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Abstract. Here we study the NP-complete Satisfiability problem for N Boolean variables, in particular K-
SAT, for which the Boolean formula has the conjunctive normal form with M clauses and K < N possibly
negated variables per clause. Although the worst-case complexity of NP-complete problems is conjectured
to be exponential, there exist parametrized random ensembles of problems where solutions can typically
be found in polynomial time for suitable values of the parameter. In fact, random K-SAT, with α = M/N
as control parameter, shows a phase transition between a satisfiable phase and an unsatisfiable phase. For
branch and bound algorithms, which operate in the space of feasible Boolean configurations, the empirically
hardest problems are located only close to this phase transition. Here we study K-SAT (K = 3, 4) and
the related optimization problem MAX-SAT by linear programming approach, which is widely used for
practical problems and allows for polynomial run time. In contrast to branch and bound it operates
outside the space of feasible configurations. On the other hand, finding a solution within the polynomial
time is not guaranteed. We investigated several variants like including artificial objective functions, cutting-
plane approaches, and a mapping to the NP-complete vertex-cover problem. We observed several easy-hard
transitions, from where the problems are typically solvable (in polynomial time) using the given algorithms,
respectively, to where they are not solvable in polynomial time. For comparison, we studied random K-SAT
in regard to structural percolation transitions of the equivalent factor graphs with respect to connectivity,
two-edge connectivity, q-core, and two types of leaf-removal cores, respectively. These transitions were
mostly not studied in the literature before, and might be of interest on their own.

PACS. 89.70.Eg Computational complexity – 02.10.Ox Combinatorics; graph theory – 64.60.-i General
studies of phase transitions

1 Introduction

The Satisfiability problem (SAT) [1] is to decide whether
some Boolean formula is satisfiable or not, i.e., whether
for a given Boolean formula, there is an assignment of the
variables such that the formula evaluates to “true”. SAT
is the most-prominent NP (nondeterministic-polynomial)
problem. In particular it is NP-complete [2], which means
that all problems in NP can be mapped in polynomial
time to SAT and that it is hard to solve with all so-far
known algorithms. All Boolean formulas can be expressed
in conjunctive normal form (CNF) which is a disjunction
of clauses, each being a conjunction of variables or negated
variables. This preserves satisfiability with only linear in-
crease in problem size [3], see next section for a precise
definition of CNF. Therefore K-SAT, which is a Boolean
formula in CNF with K distinct variables per clause, is a
commonly scrutinized version of the satisfiability problem.
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Random K-SAT is an ensemble of Boolean formulas,
where for a set of N variables M clauses are generated ran-
domly. Each clause contains K variables which are chosen
randomly, and each variable appears negated with proba-
bility 0.5. Interestingly, this problem shows a phase transi-
tion at some critical value αs of the density α = M/N [4].
For large problems at α < αs almost all problems are sat-
isfiable (also denoted as SAT), above αs almost all realiza-
tions are unsatisfiable (UNSAT). The occurrence of simi-
lar phase transitions has been observed frequently for ran-
dom ensembles of NP-complete problems [4–7], for which
3-SAT is the prime example [2,8]. This incited strong in-
terest in the K-SAT problem [9–12] and many other NP-
complete problems [13–18] among physicists.

For the SAT-UNSAT transition it was found that the
hardest realizations are located near this αs. This can be
roughly understood because it is trivial to find some so-
lution for much lower values of α and relatively easy to
prove a realization unsatisfiable at high values of α.

While this SAT-UNSAT transition is certainly the
most scrutinized in the K-SAT problem, there exist more
transitions. For example 3-SAT, where SAT-UNSAT oc-
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curs at αs ≈ 4.26 [9], shows a transition to chaotic be-
havior at αχ ≈ 3.28 [19], i.e., using a continuous time
deterministic solver [20] the trajectory will find the solu-
tion if one exists, but it will show chaotic transient be-
havior above this threshold resulting in increasing escape
rates from attractors. This leads to a higher computa-
tional cost and can therefore be used as a measure of
hardness. Furthermore, there exists a clustering transi-
tion at αc ≈ 3.86 [11,21]. This means that here the or-
ganization of the space of the exponentially many degen-
erate solutions changes from one big cluster (α < αc) of
solutions which are connected in assignment space to a
solution space (α > αc) which is fragmented into many
non-connected smaller clusters.

Usually algorithms like the branch and bound ap-
proach, stochastic search or message passing are used in
the statistical-mechanics literature. These algorithms op-
erate in the space of feasible assignments and approach
the optimum solution from above. Here “optimum” means
that the number of unsatisfied clauses is minimized, i.e.,
eventually becomes zero if a satisfying assignment is
found. Thus for general minimization problems these al-
gorithms yield upper bounds until the true minimum solu-
tion is found. On the other hand, the operations-research
literature often uses linear programming (LP) [22,23] tech-
niques for real-world applications since they are versatile
and efficient, which means they run typically in polyno-
mial time. For combinatorial problems, e.g., NP-hard op-
timization problems, LP yields solutions which are not
necessarily feasible, which here means non-integer-valued
assignments to the variables, but which establish a lower
bound on the objective. Thus LP somehow approaches
for minimization problems the true feasible and optimum
solution from below. Nevertheless, a key observation is
that whenever LP gives a feasible solution, it must be the
true optimum solution of the combinatorial problem. Be-
cause of their complementary properties combinations of
LP with other approaches yield powerful methods, such
as branch and cut algorithms [24]. Here cutting planes
are employed, which are additional inequalities which de-
crease LP solution space to help finding feasible solutions.
Therefore LP and how it behaves for ensembles of random
NP-hard problems should be given more attention in the
physics community.

Until now, studies of the behavior of LP have only been
conducted for the vertex cover (VC) [25] and the traveling
salesperson problem (TSP) [26]. Indeed there exist regions
in parameter space, where feasible and optimal solutions
can be found in polynomial time. For VC, the LP ap-
proach yielded solutions up to the percolation transition
of the underlying graph ensemble. Therefore, the problem
is easy with respect to LP up to the percolation transition,
and hard beyond. For LP improved with cutting planes,
another easy-hard transitions occurs at the point of the
onset of replica symmetry breaking [16]. Note that this co-
incides with the percolation threshold for the leaf-removal
core [27]. This is the point where one would not reason-
ably expect easy instances anymore. For TSP the easy-
hard transitions detected by the LP approach coincided

with structural changes of the optimal tour which can be
intuitively understood as increases in hardness. Since for
TSP many more cutting planes exist, which are not yet
tested, it is conceivable to use this technique to find more
and more easy-hard transitions this way and understand
them, leading to deeper insight into the problem.

Since K-SAT is the archetypal NP-complete prob-
lem, we wanted to extend those promising results of the
mentioned previous studies. As we will show below, we
found also some “easy-hard” transitions. Nevertheless,
these transitions occur at much lower values of the param-
eter α than the clustering transition, in contrast to VC on
random graphs. The reason could be that SAT is a decision
problem while VC is an optimization problem. Neverthe-
less, although MAX-SAT, the canonical optimization for-
mulation of K-SAT, is an optimization problem, it shows
the same properties as K-SAT in our examination, so this
is maybe not the explanation. This result could be related
to the fact that K-SAT shows anyway a richer behavior
[11], i.e., several different types of transition, in contrast
to VC on random graphs. Anyway, we cannot explain this
result in the moment, and think it will motivate further
studies which aim at the origin of the different behavior.

Further we scrutinized some percolation properties of
the factor graph representation of K-SAT. These new re-
sults should be interesting in themselves.

In the following we will first present the methods we
used in Sec. 2. In Sec. 3.1 we will present the results of the
LP approach, before Sec. 3.2 shows different percolation
thresholds that we would assume change the hardness of
the problem. Section 3.3 lists further attempts. And Sec. 4
concludes the article.

2 Methods

2.1 K-SAT

A realization of K-SAT consists of a Boolean formula over
N variables xi (i = 1, . . . , N). The formula is in conjunc-
tive normal form, i.e., it is a conjunction of M clauses cj
(j = 1, . . . ,M), where every clause is a disjunction of K
literals lkj (k = 1, . . . ,K). A literal is a variable xi or its
negation xi. In each clause, each variable may appear only
once. As an example for N = 4, M = 2 and K = 3 take

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4). (1)

This example is solvable with, e.g., x1 = “true” = 1 and
x3 = “false” = 0, and arbitrary assignments for the other
variables. Note that each clause is satisfiable by 2K − 1
out of 2K possible assignments to the variables. Thus,
each clause restricts the space of satisfiable assignments a
bit. Clearly, with more clauses per variable, i.e., a higher
amount of constraints, it is more probable that a ran-
dom formula is unsatisfiable. As mentioned before, for
random 3-SAT with N → ∞ there is a critical density
αs = M/N ≈ 4.26 [9] at which a phase transition from
satisfiable to unsatisfiable (SAT-UNSAT) happens.
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2.2 Linear Programming

A linear program (LP) is an optimization problem, which
can be expressed by a set of linear constraints and a lin-
ear objective function, which should be optimized. There
are fast (polynomial-time) algorithms to solve a linear
program, e.g., the ellipsoid method [28] or interior point
methods [29,30]. However, in many sophisticated solvers
the simplex algorithm is used, which typically terminates
quickly for real-world problems, despite its exponential
worst-case time complexity [22,23]. Though, as soon as
some variables need to be integer valued, this problem gets
computationally hard. In fact, integer linear programming
is an NP-hard problem [8].

A K-SAT realization can be expressed as an integer
linear program. Therefore every positive literal xi is ex-
pressed as an integer variable xi and every negative literal
xi as (1 − xi). Since one or more literals of every clause
c ∈ C need to be true for a satisfying assignment, the cor-
responding integer linear program contains for each clause
the constraint that the sum of the expressions for the in-
cluded literals must be greater or equal 1. The example
from Eq. (1) generates following linear inequalities.

(1− x1) + x2 + (1− x3) ≥ 1
x1 + x3 + (1− x4) ≥ 1

Since an LP is an optimization problem but SAT is
merely a decision problem, we can choose an arbitrary
objective function for which to optimize. The simplest ob-
jective function is zero, i.e., no optimization.

min. 0

s.t.
∑
xi∈cj

xi +
∑
xi∈cj

(1− xi) ≥ 1, ∀1 ≤ j ≤M

xi ∈ {0, 1}, ∀1 ≤ i ≤ N
The last constraint fixes the variables to integer values.

We will relax this constraint to xi ∈ [0, 1]. This allows us
to apply a fast LP algorithm to solve the relaxed problem
and introduce a measure of hardness for the problem real-
ization. If the LP relaxation yields a solution consisting of
only integer variables, the solution is obtained by a poly-
nomial time method and the corresponding realization is
obviously easy to solve.

A drawback is that additionally to the principal de-
generacy of the problem, i.e., there are possibly many as-
signments that satisfy the formula, the relaxation leads to
a much higher degeneracy. For example, the assignment
of all xi = 0.5 is always a solution of the relaxation. Af-
ter we performed some simulations for SAT in this way, it
became evident that this degeneracy is a major problem
for this decision problem, which is not present in the opti-
mization problems studied with this method [25,26]. This
degeneracy leads to different behavior for slight changes
in the algorithm. Also, primal and dual simplex often lead
to different behavior such that for many instances one ver-
sion will result in an integer solution while the other does

not. We observed a similar behavior when considering dif-
ferent pricing strategies or a presolve stage to tighten the
LP. This analysis would therefore only yield information
about these technical details and not about the funda-
mental problem of K-SAT. For example, the presolver of
both Gurobi and CPLEX can solve easy instances up to
an critical αpre = 1.640(1), which is the same threshold up
to which the pure-literal rule (explained later) can solve
K-SAT realizations, while without presolve the easy-hard
transition occurs at lower α – dependent on technical de-
tails of the method. Therefore, we do not present results
of LP with zero objective in is study.

Instead, we will introduce artificial objective functions
to reduce the degeneracy drastically. Further, the choice of
the objective function has an influence on the prevalence of
integer solutions. Though note, only linear objective func-
tions enable the efficient linear programming techniques.
Therefore, non-linear objectives like

∑
i xi(1− xi), which

are minimal if all variables xi are either 1 or 0, are not
admissible and in fact generally NP-hard [31].

One simple way to replace the zero objective is maxi-
mizing the sum over all variables (MV)

max.
N∑
i=1

xi,

which will on average lift variables which are 0 in the in-
teger solution to larger values like 0.5 and thus suppresses
integer solutions typically.

Note that this and other additional objective functions
have no influence on whether a formula is satisfiable or
not, they are just meant as a tool to reduce the degener-
acy of the problem to make it less dependent on details
of the algorithm and to facilitate finding integer solutions.
Both works out as we will see below. As a third objective
we tried maximizing the number of fulfilled literals per
clause, which we will call Satisfaction Multiplicity Max-
imization (SMM). This can be achieved with a slightly
modified linear program by introducing one new variable
zi per clause counting the number of fulfilled literals of its
clause and maximizing the sum over all zi.

max.
M∑
i=1

zi

s.t.
∑
xi∈cj

xi +
∑
xi∈cj

(1− xi) ≥ zj , ∀1 ≤ j ≤M

xi ∈ {0, 1}, ∀1 ≤ i ≤ N
zi ≥ 1, ∀1 ≤ j ≤M

The new kind of constraint ensures that zi ≥ 1, i.e.,
that every clause contains at least one fulfilled literal, such
that the solution assignment satisfies the Boolean formula.
This type of additional optimization is similar to MAX-
SAT, where one tries to maximize the number of satisfied
clauses. For MAX-SAT one would instead enforce 0 ≤ zi ≤
1 ∀i. We also tried this MAX-SAT approach to solve the
K-SAT decision problem. Since this formulation does not
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mitigate the degeneracy problem, and because we did not
observe any better performance than by using the other
approaches, we do not show results for this approach here.

The SMM objective is an example for a linear objec-
tive with a slight preference for integer valued variables,
since assignment of all variables of a clause to 1 or 0 ac-
cording to their polarity contributes more to the objec-
tive function than assignments of non-integer values. For
example a variable which appears more often unnegated
will on average be assigned more often to value 1. This
strongly reduces the degeneracy of the solution of the op-
timization problem, i.e., many of the solutions where the
majority of variables are non-integer, are not optimal un-
der this new objective function. Of course this may still
yield non-integer values for some variables, which occur in
conflicting clauses.

Note that when using LP, finding integer solutions
may be facilitated in principle by adding so called cutting
planes. This was previously observed also for ensembles of
random instances for the vertex cover [25] and the TSP
[26]. Nevertheless, for the present study this yields no im-
provement, i.e., no additional phase transitions could be
observed, see below. Thus, we do not describe the cutting-
plane approach in this section in detail.

2.3 Graph Representation of K-SAT Realizations

x1 x2 x3 x4

c1 c2

Fig. 1. The factor graph of the example from Eq. (1). The
negation of a variable is marked by a dashed line.

x1 x1 x2 x2 x3 x3 x4 x4

c1 c2

Fig. 2. The literal factor graph of the example from Eq. (1).

We introduce a graph representation of the satisfia-
bility problem, we will call the literal factor graph (LFG).
While one of the most scrutinized graph representations of
SAT is its factor graph (FG) [32,6], especially useful for
belief or survey propagation [33,34], the authors do not
know of any study about the LFG. Both are conceptually
similar. In the FG, which is a bipartite graph exhibiting
a node for each variable and each clause, i.e., containing
N +M nodes, each variable is connected to the clauses it
occurs in as shown in Fig. 1 for the example Eq. (1). For

the LFG, which contains 2N + M nodes for literals and
clauses, each literal is connected to the clauses it occurs
in. The LFG representation of the example from Eq. (1)
is given in Fig. 2. Note that the ensemble of LFG for some
α is statistically the same as the factor graph ensemble at
2α. We will use these graph representations as a tool to de-
tect changes in the problem structure and compare them
to the solvability by LP techniques, since previous work on
vertex cover and TSP showed [25,26] that some LP easy-
hard transitions coincide with changes of the problem or
solution structure.

2.4 Mapping to Vertex Cover

1 1 2 2 3 3 4 4

Fig. 3. The graph for the vertex cover problem which is equiv-
alent to the formula shown in Eq. (1). Shown is a vertex cover
of size N + (K − 1)M = 4 + 2× 2 = 8, which corresponds to a
satisfying assignment x1 = 1, x2 = 1, x3 = 0, x4 = 1.

All NP-complete problems, by definition, can be
mapped onto each other in polynomial time. Thus, it is
reasonable to ask, whether transforming SAT instances
to instances of another problem and applying algorithms
specifically suited for the other problem changes the per-
formance, as measured by the location of the easy-hard
transition. Here we used a classical mapping [1] of SAT
to the vertex cover problem. For each K-SAT instance an
equivalent graph G = (V,E) is constructed in the follow-
ing way: The set V of nodes contains one pair of nodes
i, i for each variable xi (i = 1, . . . , N), which represents
the variable and its negation. Furthermore, V contains
one node (kj) for each literal lkj in each clause cj , re-
spectively. Therefore V contains 2N + KM nodes. For
the set E of edges, for each clause cj a complete sub-
graph of size K is formed by connecting all pairs of “lit-
eral nodes” (kj) pairwise which correspond to this clause.
Also, each “variable node” i is connected with its corre-
sponding “negated variable node” i. Finally, for each lit-
eral lkj , if the literal represents a non-negated variable xi,
an edge connecting (kj) with i is included, while if the
literal represents a negated variable xi the corresponding
literal node (kj) is connected with i. Thus, E contains
MK(K − 1)/2 +N +MK edges. Now a minimum vertex
cover is obtained. This is a subset V ′ ⊂ V of nodes such
that for each edge of E at least one of the two endpoints
is in V ′. By construction [1], G contains a vertex cover of
size N + (K − 1)M if and only if the corresponding for-
mula is satisfiable. In Fig. 3 the graph corresponding to
the formula from Eq. (1) is shown.
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Thus, one approach to SAT is to transform each for-
mula into the equivalent graph and use an existing algo-
rithm for VC to solve it. We applied an LP formulation
with cycle cutting planes, see Ref. [25] for details. For
the previous work, this algorithm was able to solve VC in-
stances in the parameter-space region, where the solutions
were contained basically in one cluster, corresponding to
the replica-symmetric region [35].

3 Results

We sample random 3-SAT instances, where each clause
may contain any variable at most once. For up to 14 sys-
tem sizes N ∈ [128, 524288] we simulated n = 5000 re-
alizations for 30 to 100 different values of the density α.
All error estimates are obtained by bootstrap resampling
[36–38], except for errors of fit parameters shown in the
plots, which are gnuplot ’s asymptotic standard errors cor-
rected according to Ref. [37]. To solve the LP realizations,
the implementation of the dual-simplex algorithms of the
commercial optimization library CPLEX [39] is used. Dur-
ing the research additionally the primal- and dual-simplex
implementations of Gurobi [40] and lp solve [41] with mul-
tiple pricing strategies were used to ensure that the results
are independent from the algorithm and the details of the
implementation.

3.1 LP-Transitions with Objective Function

As mentioned before, we observed that non-trivial objec-
tive functions can be used to obtain a result independent
from the details of the LP-solver implementation. Though
the objective function itself will have an influence on the
position of the transition point. An objective which prefers
variables to be integer will result in more integer solutions
at the same α, i.e., a transition at a larger value of α.

0.0

0.2

0.4

0.6

0.8

1.0

1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4

0.0

0.5

-0.5 0.0 0.5 1.0p

α

512
2048
8192

32768

N b(α− αSMM)

Fig. 4. Probability p that SMM yields an integer solution. The
smaller system sizes show visible deviations from the common
curves, which is visible in the main plot, where N = 512 does
not lie on the other curves at αSMM marked by the vertical
line. Inset: Collapse with b = 0.118(1), αSMM = 2.36(1) for
N ≥ 4096.

Plotting the probability that the SMM solution of a re-
alization is integer, i.e., the actual solution, as a function
of α in Fig. 4 shows a decrease at some apparent criti-
cal value αSMM. This decrease is steeper for larger system
sizes N , which is a behavior typical for phase transitions.
The transition depicted here is an algorithmic transition
from easy, since all realizations are solvable by LP tech-
niques, i.e., in polynomial time, to some harder phase,
where the LP does not yield solutions.

To estimate the point of this transition αSMM, we use
finite-size scaling, i.e., rescaling the α axis according to
(α − αSMM)N b, should result in a collapse of the data
points on one curve. To find values αSMM and b gener-
ating a good collapse the algorithm and implementation
from Ref. [42] is used. It yields αSMM = 2.361(7) and
b = 0.118(1). The collapse obtained when rescaling with
those values is shown in the inset of Fig. 4.

As a cross-check, we determine the position of the
peaks of the variance Var(p) of the solution probability
like in previous work [25,26], see Fig. 5. Since the single
measurements can only take the values 1 or 0, the max-
imum of the variance is max Var(p) = 0.25 at p = 0.5.
Therefore, this method effectively extrapolates the posi-
tion of the p = 0.5 point, which should be at the transition
point for N → ∞. The positions are extrapolated with a
power law αmax(N) = αSMM−aN−b̃ as typical for second
order phase transitions. Since the data points are almost
on a horizontal line and the exponent b̃ is therefore very
small, we can not get a reliable fit for this exponent, but
using the exponent from the collapse, leads to a compat-
ible critical density αSMM = 2.35(1) and a reasonable fit,
with χ2

red = 1.9, as shown in in Fig. 5.
For 4-SAT the exponent seems to be larger and a

fit through the positions of the maxima yields αSMM =
3.60(8), b̃ = 0.5(1) with χ2

red = 0.5 (not shown, simula-
tions used smaller system sizes).
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103 104
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)
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α
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Fig. 5. Variance of the solution probability p for the SMM

objective. Inset: The power-law fit αmax = aN−b̃ + αSMM to
the position of the peaks αmax. For fixed b̃ = 0.1176 the fit
yields αSMM = 2.35(1) with χ2

red = 1.9.

The other optimization function of this study, MV, i.e.,
maximizing the sum of all variables, leads to a qualita-
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tively similar behavior as SMM but a transition at lower
αMV = 1.25(2) (not pictured, simulations used smaller
system sizes). The lower transition point is plausible, since
this maximization prefers variables to be larger than zero
instead of 0. For this reason, we have not analyzed this al-
gorithm for 4-SAT. The best estimates for the transition
points are collected in Tab. 1.

Table 1. Values of critical points. αVC denotes the critical
point when mapping SAT to VC and applying an LP + cutting
plane solver used for VC. αMV is the easy-hard transition for
LP+MV. αSMM is the easy-hard transition for LP+SMM. αc

denotes the clustering transition [11] and αs the SAT-UNSAT
transition [9,43].

K αVC αMV αSMM αc αs

3 0.90(3) 1.25(2) 2.361(7) 3.86 4.26
4 – – 3.60(8) 9.547 9.93

3.2 Structural Analysis of the Factor Graph

The previous work on vertex cover and TSP showed [25,
26] that some LP easy-hard transitions coincide with
changes of the problem or solution structure. Therefore
we study the factor-graph representation of SAT with re-
spect to percolation transitions. We found two percolation
transitions that do coincide with each other. Though we
did not find one coinciding with the transitions of the opti-
mizing LP formulations. We will nevertheless show them,
since these percolation transitions of this factor graph
could be interesting on their own.

The standard percolation (SP) threshold is known to
be pc = 1

K(K−1) [6]. We look additionally at the tran-
sitions, where the two-edge-connected component (2EC)
[44] percolates, i.e., a component such that every node can
reach every other node by two distinct paths. Third, we
investigate the percolation of the q-core [45] for q ∈ {2, 3}.
The q-core is the remainder of a graph after all nodes with
degree q − 1 or lower are removed iteratively. Note that
the 2-core of a realization is a superset of the 2EC, since
2-core can not remove nodes from a two-edge-connected
component thus a 2-core consists of two-edge-connected
components connected by single edges.

We determined the percolation-transition points sim-
ilar to the method used above. This means, we extrapo-
lated the position of the maximum of the variance of the
size of the core or the 2EC. For the extrapolation to large
values of N we use a power law again. As an example the
inset of Fig. 6 shows this for 3-core and apparently the
power-law to extrapolate fits nicely.

We do not include graphs for the other cases, since
they look very similar. The resulting percolation points
are shown in Tab. 2. Note that the percolation thresholds
for 2EC and q = 2 are within statistical errors compat-
ible with each other. Also note that the 4-core is always

empty since the clause-nodes have at most K = 3 neigh-
bors and are thus directly removed. Since the factor graph
is bipartite, this leaves only isolated nodes, i.e., an empty
4-core.
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Fig. 6. Size of the 3-core at different values of α and N .
The inset shows the extrapolation of the position of maximum
variance similar to Fig. 5. The power law αmax = c − aN−b

with c = 1.554(1) and b = 0.55(1) fits.

Further, we looked at leaf removal [27], where itera-
tively neighbors of leaf-nodes are removed. Leaf removal
is a simplification rule for vertex cover, but also suited to
simplify XORSAT realizations, where it is mostly studied.
Since K-XORSAT uses the same CNF structure, it shares
the same factor-graph representation with K-SAT. For
leaf removal of the factor graph an exact first order tran-
sition point at αlr = 0.818469.. is known (αlr = 0.772278..
for 4-SAT) [46], which are also included in Tab. 2. For
XORSAT this is the clustering transition, where replica
symmetry breaking occurs. K-SAT realizations can also
be simplified with leaf removal by setting the leafs of the
factor graph, i.e., variables occurring only in one clause,
such that they satisfy this clause and removing the sat-
isfied clause and all isolated nodes from the problem.
This can be iterated until a graph without leafs, the leaf-
removal core, remains. If the core is empty, the realization
is fully solved by leaf removal. In the example in Fig. 1
node 2 and node 4 are leafs, such that the problem is
solved after one iteration.

Table 2. Percolation thresholds for different observables ex-
plained in the text. Note that the percolation transitions of PL
and LR coincide. From the two values of FG and LFG only one
is measured, while the other is calculated from the measured
one.

width=1
K SP 2EC 2-core 3-core PL LR

3 FG 1/6 0.219(1) 0.223(3) 1.554(1) 0.818(1) 0.81847..
LFG 1/3 0.438(2) 0.446(6) 3.108(2) 1.636(2) 1.63694..

4 FG 1/12 0.772(2) 0.77228..
LFG 1/6 1.544(3) 1.54456..



Hendrik Schawe et al.: Title Suppressed Due to Excessive Length 7

Further, we studied the pure-literal rule (PL), also
called affirmative-negative rule, which is an integral part
of the DPLL [47,48] search algorithm. A pure literal is a
variable which occurs only in one polarity, either positive
(also called affirmative) or negative in the formula. In the
graph this means, if only one polarity of a variable (xi or
xi) is connected to one or more clauses, this literal can
be set to true, thus fulfilling all adjacent clauses, which
can be removed from the graph without affecting the sat-
isfiability of the realization. Also, all isolated nodes are
removed from the graph. This procedure can be iterated
until no pairs of literals, of which only one is connected to
any clause, are left. The remainder of the graph is called
pure-literal core. If the pure-literal core is satisfiable, the
realization is satisfiable. Especially, an empty pure-literal
core is trivially satisfiable.

The example Fig. 2 would find that x2 is isolated and
thus remove all neighbors of x2, in this case c1. In the next
step, since after removal of c1 the node x1 is isolated, c2,
the neighbor of x1, is removed. The remaining pure-literal
core is empty and this realization satisfiable.

In Fig. 7 the size of the pure-literal core S, i.e., the
fraction of literal nodes still remaining, is plotted as a
function of α. It is clearly visible that there happens a
transition from “no core” to “core”. We use the inter-
section positions α× of all pairs of curves with the system
sizes N1 = 2N2 with N1 ≥ 4096 and extrapolate the inter-
sections to the large N limit, similar as shown before, with
the power law α× = aN−b1 + αpl. This way, we estimate
αpl = 1.636(2) and b = 0.5(3), with χ2

red = 0.5 for 3-SAT
and αpl = 1.544(3) with χ2

red = 0.4 for 4-SAT (cf. inset of
Fig. 7, smaller system sizes were used, the uncertainty of
b is too large to make any meaningful statement about b).
Other values of K were not examined.

0.0

0.2

0.4

0.6

0.8

αpl1.58 1.60 1.62 1.66 1.68 1.70

k = 3

1.48 1.52 αpl 1.58

k = 4

S

α

2048
8192

32768
131072

Fig. 7. Size of the pure-literal core after simplification ac-
cording to the pure-literal rule for 3-SAT in the main plot and
4-SAT in the inset. The vertical lines are values for the critical
αpl obtained by the power-law extrapolation of the intersec-
tions mentioned in the text.

Interestingly, this seems to be the same threshold of
the core/no core transition for leaf removal on the LFG,
although leaf removal on the LFG is not a valid simplifi-
cation rule for K-SAT. Note however that these two rules

are quite different and the cores, for α > αpl for both,
are substantially different from each other. Also note that
there are also instances which have a pure literal core but
no leaf-removal core. Despite of this, the previous analysis
shows that both methods show for the large N limit no
core below αpl but some above αpl.

For the easy-hard transitions we found, as shown in
Tab. 1, we were not able to identify structural transitions
(see Tab. 2) of the ensemble of SAT instances or of the
solution space structure, which coincide with the observed
easy-hard transitions. This is in contrast to the previous
results for VC and TSP.

On the other hand, the clustering transition point αc

and for sure the SAT-UNSAT transition point αs are well
above the easy-hard transitions found here. So it remains
to be determined in which way the easy-hard transition for
LP+SMM corresponds to a (possible hard to determine)
structural change of the problem.

Nevertheless the detected easy-hard transitions are far
beyond the percolation transition. In the case of VC the
pure LP method did only yield solutions up to the stan-
dard percolation transition of the underlying graph en-
semble and more sophisticated techniques were required
to overcome this threshold.

Thus, in summary, the behavior of random K-SAT
appears from the linear-programming perspective to be
richer as compared to VC and TSP. This is parallel to the
richer behavior observed when treating these problems an-
alytically.

3.3 Further results

In similar studies on vertex cover [25] and the TSP [26],
the introduction of cutting planes yielded substantially
better results. For vertex cover the introduction of (poten-
tially exponentially many but actually few) cutting planes
(CP) even lead to an LP+CP transition at the point where
in the analytic solution replica symmetry breaking, i.e.,
clustering of solutions appeared [35]. This efficiency of CP
was not observable here. It seems that the cutting planes
we tried, namely resolution cuts [49] and clique cuts [50],
were too weak at the low values of α examined here. An-
other cutting plane for the SAT problem, the odd cycle in-
equalities [51] are not directly applicable for K-SAT with
K ≥ 3, since they need clauses with 2 variables to be con-
structed. While they are useful as local cuts in a branch
and cut procedure, they are never violated in the begin-
ning for K ≥ 3 and thus not applicable for this study.

Finally, we also used for K = 3 the mapping of K-SAT
to the vertex cover problem for formulas up to N = 10000.
Using LP and cycle cutting planes [25] the corresponding
equivalent instances were solved. Again we measured the
probability that an instance was solved by an integer so-
lution as a function of α, for different system sizes. Using
an analysis (not shown) as for the previous approaches,
we were able to extrapolate an easy-hard transition for
this point. We obtained a critical value of αVC = 0.90(3),
which is well below the easy-hard transitions obtained us-
ing the LP-based approaches presented above. Therefore,
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apparently it does not pay off using a mapping to another
problem, at least for this pair of problems. A mapping to
TSP will lead to TSP instances which grow quadratic in
N for fixed α, therefore we did not test this.

4 Conclusions

We study the solvability of random K-SAT realizations at
different values of the clause-to-variable density α using
linear programming. A realization is solved if the LP yields
an integer solution. Since there are LP algorithms that
run in polynomial time, this means such a realization is
“easy”.

Since SAT is a decision problem, the application of
pure LP actually does not involve optimization, which
seems to make the problem less well-behaved. Therefore
we included artificial objective functions, which makes the
problem numerically better behaved. Note that we also ob-
served that usually more realizations can be solved when
including an artificial objective function as compared to
the trivial objective function.

We were able to identify easy-hard transitions. The
inclusion of artificial objective functions lead to higher
values of the control parameter α, where solutions can
still be found. In contrast to previous work on VC on
random graphs, non of these transitions coincided with
the onset of a clustered solution landscape. The reason
might be that K-SAT, or “natural” decision problems in
general behave differently. On the other hand, random K-
SAT exhibits several transitions for the structure of the
solution landscape anyway, in contrast to VC on random
graphs. It would be interesting to investigate the relation
between LP and solution landscape more thoroughly in
the future.

Anyway, from the practical point of view, we wonder
if carefully crafted objective functions could be used to
improve the efficiency of solving decision problems with
an LP approach, such as branch and cut.

We identified different structural transitions based on
the factor and literal factor graphs, like for standard perco-
lation, q-core, 2-edge connected component, leaf-removal
and pure literal rule. Most of these transitions have not
been described in the literature so far. We were not able
to identify a structural transition coinciding with an easy-
hard transition detected by any of the tested LP formu-
lations. Nevertheless, we believe that such a coincidence
should exist, since the properties of a problem should be
coded in the graph structure. Therefore, this unknown
structural property seems to be of a more complex type.
The fact that the relation between LP-based easy-hard
transitions and structural properties appears to be more
complex might also be related to the mentioned richer
behavior of the solution landscape as a function of the
density α (in comparison with VC). Still, we also did not
observe any structural transition corresponding to these
clustering transitions of the solution space. Thus, here is
still some work to be done.

Furthermore, in contrast to the previously studied ver-
tex cover problem and the traveling salesperson problem,

we did not observe any improvement by applying cutting
planes. This could be due to the type of cutting planes
used. Finally, we applied a mapping of SAT to VC and
used specific VC LP+cutting plane algorithm, which is
able to solve standard Erdős-Rényi VC instances just up
to the clustering threshold. Nevertheless, for SAT this did
not pay off, the easy-hard transition appears to be at even
smaller values of α compared to the MV objective.
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