the artists
community. For scientists it is very convenient as well, because you can eas-
ily convert e.g. configuration files of molecules or three-dimensional domains
of magnetic systems into nice looking perspective pictures. This can be ac-
complished by writing a small program which reads e.g your configuration file
containing a list of positions of atoms and a list of links, and puts for every
atom a sphere and for every link a cylinder into a Povray scene file. Finally
the program must add suitable chosen light sources and a camera. Then, a
three-dimensional pictures is created by calling Povray.

The tools described in this section, should allow all technical problems occurring

66

in the process of preparing a publication (a “paper”) to be solved. Once you
have prepared it, you should give it to at least one other person, who should read
it carefully. Probably he/she will find some errors or indicate passages which
might be difficult to understand or that are misleading. You should always
take such comments very seriously, because the average reader knows much less
about your problem than you do.

After all necessary changes have been performed, and you and other readers
are satisfied with the publication, you can submit it to a scientific journal. You
should choose a journal which suits your paper. Where to submit, you should
discuss with experienced researchers. It is not possible to give general advice on
this issue. Nevertheless, technically the submission can be performed nowadays
almost everywhere electronically. For a list of publishers of some important
journals in physics, please see Sec. 9.1. Submitting one paper to several journals
in parallel is not allowed. However, you should also consider submitting to the
preprint server [25] as well to make your results quickly available to the physics
community.

Nevertheless, although this text provides many useful hints concerning perform-
ing computer simulations, the main part of the work is still having good ideas
and carefully conducting the actual research projects.

References

[1] I. Sommerville, Software Engineering, (Addisin-Wesley, Reading (MA)
1989)

[2] C. Ghezzi, M. Jazayeri, and D. Mandrioli, Fundamentals of Software En-
gineering, (Prentice Hall, London 1991)

[3] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical
Recipes in C' (Cambridge University Press, Cambridge 1995)

[4] K. Mehlhorn and St. Naher, The LEDA Platform of Combinatorial and
Geometric Computing (Cambridge University Press, Cambridge 1999);
see also http://www.mpi-sb.mpg.de/LEDA /leda.html

[5] M. Loukides and A. Oram, Programming with GNU Software, (O’Reilly,
London 1996);
see also http://www.gnu.org/manual

[6] H.R. Lewis and C.H. Papadimitriou, Elements of the Theory of Computa-
tion, (Prentice Hall, London 1981)

[7] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object-
Oriented Modeling and Design, (Prentice Hall, London 1991)

[8] R. Johnsonbaugh and M. Kalin, Object Oriented Programming in C++,
(Macmillan, London 1994)

67

[9] J. Skansholm, C++ from the Beginning, (Addisin-Wesley, Reading (MA)
1997)

[10] Mail to hartmann@theorie.physik.uni-goettingen.de

[11] B.W. Kernighan and D.M. Ritchie, The C Programming Language, (Pren-
tice Hall, London 1988)

[12] A. Oram and S. Talbott, Managing Projects With Make, (O’Reilly, London
1991)

[13] The programs and manuals can be found on http://www.gnu.org. For some
there is a texinfo file. To read it, call the editor ’emacs’ and type <crtl>+h’
and then i’ to start the texinfo mode.

[14] J. Phillips, The Nag Library: A Beginner’s Guide (Oxford University Press,
Oxford 1987);
see also http://www.nag.com

[15] A. Heck, Introduction to Maple, (Springer-Verlag, New York 1996)

[16] B.J.T. Morgan, Elements of Simulation, (Cambridge University Press,
Cambridge 1984)

[17] A.M. Ferrenberg, D.P. Landau and Y.J. Wong, Phys. Rev. Lett. 69, 3382
(1992); I. Vattulainen, T. Ala-Nissila and K. Kankaala, Phys. Rev. Lett.
73, 2513 (1994)

[18] J.F. Fernandez and C. Criado, Phys. Rev. E 60, 3361 (1999)
[19] http://www.cs.colorado.edu/homes/zorn/public_html/MallocDebug.html

[20] The tool can be obtained under the gnu public license from
http://www.gnu.org/software/checker/checker.html

[21] J. Cardy, Scaling and Renormalization in Statistical Physics, (Cambridge
University Press, Cambridge 1996)

[22] The program fsscale is written by A. Hucht, please contact him via email:
fred@thp.Uni-Duisburg. DE

[23] A.K. Hartmann, Phys. Rev. B 59 , 3617 (1999)

[24] K. Binder and D.W. Heermann, Monte Carlo Simulations in Statistical
Physics, (Springer, Heidelberg 1988)

[25] http://www.inspec.org/publish/inspec/
[26] http://xxx.lanl.gov/

[27] http://www.aip.org/ojs/service.html

68

[28] http://publish.aps.org/

[29] http://www.elsevier.nl

[30] http://www.eps.org/publications.html
[31] http://www.iop.org/Journals/

[32] http://www.springer.de/

[33] http://www.wiley-vch.de/journals/index.html

]

]

]

]

]

]

[34] http://ejournals.wspc.com.sg/journals.html

[35] http://wos.isiglobalnet.com/

[36] http://physnet.uni-oldenburg.de/PhysNet/physnet.html

[37] http://www.yahoo.com/

[38] http://www.altavista.com/

[39] http://www.metacrawler.com/index.html
]

[40] L. Lamport and D. Bibby, LaTeX : A Documentation Preparation Sys-
tem User’s Guide and Reference Manual, (Addison Wesley, Reading (MA)
1994)

[41] http://www.tug.org/
[42] http://www.lyx.org/

[43] http://www.povray.org/

69

