
Large deviations of connected components in the stochastic block model

Hendrik Schawe1, 2, ∗ and Alexander K. Hartmann2, †

1Laboratoire de Physique Théorique et Modélisation,
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We study the stochastic block model which is often used to model community structures and
study community-detection algorithms. We consider the case of two blocks in regard to its largest
connected component and largest bicomponent, respectively. We are especially interested in the
distributions of their sizes including the tails down to probabilities smaller than 10−800. For this
purpose we use sophisticated Markov chain Monte Carlo simulations to sample graphs from the
stochastic block model ensemble. We use this data to study the large-deviation rate function and
conjecture that the large-deviation principle holds. Further we compare the distribution to the
well known Erdős-Rényi ensemble, where we notice subtle differences at and above the percolation
threshold, near the community detection threshold.

I. INTRODUCTION

The stochastic block model (SBM) [1] is a generative
model for networks with community structure. For this
purpose, each node is assigned to one of B blocks. Sim-
ilar to the Erdős-Rényi model [2], edges between pairs
of nodes appear with some probability. For the SBM,
these probabilities can depend on the blocks each node
belongs to. Thus, the probabilities for edges between or
within the blocks can be encoded in the B×B block ma-
trix. On the one hand this makes the model very versatile
with an arbitrary number of blocks and arbitrary prob-
abilities between the blocks, on the other hand it still
stays simple in the sense that it is an ensemble of ran-
dom graphs without any further correlations between the
edges like the Erdős-Rényi graph ensemble or configura-
tion model [3]. Indeed in the case of B = 1 it simplifies
to an Erdős-Rényi ensemble.

In statistical physics there is a persistent interest in
the stochastic block model as a tool for community de-
tection, i.e., given a network, what is the block matrix
and to which blocks do the nodes belong most proba-
bly if this realization was drawn from an ensemble of
stochastic block models. This problem shows interesting
behavior as it exhibits two phases: One in which a re-
construction of the parameters is possible – studying dif-
ferent approaches how to do that is another active field
of studies [4–9] – and another phase, where the recon-
struction is infeasible [10]. In general, the determination
of community structures is algorithmically challenging.
This motivated our study, because we are interested in
whether the detectability or non-detectibility is related
to the simpler connectedness properties of the system,
which we will introduce next. Here, as anticipation of
our results, indeed a partial relationship is visible, but
one has to study the corresponding probability distribu-
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tions in the extreme-low probability regime to observe
it.

Usually, systems modeled by networks have some kind
of functionality, e.g., communication networks enable in-
formation exchange between nodes, power grids enable
power transmission between producers and consumers
and, social networks exchange, for example, opinions over
the edges. As a very simple but general indicator of
the functionality for sparse networks the size S of the
largest connected component is useful and the most sim-
ple global network property of any ensemble. Hence, we
study here the distribution of S for the SBM.

Furthermore, since networks consist of many nodes,
which often symbolize entities that can fail or vanish,
the robustness against this kind of events is of relevance.
A common idea [11–15] to measure robustness is to re-
move one or several nodes, either randomly or according
to “attack” rules, and measure its impact on the func-
tionality. Here, since we are measuring the functionality
in terms of the size of the largest connected component,
we also measure in this work the robustness in terms of
the size of the largest biconnected component, i.e., the
subgraph that will stay connected if any node was re-
moved. Note that this observable is not an uncommon
choice to determine robustness [16].

We scrutinize these properties in very high detail, i.e.,
we do not only look at their mean size, but we ob-
tain their probability distributions over practically the
whole support, especially including very rare events with
a probability of less than p = 10−800. In large-deviation
theory [17], many probability distributions have a special
shape which allows to remove the leading finite-size influ-
ence and describe the distributions by the so-called rate
function. As we will show below, here we find a compar-
atively fast convergence of the empirical rate functions
calculated from the finite-size distributions. This enables
us to observe the complete large deviation rate function
almost directly and conjecture that the large-deviation
principle [17] holds for this distribution.

A technical advantage of the studied observables is
that their behavior is known for the related ER ensem-
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ble, partly analytical [18], partly using simulational tech-
niques [19, 20]. Since the ER is a special case of the
stochastic block model and is in general a good null-model
to compare other graph ensembles to, we compare and
contrast it to the SBM. We even show results for the ER
ensemble for larger sizes than studied before in [19, 20].

II. MODELS AND METHODS

A graph is a tuple G = (V,E) of a set of nodes V
and a set of edges E. Here we will only scrutinize undi-
rected, simple graphs, i.e., E ⊂ V (2) \ {{u, u}|u ∈ V }.
Since graphs are used to model relations between ob-
jects, one of the most fundamental properties of graphs
is their connectedness. Fundamentally, only nodes i, j,
which are connected via a path, i.e., a sequence of edges
{{i, u1}, {u1, u2}, . . . , {um, j}}, can interact at all with
each other. The maximal subsets whose members are
connected are called connected components, their size S
is the number of elements. It is therefore of interest if a
given graph is connected, or what the size of its largest
connected component is.

The functionality of a network is for many applications
directly dependent on a large connected component. For
example in a power delivery network – in the best case
– every producer could pass its power to any consumer,
in a communication network it is desirable that every
member can communicate with any other member, in
a network encoding physical contacts between subjects,
small connected components would be advantageous to
inhibit the spreading of disease. While in all these cases
maybe other observables might capture the functionality
better, the size of the largest connected component S is
a reasonable first approximation.

As a second observable we take a look at the closely
related biconnected components, which are the maxi-
mal subsets whose members are connected by two node-
independent paths. This means that one can remove any
node from a biconnected component and the remainder
will still be a connected component. The size S2 of the
largest biconnected component is therefore the most sim-
ple quantity to judge the robustness against node removal
or failure of a network.

Algorithmically, one can determine the size of all con-
nected and biconnected components in time O(|V |+ |E|)
by performing one modified depth first search on a given
graph [21–23]. Note that a node can be part of two dis-
tinct biconnected components, such that the sum of the
sizes of all biconnected components might be larger than
N .

A. Graph ensembles

The Erdős-Rényi graph (ER) is probably the simplest
and first studied random graph ensemble [2]. It consists
of N nodes and any possible edge exists independently

from all other edges with a probability of p. If one is inter-
ested in sparse graphs, it is convenient to parametrize the
ensemble with the connectivity c = Np, which is equal
to the expected degree. In particular, the ER ensem-
ble shows a phase transition from a forest-like structure
with connected components of size O(logN) to a struc-
ture with one giant connected component of size O(N)
when increasing c above the critical threshold of cc = 1
[2]. Note that beyond the same threshold cc = 1 a giant
biconnected component of size O(N) arises [16].

The stochastic block model (SBM) is a random graph
ensemble in which every node belongs with probability
Pb to block b. Similar to the ER the edges exist inde-
pendently with a fixed probability, but in the SBM the
probability of the edge {i, j} to exist, depends on the
blocks a, b of which i and j are members of, i.e., pab. The
diagonal of this block matrix governs how tightly con-
nected the nodes within a block are, and the off-diagonal
elements determine how tightly the connections between
distinct blocks are, e.g., if the diagonal is zero, every re-
alization will be bipartite. If the diagonal elements are
larger than the off-diagonal, the SBM is called assor-
tative; if the off-diagonal elements are larger than the
diagonal, it is called disassortative. Note that a homo-
geneous pab = p is equivalent to the ER. Since we will
study sparse SBM, we will parametrize the ensemble with
connectivities cab = Npab.

Since we want to perform a very in-depth study of
an SBM ensemble, we will treat the most simple SBM,
which is distinct from ER, i.e., two blocks with the same
intra-block connectivity cintra and symmetric inter-block
connectivity cinter. Figure 1 shows two examples for dif-
ferent values of cinter and cintra.

The phase transition to a giant connected component
happens at (cintra + cinter) /2 = 1 (cf. Fig. 1(c)). For
intuition, consider the following three edge cases: If
cintra = cinter > 1, this reduces to the well known ER
case. If cinter = 0 and cintra > 2, each block behaves like
an independent ER with c > 1, such that inside of each
block giant components of size O(N) form. If cinter > 2
and cintra = 0 a bipartite giant component of size O(N)
arises.

B. Large deviations and sampling method

We are interested in the whole probability distribu-
tions of the above mentioned observables. This includes
additionally to the common events, which are often well
characterized by the mean and variance, also the tails of
the distribution characterizing extremely rare events. An
especially important class of distributions, which is said
to obey the large-deviation principle, consists of distribu-
tions parametrized by N , here the size of the graph, with
a probability density function PN (S) which can be ex-
pressed in terms of a rate function Φ(s) (with s = S/N),
such that PN (S) = exp (−NΦ(S/N) + o(N)) [17]. Thus,
Φ(s) is independent of N and the leading term in N is
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FIG. 1. Left: two example realizations of the SBM with
size N = 128 with two blocks (shape of nodes) of equal
probability Pa = Pb = 0.5. The panels show realizations
with different connectivities at the percolation threshold (a)
cintra = 0.1, cinter = 1.9 (b) cintra = 1.9, cinter = 0.1. The
largest connected components are visualized with colored
symbols. (c) sketch of the phase diagram showing the per-
colation transition.

charcterized by the rate function. If such a rate function
Φ exists, it means that the tails of the distribution de-
cay exponentially in N and Φ governs how fast exactly
the tails of the distribution decay. If it has a single min-
imum and is twice differentiable, typical events can be
approximated as Gaussian distributed for large N [24].

Since we want to study PN (S) and the correspond-
ing rate function using computer simulations [25], we
can only treat realizations of finite size N , such that we
can only obtain the empirical rate function ΦN (S) =
− 1

N ln(PN (S)) for multiple sizes N . If we observe that
the empirical rate functions for different sizes converge to
a limit shape, we assume that this limit shape is the ac-
tual rate function and that the large-deviation principle
is valid here.

The main idea to obtain the empirical rate functions,
which include information for extremely rare events, is to
perform a suitably tailored Markov chain Monte Carlo
simulation in the space of random graphs. Thus, the
graphs are not sampled independently but it allows one
to obtain data of the extremely rare and atypical events.
In the next chapter we will see, that the distributions of
the size of the largest connected component of the SBM
often have a pronounced multi-peak structure. This led
us to use Wang-Landau’s method (WL) [26, 27], which is
especially suited to overcome valleys in the distribution
(or energy landscape). Such valleys turned out to be
problematic for other methods employed previously by
the authors [19, 20, 28].

To sketch the idea of WL, consider first that an es-
timate g(S) of the actual distribution, which we are
searching for, was known in the beginning of the sim-
ulation. Then one could construct a Markov chain of
random graphs G using the Metropolis-Hastings algo-
rithm with an acceptance probability to change from

graph G to G′ of pacc(G → G′) = min
{

1, g(S)
g(S′)

}
de-

pending on the observables S = S(G) and S′ = S(G′) of
interest. If the estimate is very close to the actual dis-
tribution, a histogram H(S) of the values encountered
during this Markov chain would be very flat, i.e., all bins

would have about the same number of entries. We can
then use the deviations from flatness to improve our es-
timate P (S) ≈ g(S)H(S)/ 〈H〉 [29], where 〈H〉 is the
mean count of all bins. This procedure is called entropic
sampling [30], fulfills detailed balance and will therefore
converge to the correct searched for distribution. The
drawback is that it may converge very slowly depending
on the quality of the initial guess g(S).

The ingenious idea of WL is to get an estimate for g(S)
by using the flatness of an auxiliary histogram as a crite-
rion to change g(S) during the evolution of the Markov
chain. Therefore every time an energy S∗ is visited, the
estimate is updated g(S∗) 7→ f · g(S∗) using the refine-
ment factor f , which is usually initialized as f = exp(1)
and reduced as soon as the histogram fulfills some flat-
ness criterion [27] or some set amount of change attempts
was performed [31]. Since this means that pacc is time
dependent, detailed balance does not hold and system-
atic errors might be introduced. We use an updating
schedule which should avoid error saturation [31, 32] un-
til f reaches a defined value of ffinal. Subsequently we
perform entropic sampling, which is theoretically sound,
to remove any systematical error. Here, we use a final
refinement factor of ffinal = 10−5 and up to 10 overlap-
ping windows of ranges of the observable, on which WL
is performed independently.

One of the most crucial aspects of any Markov chain
Monte Carlo simulation is the choice of change move to
generate new trial graphs for the chain. Since all edges
are independent in the SBM, just like the ER, we create
a new trial graph G′ by selecting a node i in the current
graph G at random, removing all of its edges and deciding
for each other node j randomly whether edge {i, j} is
inserted with the appropriate probability depending on
their block memberships. This change move is ergodic
and works reasonably well.

III. RESULTS

In Fig. 2 we show for some system sizes the resulting
distributions for the cases of low connectivity c = 0.5
(cinter = 0.1, cintra = 0.9) in the non-percolating regime
and of higher connectivity c = 2 (cinter = 0.1, cinter = 3.9)
in the percolating regime. Both ensembles ER and SBM
are compared. Here we see that the SBM exhibits in the
c = 2 case a strongly different behavior than the ER.
This manifests for the largest system size in structures
of the probability density function (pdf) below probabil-
ities of 10−15 and would therefore be undetectable with
conventional methods.

As a side remark, consider a finite temperature T en-
semble, where the occurrence of realizations was weighted
with a Boltzmann weight e−S/T , treating the size of their
largest connected component S as energy, studied, e.g.,
in [19]. The two-peak structure corresponds to two tran-
sitions of first order at two distinct temperatures T . At
one transition, two large coexisting components appear,
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FIG. 2. Distributions in logarithmic scale of the relative size
of the largest component S for ER (thick lines) and SBM (thin
lines) for different graph sizes over (almost) the full support.

at the other transition, one single biggest component
emerges, see the discussion below.

In Fig. 3 the empirical rate functions and distributions
for finite system sizes N are shown for different parameter
sets, especially below and above the percolation thresh-
old. For comparison, also the distribution for the ER en-
semble of the same connectivity is visualized with thick
lines. The different system sizes are visualized by dif-
ferent colors and Fig. 3(f) shows a rapid convergence to
a limiting curve, which is a strong indication that the
limiting form is the large deviation rate function and
the large-deviation principle therefore holds. Thus, we
mainly restrict ourself to showing the rate functions for
the largest system sizes which is available, respectively.

The peculiar two-peak structure of the rate function of
the SBM above the percolation threshold in Fig. 3(c) (or
Fig. 2 for the pdf) can be explained rather simple. The
left peak at S ≈ 0.4, which is not recognizable in lin-
ear scale, consists of realizations, where two separate but
large connected components exist – one in each block.
Figure 4(a) shows an example realization of this type.
Since it is exponentially unlikely that no inter-block edge
exists, differences to ER are exponentially suppressed,
resulting in a value of the rate function larger than zero,
and are subsequently not visible in the distributions for
moderately large systems. The main peak at S ≈ 0.8
contains the instances in which the connected compo-
nents inside of the blocks are connected with each other,
as visualized in Fig. 4(b). Also note that the same two-
peak structure exists in the distribution of the largest
biconnected component visualized in Fig. 3(e), though
less pronounced. It can be explained with the same ar-
guments.

The most striking properties of the distributions P (S)
for different values of the connectivity is the surprising
way they differ between ER and SBM. We are able to as-
sess these differences, since our large-deviation sampling
approach gives us access to the tails: Below the percola-
tion threshold in Fig. 3(a) the two distributions are vi-
sually indistinguishable, in the peak (shown in the inset)

as well as in the tails (shown in the main plot). At the
threshold in Fig. 3(b), one can see significant deviations
in the peak, but the tails are again indistinguishable.
Surprisingly, above the threshold in Fig. 3(c) the peaks
of the distributions are again visually indistinguishable,
but the tails show qualitatively different behavior with a
far more pronounced second peak for the SBM case.

Qualitatively, it is plausible that the size of the largest
connected component should differ the most close to the
threshold. For the case cinter < cintra one can see that
around the percolation threshold is the only parameter
regime where the inter-block edges do matter at all. Far
below the threshold, the SBM realization consists of trees
with members from only one block, but since our observ-
able S does not account for the block memberships, this is
indistinguishable from ER. Far above the threshold the
blocks are connected components and as long as there
are any inter-block edges, the largest connected compo-
nent will typically include almost the whole graph – the
same as the ER case. Therefore, only at the threshold
the peaks of the distributions can differ at all. For the
size of the largest biconnected component the results are
qualitatively the same and the same arguments apply.

While we concentrate here on assortative parameter
sets, i.e., cintra > cinter, we also looked at disassortative
parameter sets, i.e., cintra < cinter. We found that the
distribution P (S) is generally indistinguishable from the
ER case, even in the far tails (not shown). This is not
surprising since the mechanism of two unconnected clus-
ters leading to the differences in the assortative cases,
can not occur in (almost) bipartite graphs.

As a more formal method to judge whether or not the
peak regions of ER and SBM are indistinguishable, we
use the Epps-Singleton test [33, 34], which is designed
to estimate the probability pES that two samples from
discrete distributions originate from the same distribu-
tion. Therefore, we generated two samples, each con-
taining the sizes of 106 largest connected components,
and used this test to estimate pES for multiple values
of c, in the case of the SBM, we fixed cinter = 0.1 and
varied cintra = 2c − cinter. Figure 5(a) shows the re-
sult of this analysis. Very low values of pES signal that
the two samples originate from different distributions,
i.e., the distributions are distinguishable. In accordance
with our visual interpretation above, the distributions
for connectivities around the transition at cc = 1, are
distinguishable. Especially, the range where the distribu-
tions are distinguishable shrinks with increasing system
size. Also note, that using different statistical tests, like
Kolmogorov-Smirnov [35] or Anderson-Darling [34, 36],
leads to extremely similar results (not shown).

An interesting question coming to mind is, whether
this threshold is the same as the transition from de-
tectable community structure to not-detectable commu-
nity structure |cinter − cintra| > q

√
c [10]. Surely, using

the size of the connected component is not able to dis-
tinguish ER from SBM when the connectivities are high
enough that the giant component almost always contains
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(a) c = 0.5, cinter = 0.1, cintra = 0.9
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(b) c = 1, cinter = 0.1, cintra = 1.9
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(c) c = 2, cinter = 0.1, cintra = 3.9
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(e) c = 2, cinter = 0.1, cintra = 3.9
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FIG. 3. The main plots show the rate functions Φ(S) of both the ER (thick lines) and SBM (fine lines) ensemble, which
coincide often. The panels (a) - (d) show the size rate function of the relative size of the largest connected component S for
different mean connectivities (largest size N which is available) and their insets the probability density functions for different
sizes. Panel (e) shows the same for the largest biconnected component S2. Note that the normalization is such that the area
under the curve is unity (although this is technically a discrete distribution). Panel (f) shows the rate functions of the SBM
for multiple sizes for c = 2 and in the inset for c = 0.5. This shows a very fast convergence to a limiting shape.

every single node, but at low connectivities P (S) becomes
distinguishable at the same threshold as the communities
are detectable, which is shown in Fig. 5(b). There the
parameter space which can be distinguished with a sig-
nificance of pES < 1% is visualized with dark colors and
the threshold for community detection is marked by a

red line, i.e., everything right of the red line is in princi-
ple distinguishable, e.g., by the sophisticated methods of
[10]. Note that the slight extend of the dark region to left
of the threshold line is most likely a finite-size effect. For
the large N limit one would expect this to move right,
probably until the threshold. This tendency is visible in
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(a) (b)

FIG. 4. Examples for SBM realizations at cinter = 0.1, cintra =
3.9, N = 256. The two blocks are visualized as nodes of dif-
ferent shapes, the largest connected component consists of
colored nodes. These are two typical instances (a) originating
from the left peak and 4(b) from the right peak. Since the
rate function is non-zero at the left peak, these instances will
be suppressed in the limit of large graphs.

Figure 5(a).
Note that the behavior of the tail, which obviously

differs for large c, e.g., in Fig. 3(c), is immaterial for this
statistical test. For analysis of the tail behavior, we will
introduce the area between the empirical rate functions

A =

∫ 1

0

dS
∣∣ΦSBM

N (S)− ΦER
N (S)

∣∣ (1)

as a measure of distinguishableness.
In Figure 6 the area A between the empirical rate func-

tions is shown for multiple system sizes N at connectiv-
ities of c = 1 and c = 2. To estimate whether the dif-
ferences between the rate functions are finite size effects,
or persist in the infinite limit of the rate function, we
extrapolate the area to infinite systems using the ansatz
A(N) = A∞+aN b, which fits quite well to the data. We
find that for c = 1 the area A∞ and therefore the dif-
ference vanishes within errorbars in the limit of infinite
systems. The rate functions for c = 2, on the other hand,
stay clearly distinct between ER and SBM.

To gather insight how configurations with especially
large or especially small biconnected components look
like, we consider the correlations between the size of the
connected and biconnected components. In Fig. 7 one
notices that the correlations for the SBM show a surpris-
ing structure. However, we will see that this is actually
plausible and we will discuss the structure of the realiza-
tions inside each of the three clusters.

In the region labeled D (divided), which is not present
in the ER, we see that inside of the highly connected
blocks of the SBM, which are not yet connected to each
other, biconnected components exist (cf. Fig. 7(b)). The
group of realizations, labeled O (one connection), indi-
cates that there are a considerable amount of realiza-
tions where already giant connected components span-
ning both blocks exists (S > 0.5), but the largest bicon-
nected component is still restricted to one of the blocks
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FIG. 5. (a) Epps-Singleton test, showing the probability that
two samples of S obtained from the ER and SBM originate
from the same distribution or from two different distributions.
Low values mean that we can surely distinguish the two en-
sembles, high values mean that we can not. (b) Heatmap of
the same Epps-Singleton test for more combinations cinter and
cintra.

with S2 < 0.3. These are mostly realizations where the
connected components inside each block are connected
by a single edge (or multiple edges arriving at a single
node) (cf. Fig. 7(c)). Part of this region are also, though
less often, configurations with a biconnected component
inside one block connected to multiple tree like structures
consisting of nodes of the other block. Interestingly both
types of configuration coexist in our simulations. Since
both of these groups rely on the high intra-block connec-
tivity, they do not occur in the ER ensemble.

In the region labeled M (multiple connections) of
Fig. 7, which also occurs for the ER, one sees perfect
correlation between the size of the two types of compo-
nents. The larger the biconnected component should be,
the larger the connected component has to be. Here SBM
and ER (data from [20]) match very nicely. An example
realization is shown in Fig. 7(d). The jump which is visi-
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10−5±7 ·10−5, i.e., the rate functions of ER and SBM appear
to become indistinguishable. For a connectivity of c = 2 we
obtain an offset A∞2 = 0.007(1), i.e., the rate functions of ER
and SBM appear to stay distinct.

ble in the ER case, does also exist here, i.e., region O does
not smoothly go over into region M , and both coexist for
the same size of the giant component.

IV. CONCLUSIONS

Here, we studied the distributions of the size of the
largest connected S and biconnected components S2 for
the stochastic block model with two blocks and strong
intra-block connectivity. By using sophisticated large-
deviation algorithms, we are able to study the distribu-
tions down to probabilities as small as 10−800 or below,
which gives us access to (almost) the full distributions.
Due to the fast convergence to a limiting shape of the
empirical rate functions we conjecture that the large-
deviation principle holds for these distributions. We ob-
served surprisingly complex correlations between S and
S2 to understand how the configurations of extremely
large biconnected components look like. Especially we
showed where there are similarities to the Erdős-Rényi
graph ensemble and for which parameters there are dif-
ferences in different parts of their distributions. Espe-
cially, also large qualitative differences in the tails of ex-
tremely events, where the peak regions are indistinguish-
able. These differences seem to be correlated with both
the threshold separating the reconstructable phase from
the not reconstructable phase and the threshold of the
percolation transition. By analyzing the correlations be-
tween largest connected and largest biconnected compo-
nent, which was also possible in the regime of rare events,
we could identify three regimes of behavior.

In general, our study shows that by analyzing the tails
of probability distributions for random graphs, differ-
ences between ensembles can be found which are not de-
tectable by standard simple sampling simulations. Thus,

0.0
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1.0

0 0.2 0.4 0.6 0.8 10 0.5 1

S
2

S

SBM

D
O

M

S

ER

(a) N = 1024, c = 2, cinter = 0.1, cintra = 3.9

(b) example D (c) example O (d) example M

FIG. 7. Comparison of the correlation between the size of
the largest connected component and the size of the largest
biconnected component between the ER and SBM ensembles
with c = 2. The data for the ER is for N = 500 collected with
a temperature based sampling scheme from [20], the data for
the SBM is for N = 1024 collected during a WL simulation.
The black lines are guides to the eye and the correspond-
ing labels are referenced in the text. Panels (b) - (d) show
example configurations (N = 128) with highlighted largest
biconnected component of the three classes identified in (a).

large-deviation simulations offer an access to otherwise
hidden properties of networks and to correlations be-
tween network quantities. Due to the existence of many
different network ensembles, network processes and mea-
surable quantities, many new results will likely emerge
from applying this and similar approaches to gain deep
insight into the properties of networks.
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