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The solution-space structure of the 3-Satisfiability Problem (3-SAT) is studied as a function of the control
parameterα (ratio of number of clauses to the number of variables) usingnumerical simulations. For this
purpose, one has to sample the solution space with uniform weight. It is shown here that standard stochastic
local-search (SLS) algorithms like “ASAT” and “MCMCMC” (also known as “parallel tempering”) exhibit a
sampling bias. Nevertheless, unbiased samples of solutions can be obtained using the “ballistic-networking
approach”, which is introduced here. It is a generalizationof “ballistic search” methods and yields also a cluster
structure of the solution space.

As application, solutions of 3-SAT instances are generatedusing ASAT plus ballistic networking. The nu-
merical results are compatible with a previous analytic prediction of a simple solution-space structure for small
values ofα and a transition to a clustered phase atαc ≈ 3.86, where the solution space breaks up into several
non-negligible clusters. Furthermore, in the thermodynamic limit there are, for values ofα close to the SAT-
UNSAT transitionαs ≈ 4.267, always clusters without any frozen variables. This mayexplain why some SLS
algorithms are able to solve very large 3-SAT instances close to the SAT-UNSAT transition.
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I. INTRODUCTION

The application of notions, analytical approaches and nu-
merical algorithms from statistical mechanics has lead to a
better understanding [1–3] of NP-hard optimization problems
[4, 5]. One main underlying question is, why these optimiza-
tion problems are computationally hard. This means no fast
algorithms are available, where the running times increase
only polynomially with the problem size. The progress of
gaining insight into this phenomenon has been considerablein
particular for thetypical-case complexity, where ensembles of
random instances are studied as a function of control param-
eters. These ensembles often exhibit phase transitions where
changes of the effective “hardness” of the problem can be ob-
served. Often, these transitions are connected to changes of
the structure of the solution space, comparable to energy land-
scapes in physics. In particular, one is interested in the ques-
tion, how the change of the solution-space structures has anin-
fluence on the performance of exact and stochastic algorithms.
For example, for the vertex-cover problem, which is defined
on graphs, a clustering transition has been found analytically
[6] and numerically [7, 8] when increasing the edge density of
Erdős-Rényi random graphs. This transition coincides with a
change of the typical-case complexity from polynomial to ex-
ponential [9]. For other optimization problems, the situation
is less clear, as for thesatisfiability problem(SAT), which we
study in this work.

As we will explain, exact enumeration of solutions works
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well in one region of the phase diagram, close to the SAT-
UNSAT phase transition (see below), whereas Monte Carlo
approaches perform well in the opposite part of the phase dia-
gram, away from the SAT-UNSAT transitions. Unfortunately,
the clustering transition is located right between these extreme
parts, hence numerically difficult to study. We use a stochas-
tic algorithm in combination with a correction of the sampling
bias introduced by the stochastic algorithm to study the clus-
tering phenomena.

The outline of the paper is as follows. In the second section,
we give the necessary background on SAT and on clustering
of solution landscapes. In the third section, we briefly explain
the algorithms we use to sample solutions and show that they
exhibit a bias. Next, we introduce ballistic networking andre-
lated methods, which we use to correct for the bias. In section
five, we show the results we have obtained for random 3-SAT.
Finally, we provide a conclusion and an outlook.

II. BACKGROUND

A. Satisfiability

Satisfiability is one of the fundamental problems of com-
puter science, and has attracted a lot of attention over the
past years, also by physicists, due to its similarity to spin-
glass problems. It is the first problem proven to belong to the
class of NP-complete problems [10], a class of problems for
which no algorithm has been found yet that exhibits a poly-
nomial worst-case running time as a function of the problem
size. Therefore it is still a challenge to find algorithms which
perform well on typical instances and to understand the un-
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derlying structure of the solution space which may hinder the
performance of algorithms.

Satisfiability belongs to the class of constraint satisfaction
problems [11]: GivenN Boolean variablesxi = 0,1 and a
Boolean formulaF describing a set of constraints, each of
which forbids a certain assignment of values to some of the
variables, you are to decide whetherF can be satisfied, i. e.,
whether there is an assignment~x = (x1, . . . ,xN) such that all
constraints are fulfilled simultaneously. In theK-SAT formu-
lation,F is given in conjunctive normal form,

F =
M̂

m=1

(lm1 ∨ lm2 ∨ . . .∨ lmK ) ,

which describes a logical conjunction ofM constraints
(clauses)Cm each containing a disjunction ofK literals lmk
(m= 1, . . . ,M ;k = 1, . . . ,K) which are either a variablexi or a
logically negated variablexi .

A certain assignment of values to the variables is called
a configuration in the following. If a configuration satisfies
all clauses inF it is called a solution. In the randomK-
SAT ensemble each clause is chosen randomly and uniformly
amongst the 2K

(N
K

)

possible combinations in which no vari-
able appears twice.

One defines a control parameterα = M/N which is the
number of clausesM divided by the number of variablesN.
For lowα the problem is typically satisfiable whereas for high
values ofα there typically is no solution [12, 13]. It has been
proven rigorously [14] that the transition between the satisfi-
able and the unsatisfiable phase becomes sharp forN → ∞.
Whilst the position of the threshold forK = 2 is known ex-
actly [15], for largerK there are only numerical estimates. In
this paper we will stick to theK = 3 case, where every clause
contains exactly three literals. The satisfiability transition is
located in this case atαs = 4.267 [16].

B. Cluster phenomena

In addition to the SAT-UNSAT transition, analytical cal-
culations [17, 18] give rise to evidence that there are further
(“structural”) phase transitions which refer to the formation of
disconnected clusters of solutions for high values of the con-
trol parameterα in the satisfiable phase. Formally, clusters
in constraint satisfaction problems can be defined as extremal
Gibbs measures which gives the following picture for Satis-
fiability: For small values ofα all solutions are contained in
one connected component (cluster). Whenα grows, more and
more solutions disappear so that at some point the cluster de-
composes into smaller clusters which initially, up to a thresh-
old αd, make up only an exponentially small fraction of all
solutions, whereas aboveαd many clusters contribute to the
statisical behavior. Above a higher critical valueαc we en-
ter another type of clustered phase which is dominated by a
small number of large clusters. The case of 3-SAT is special,
as hereαd = αc, i. e., we directly enter the phase dominated
by few clusters. The position of the dynamical threshold to
the clustered phase is predicted to be atαc ≈ 3.86 [18].

This value is compatible with recent numerical results [19],
where the cluster structure was investigated using the detec-
tion of community structures. Unfortunately, the sampling
was performed using an algorithm, which does not exhibit
uniform sampling of the solutions, see below. Anyway, there
is no general rule how to translate the formal definition of
clusters, which holds in the thermodynamic limit, to finite sys-
tem sizes, hence other approaches than community structures
are possible. For numerical studies often a very appealing
approach is used, where a cluster is defined as the connected
components in a graph where each solution is represented by a
vertex and edges connect solutions differing in only one vari-
able. This definition of a cluster will be used in this work as
well. For every two solutions belonging to the same cluster
there is therefore a “path” of configurations which all solve
the SAT instance at hand. Unfortunately, this path can be long
and peppered with many dead ends or loops which makes it
very difficult to decide whether two configurations belong to
the same cluster. The main problem when discussing clusters
in high-dimensional discrete solution spaces like that of Satis-
fiability is that one is tempted to think of clusters as blob-like,
well-seperated and homogeneous structures in configuration
phase like, e. g., nano-clusters formed by agglomeration of
atoms. The clusters which occur in high-dimensional discrete
solution spaces are yet of a completely different nature in that
they are more like fragmented and interweaved structures with
lots of dead-ends, loops and holes which makes it difficult to
speak of spatially seperated clusters.

The existence of a clustered phase has been proven rigor-
ously forK ≥ 8 [17]. In the language of statistical physics this
clustering corresponds to one-step replica-symmetry breaking
(1-RSB) [20, 21]. A further substructure in terms of another
clustering of solutions taken from one cluster, giving a hierar-
chical structure of clusters is suspected where 1-RSB becomes
instable and higher steps of replica symmetry breaking occur
[22].

What makes cluster phenomena interesting from the algo-
rithmic point of view is the question if (and if so in what way)
clustering has an influence on the performance of local search
heuristics. Usually it is assumed, that the existence of many
clusters is an indication for a complicated “rugged” energy
landscape, which then also gives rise to many local minima,
hindering the performance of local search heuristics [22].In
the same way, but with a slightly different focus, Krząkałaet
al. [18] propose that the appearance of locally frozen variables
in clusters is responsible for the slowdown of heuristic algo-
rithms close to the SAT-UNSAT threshold. A locally frozen
variable is a variable which takes the same value over all so-
lutions belonging to one cluster. A cluster containing at least
one frozen variable is called frozen. One defines the freez-
ing transitionα f as the smallest value ofα above which all
solutions belong to frozen clusters.

To clarify the influence of phase transitions on the aver-
age computational hardness one can study the performance of
stochastic algorithms as a function of the control parameter
α. Of particular interest is the algorithm-dependent value of α
up to which an algorithm shows linear-time performance, and
compare this to threshold values ofα [23]. Studies of stochas-
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tic algorithms such as ASAT [23], WalkSat [24] and ChainSat
[25] have shown however that those algorithms have linear be-
haviour up to values considerably beyond the clustering tran-
sition. This suggests that the cluster transition has no impact
on the performance of local search algorithms as long as there
are precautions against entropic traps. It is remarkable that
ChainSat has this behaviour although it is greedy “in a weak
sense” as it never allows steps which increase the number of
unsatisfied clauses. Naively one would therefore expect it to
get trapped very easily in local minima. The authors of [25]
interpret this as evidence for the belief that true local minima
are very rare in high-dimensional search spaces. These results
could also indicate that indeed it is more the (non-) existence
of frozen clusters, which is responsible for the performance of
local-search algorithms.

Nevertheless, for small instances there are always some
frozen variables. Therefore in [26] a different notion of frozen
clusters via thewhitening coreis used. There one looks, for
each solution, interatively for variables which can be flipped
since they appear only in clauses satisfied by other variables
or which contain variables already detected in the whitening
core. The position of this freezing transition was then cal-
culated by exact enumeration and clustering of all solutions
for sufficiently small system sizes and is expected to lie at
α f = 4.254 close to but below the satisfiability transition.
In a similar way, [27] finds a cluster condensation transition
in the solutions generated by ASAT very close toαs, again
these results rely on a non-uniform sampling of the solutions.
Anyway, these results are compatible with the observation of
a good performance of local-search algorithms close to the
thresholdαs.

C. Algorithmic treatment of SAT

Algorithms for SAT include a broad spectrum, both
stochastic and exact, from simple and straight-forward algo-
rithms like RandomWalksat [28] and WalkSat [29, 30] to com-
plex algorithms like DPLL [31] and message-passing algo-
rithms such as Belief Propagation (BP) and Survey Propaga-
tion (SP) [21]. For small systems exact enumeration of all
solutions is possible using one of the numerous standard al-
gorithms [32, 33] such as the aforementioned DPLL. It can
be shown [34] that deterministic algorithms have longest av-
erage run times close toαs reflecting the difficulty of deciding
whether a given SAT formula is satisfiable or not. The prob-
lem with exact enumeration is that it is limited to small sys-
tems due to hardware restrictions, especially because of the
memory needed to store the huge number of configurations,
as the number of solutions grows exponentially with system
size. Furthermore the number of solutions is not a continu-
ous function when crossing the satisfiability threshold, but it
drops from a finite number to zero. This corresponds to a non-
zero entropy at the phase transition, the entropy per variable
grows approximately linearly with decreasingα [35, 36]. In
turn this means that even very close to the satisfiability thresh-
old the number of solution grows exponentially, and quickly
becomes so large that it is not feasible to enumerate all solu-

tions even in this regime. From counting all solutions using
DPLL for systems up toN = 160 we can estimate the solu-
tion entropys = S/N near the phase boundaryα = 4.25 to
be roughly between 0.11 and 0.12 which gives more than 108

solutions already forN > 160, thus taking up at least 2 GB.
To overcome these limitations one can turn to stochastic

algorithms which, starting at an arbitrary configuration, do
successive changes either completely randomly or based on
a heuristic evaluating information about the local configura-
tional neighbourhood. Stochastic algorithms are not guaran-
teed to find a solution, even if solutions do exist, but they can
be significantly faster than deterministic algorithms. It is thus
possible to obtain solutions for much larger systems, but on
the other hand stochastic algorithms can never prove that there
is no solution, tests for unsolvability can only be done by us-
ing deterministic algorithms.

In this paper we study the cluster structure numerically
for K = 3, which requires unbiased sampling of the solution
space. Different types of sampling algorithms are studied and
shown to be biased. We therefore present an algorithm which
uses a different approach to create a survey of the cluster struc-
ture of Satisfiability instances from which it is then possible
to derive unbiased samples. It is an improvement on the “Bal-
listic Search” algorithm which has originally been appliedto
spin glasses [37–39]. The main advantage of the algorithm is
that it is able to provide an overview of the cluster structure of
the solution space without having to enumerate all solutions
which is no longer possible already for moderate numbers of
variables.

III. SAMPLING ALGORITHMS

A. Bias in SLS algorithms

If stochastic local search (SLS) algorithms found all solu-
tions with the same probability one could use them directly to
probe the solution space. Unfortunately, this is not the case as
we will see in this section. Later on in this article we will use
ASAT as solution generator so we use it here for an exemplary
presentation of the bias in SLS algorithms.

ASAT is a simplified variant of Focused Metropolis Search
[24] and was first described in 2006 [23]. It starts at a ran-
dom configuration and in each step picks a variable from an
unsatisfied clause. This variable is flipped if either this de-
creases the number of unsatisfied clauses, or otherwise with
a constant probabilityp which is a tuning parameter of the
algorithm. ASAT has run times linear in the system size at
least up toα = 4.21 on 3-SAT. For instances of moderate size
like those we study here, it can well be used beyond this point
[27].

The test procedure is very simple: For a randomly cho-
sen small instance we run ASAT again and again starting
each time from a different randomly chosen configuration and
count how often each solution returned by ASAT is found. If
there were no bias we would expect the histogram of solu-
tion multiplicities to be flat except for statistical fluctuations
around a plateau value, i. e. the histogram should resemble a



4

 0

 5

 10

 15

 20

 25

 30

 0  100  200  300  400

m
u
lt

ip
li

ci
ty

 /
 1

0
0
0

solutions ordered by multiplicity

 0

 2

 4

 6

 8

 10

 12

 0  100  200  300  400

ASAT
random solutions

FIG. 1: Multiplicities of solutions found by ASAT in 106 runs for
a randomly chosen instance withN = 50, α = 4.0, compared to an
unbiased distribution. Inset: Multiplicities of the ASAT solutions
after an additionalT = 0-MC step with 10 sweeps.

Gaussian error function.

Fig. 1 shows the resulting histogram, in comparison to a
histogram filled with the same number of random integers
drawn from a truely flat distribution over the range corre-
sponding to the number of solutions of the SAT instance show-
ing what the distribution should look like if there were no bias.
Clearly there is a strong bias favouring some solutions over
others. To quantify the deviations we use aχ2 test, and calcu-
late thep-value giving the probability that an unbiased sam-
pling process yielded a sample deviating at least as much than
the one at hand. Thep-values numerically are smaller than
10−323 (i. e., the resolution of ourdouble numbers).

To test whether this bias can be corrected in a simple way,
we did a further check, where instead of using the solutions
returned by ASAT directly, for each solution found by ASAT
a solution from the same cluster was generated using aT = 0
Monte Carlo (MC) search starting at the ASAT result. The
outcome of this modification is shown in the inset of Fig. 1 for
the same SAT instance as before. The distribution now clearly
has 5 plateaus corresponding to the 5 clusters of the solution
space and looks much flatter but exhibits still some bias. One
sees that most of the ASAT solutions stem from the smallest
cluster, hence the sampling does not respect the cluster size.
Hence, ths bias can be strongly decreased by additionalT = 0
MC simulations, but not completely. Further checks showed
that the bias persists independently of the system size.

Since we want to study clustering properties of the solution
ensemble we need to remove the bias completely and sample
solutions in proportion to the cluster sizes. To ensure this, we
will perform reweighting using the Ballistic-Search algorithm
as described in section IV. Before we come to the Ballis-
tic Search, we will show in the next section that MCMCMC,
another important sampling method, fails on sampling SAT
solutions uniformly as well.

B. Bias in MCMCMC

The Metropolis-Coupled Markov Chain Monte Carlo
(MCMCMC) method, first proposed in 1991 by Geyer [40],
also known as Parallel Tempering [41, 42], is a powerful and
versatile tool, commonly used in biophysics and statistical
physics to perform equilibrium simulations and to generate
unbiased samples in large configuration spaces. MCMCMC
uses a set of replicas of single instances, simulated in par-
allel at different temperatures and linked by global updates
in which replicas are swapped pair-wise with an acceptance
probability depending on their energy difference and temper-
ature spacing (Metropolis-Hastings criterion), thus facilitating
the tunneling through barriers seperating local minima of the
phase space [43].

To study the performance of MCMCMC on SAT we em-
ploy a histogram test similar to the one described in sec-
tion III A for the performance of ASAT. For several values
of α = 1.00. . .4.25 scattered over the satisfiable phase, the
number of variablesN is chosen such that expected number
of solutions is 1000. This, e. g., results for the smallest value
of α considered here in a system sizeN = 14, while for the
highest value ofα, N = 50 is feasible.

We apply a straight-forward implementation of MCMCMC
to a set of 50 instances for each value of the control parame-
ter α, where we use 15 temperatures, the lowest, at which the
samples are taken, being initiallyT0 = 0.1, the highest such
that the corresponding energy is found to be approximately
M2−K which is the expected energy of a completely random
configuration. Every 1000 steps the temperatures are adjusted
to drive the replica exchange rate between neighboring tem-
peratures towards 50 lowest temperature fixed at 0.1. The
procedure chosen to adjust the temperatures leads to a distri-
bution of temperatures where for the lowest temperatures the
exchange rates indeed reach 50 whereas the highest tempera-
tures all gather in the random phase. This can be seen as an
indication that the number of temperatures used is sufficient
to allow the replicas to travel between the constrains, i. e.the
highest temperatures are indeed located in the “paramagnetic
phase”. We take one sample every second sweep to generate
a total of 106 samples. Only successful sampling steps are
counted, i. e. those where the energy of the configuration at
T0 is zero.

The histograms with the resulting distribution look pretty
close to those drawn from a flat distribution (not shown here).
We again use thep-values obtained from aχ2 test to quantify
the deviations and find that in most cases MCMCMC gives
reasonably flat distributions, hence this method appears toex-
hibit on the first sight a much lower sampling bias. Never-
theless, there also are a number of histograms having a sig-
nificant bias exhibiting very smallp-values. The higher the
value of the control parameterα is chosen, the larger becomes
the spread of the distribution ofp-values towards extremely
small values. This can be seen from Fig. 2 where the distri-
bution ofp-values, integrated over all system sizes and values
of the control parameter, is shown for the two cases where the
instances exhibit one or more than one cluster of solutions,
respectively. (The number of clusters can easily be calculated



5

0 0.2 0.4 0.6 0.8 1
p value

nu
m

be
r

FIG. 2: Bias of MCMCMC: Dependence ofp-value on the number
of clusters, integrated over allN andα. Dashed line:p-values for
instances with only one cluster, solid line:p-values for instances
with more than one cluster.

exactly for these small instances.) In the case that the solution
space consists of only one connected component, thep-value
distribution is flat showing that MCMCMC works unbiased as
expected. The presence of clustering on the other hand leads
to a bias or imbalance in the sampling process resulting in a
strong peak at smallp-values.

Since we are interested in particular in those instances
which exhibit many clusters, MCMCMC turns out to be not
suitable as well, since all instances have to be sampled cor-
rectly. Note that for larger system sizes, the number of in-
stances having just one cluster, where MCMCMC seems to
work well, will strongly decrease. Hence, for large system
sizes, MCMCMC will exhibit a bias for basically all instances
of interest. To create an unbiased sample we need a different
method which will be presented in section IV.

IV. BALLISTIC SEARCH

Here, as mentioned in Sec. II B, we are using the neighbor-
based definition of clusters: two solutions are considered to
be in the same clusters, if there exists a path in solution space
consisting of single-variable flips.

We use Ballistic Search, which has been introduced in the
year 2000 as a method for studying ground-state properties of
spin glasses [37]. The approach is able to provide a survey of
the cluster landscape using stochastic algorithms, in particular
without the need to enumerate all ground states as it is usually
necessary when one aims at clustering. The sheer number of
ground states forbids exact enumeration when studying spin
glasses, and, as mentioned above, the same holds for SAT. We
therefore use this method which relies on generating a survey
of the most important clusters.

The survey consists of a setA = {Ai} where each ele-

mentAi = ({c(i)
j },Σ(i)) represents one cluster and consists of

FIG. 3: Between those 6 solutions (black circles) from the same clus-
ter (light grey) Ballistic Search has found only 2 paths. Theapparent
number of clusters is 4. We need to increase the density of solutions
to make Ballistic Search more efficient.

a (small) set of solutions{c(i)
j } from the clusteri and an esti-

mateΣ(i) of the size of clusteri. The survey should cover all
clusters, or at least all but those which are negligibly small.
One can then sample the whole solution space with correct
weights by generating the desired number of solution samples
from the representative sets of solutions for each cluster ac-
cording to the respective cluster sizes.

Two main ingredients form the basis of the Ballistic Search
algorithm. Firstly, the above described data structure storing
small sets of representative solutions for each cluster instead
all solutions. Secondly, a “ballistic path search” is used to
analyse the cluster space and generate the survey from a given
set of solutions. The basic operation of this procedure is that
we have to determine for any given pairca, cb of solutions,
whether they belong to the same cluster. This has to work un-
der the assumption that for the case ofca, cb belonging to the
same cluster, a complete nearest-neighbor path of solutions
betweenca andcb is not contained in the set of already found
solutions. Instead, one searches stochastically for pathsbe-
tweenca andcb by starting at one solution and subsequently
changing a randomly chosenfreevariable. A variable is called
free if its value can be changed without violating any con-
straint, so that one never leaves the solution cluster. Thisis
repeated until either the target solution is reached or no free
variable is left, because as an additional stop condition every
variable shall be touched at most once. (Because of this ad-
ditional constraint the path search is called “ballistic”.) This
implies that in a successful ballistic path search the number
of steps taken is always equal to the Hamming distance of the
solutions, i. e., the number of variables in which the two solu-
tions differ.

Figures 3 and 4 give a graphical description of how the Bal-
listic Search algorithm works. We start with some randomly
generated solutions depicted as black circles in Fig. 3, all
of which belong to the same cluster which is drawn in grey
in a 2-dimensional cartoon of the N-dimensional configura-
tion space. For the sake of simplicity we assume here that
all solutions belong to the same cluster, the generalization to
more than one cluster is obvious. Running the ballistic path
search we find that some of the solutions can be connected by
paths drawn as lines in the picture, i. e., for these solutions the
algorithms correctly finds that they belong to the same clus-
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FIG. 4: Adding solutions (grey) has yielded a correct identification
of the cluster, because more paths (grey) have been found, now con-
necting all solutions.

FIG. 5: This cluster has a more complex structure than the onein
Fig. 4, illustrated by the additional holes. Here adding even more
new solutions (grey) than before does not work. Still not allsolutions
are recognized as belonging to the same cluster.

ter. The problem is that for low solution densities the average
distance between solutions is large, and the efficiency of the
ballistic-path search strongly decreases with larger distances
[37]. Therefore we only find a few paths and the apparent
number of clusters in this example is larger than its true value,
cf. Fig. 3. What we need to do is to increase the number
of solutions by rerunning ASAT. For few added solutions, the
measured number of clusters will increase, since only few ad-
ditional paths within clusters are detected, less than the num-
ber of added solutions. When generating even more solutions,
we will find that the apparent number of clusters at some point
no longer increases, but instead it decreases as more and more
paths between solutions are found, until finally all solutions
are correctly assigned to the same cluster as shown in Fig. 4.

A. Ballistic networking

Our studies have shown that the simple ballistic-path search
algorithm has very low efficiency when applied to Satisfiabil-
ity which can be attributed to a high complexity of the solu-
tions space or large sizes of the clusters. We therefore devel-
oped a refinement of the algorithm named “ballistic network-
ing”, which is a very general extension of the ballistic path
search so that it can readily be applied to other problems.

The idea of the algorithmic refinement is to increase the
probability of identifying two solutions, originca and target

FIG. 6: Ballistic Networking improves on the result of Ballistic
Search by not adding solutions randomly, but adding solutions from
the same cluster using aT = 0 MC search (arrows). Now all solu-
tions are found to belong to one cluster.

cb, as belonging to the same cluster using ballistic path search
by again increasing the number of solutions. Instead of using
ASAT to generate more solutions we generate 2naddadditional
solutions by performing independentT = 0 MC simulations
starting atca andcb, respectively. Hence, we are sure that the
additional solutions belong to the same cluster as their respec-
tive “parent” solution. We then try to find connections using
the ordinary ballistic path search between all(nadd+1)2 pairs
of solutions, where one solution belongs to the origin and one
to the target. If at least one path is found, it is clear thatca and
cb belong to the same cluster. We apply this test to all pairs
of solutions which have not yet been found to belong to the
same cluster. An artist’s view of this improvement is given in
figures 5 and 6. Fig. 5 shows how the standard ballistic search
fails due to a more complex structure of the cluster, although
even more solutions than before have been used. In Fig. 6 the
solutions found by theT = 0 MC search are drawn as points
connected to their parent solution by arrows. We can see that
the number of successful ballistic path searches (gray lines)
does not have to be very high, but still is enough to correctly
identify the cluster.

Indeed this procedure improves the performance of the
search so much that it outweighs the additional effort of hav-
ing to carry out(nadd+ 1)2 ballistic path searches instead of
one. Fig. 7 shows a comparison of the performance of ballis-
tic path search without and with additional solutions. The case
“+0” corresponds to the bare ballistic path search. The hori-
zontal axis shows the number of ballistic path searches which
have to be carried out in the worst case, i. e., when no con-
necting path is found. We found 5< nadd< 10 to be a suitable
range for the system sizes under study.

When creating the additional solutions to test whether a pair
of solutionsca, cb belongs to the same cluster, to improve the
success probability, one can think of introducing a bias into
the T = 0 MC search which pushes the additional solutions
derived from the first solutionca closer to the second solution
cb and vice versa. Indeed we found that such a bias has a pos-
itive influence on the success probability of the ballistic path
search. Yet we did not use this bias in the implementation,
because the positive influence comes at a high cost. For each
pair of solutions to be tested a dedicated biased set of addi-
tional solutions has to be generated which cannot be reused
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FIG. 8: Comparison of the actual number of configurations perclus-
ter to the number estimated by Monte Carlo integration. Eachpoint
corresponds to one cluster.

when comparing eitherca or cb to a third solution. The neces-
sary computational effort for generating each time new biased
configurations by far outweighs the positive effect of the bias.

The second part of the cluster surveyA consists of the sizes
Σ(i) of the clusters. An exact calculation of the cluster size is
possible, but takes too long, since it typically grows exponen-
tially with N. We have therefore examined several different
estimation methods with respect to their reliability in giving
a correct estimate for the cluster size by comparing the esti-
mated cluster size to the exact cluster size on a random ensem-
ble of clusters for different values ofα and small system sizes
N. The best method known to us has been found to be the es-
timation of the cluster size using a Monte Carlo integrationas
it has been used in [44] in an application to spin glasses. Fig.

8 shows a comparison of the actual number of configurations
in one cluster to the number as estimated by Monte Carlo in-
tegration. We used several combinations ofN andα where
the total number of solutions (over all clusters) did not exceed
5 ·106, such that all clusters could be calculated exactly, and
afterwards for each cluster the MC estimation was run.

B. Implementation

Combining ballistic networking and the cluster size estima-
tion the full algorithm is comprised of two alternating steps.
The first step is to generate a given number (of the order of
1000) of solutions of the Satisfiability instance at hand using
the ASAT algorithm. The tuning parameter of ASAT is chosen
to bep = 0.21 which is the optimal value as given in [23]. In
the second step Ballistic Networking of the solutions foundby
ASAT is done as described above to create the cluster survey,
and then the sizes of the clusters are estimated. Afterwards
ASAT is run again and another set of new solutions is created.
The cluster survey is then updated using Ballistic Networking
on the new solutions and the solutions representing the so far
found clusters in the existing survey. Here new clusters may
be found, and if so, their size is estimated. This is repeated
until the cluster survey is considered complete, i. e., no more
relevant clusters are found.

From the cluster survey for each instance a setU of un-
biased solutions can be generated using the cluster-size esti-
mates. For each solution to be generated for a given instance,
first a cluster from the survey is selected with a probability
proportional to the cluster size. One solution is selected from
the set of representative solutions and starting from this solu-
tion aT = 0 MC search is performed finally giving the solu-
tion to be used in the analysis.

Defining a good stopping criterion is a crucial point of the
algorithm. As the cluster number in Satisfiability can be rather
large, we decided not to generate all clusters, but all except
for those which contain only a neglegibly number of solu-
tions. For this purpose we monitor the total cluster weight
∑i Σ(i). We run the algorithm until the total cluster weight has
not increased by more than 0.5 % over the last half of solu-
tions included in the clustering process. We store the orderin
which the solutions have been generated by ASAT and label
each cluster with a number telling the position of the earliest
solution which has been found to belong to this cluster.

When trying to optimize the number of new solutions added
in each round one has to consider two competing effects:
On the one hand adding solutions — as in ordinary Ballistic
Search — may reveal that two clusters actually are parts of the
same cluster, connected maybe by only a small path in config-
uration space which has been too hard to find with fewer so-
lutions. On the other hand increasing the number of solutions
makes Ballistic Networking slower and, even worse, increases
the probability of false new clusters which in turn can lead to
an on-going increase of the cluster number and total cluster
weight and thus to a failure of the stopping criterion.

The system sizes which can be reached using the method
described above depend, of course, on the control parameter
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FIG. 9: Dependence ofppath of ballistic path search onα anddham
for N = 128. As the typical distance of two solutions depends onα,
so do the ranges shown in the plot. For small distancesdham≤ 15,
a path is usually found, while for large distances, the probability de-
pends on the value of the control parameterα, which can be under-
stood by a more and more complex structure of the solution clusters.

α. For smallα all solutions are contained in only one large
cluster where there are many possible paths between config-
urations so that Ballistic Search is very efficient and system
sizes of a few hundred variables are possible. For highα val-
ues in the solvable phase, the number of solutions is small so
that in this regime Ballistic Search still is rather efficient due
to the small extent of the clusters and relatively large system
can be done.

Fig. 9 shows the dependence of the success probability of
ballistic path search on the Hamming distancedham between
the configurations forN = 128, for different values of the con-
trol parameterα. Up to α = 3.8 the probability decreases
strongly with increasingα, as the clusters develop more holes.
Above this point the curve is approximately independent ofα.
We also find that the probability decreases weakly with in-
creasing system size (not shown). The fact that the average
distance between solutions decreases withα makes Ballistic
Networking most difficult in the intermediate regime around
α ≈ 3.3. Here the number of ballistic path searchs needed to
find a connection between two solutions from the same clus-
ter is highest. The cluster structure seems to be such that there
are many “dead ends” in which the search may get stuck. To-
gether with the high number of clusters, which enters quadrat-
ically in the running time, this limits the reachable system
size. All in all, Satisfiability instances of up toN = 144 vari-
ables were doable in reasonable time over the whole range of
interest 3.0< α < 4.2 while for smaller intervals of the control
parameter, we also studiedN = 256.

V. RESULTS

Here, we study the behavior of random 3-SAT instances as
a function of the parameterα. This is meant in the sense that
we generate an instance using a given numberN of variables

and a set of (arbitrarily ordered) clausesCm (m= 1, . . . ,Mmax).
We choseMmax = αmaxN, whereαmax is the largest value of
the control parameter we want to consider. We can study the
behavior of each instance as function ofM ≤ Mmax by con-
siderung each time exactly the clausesCm for m = 1, . . . ,M.
Also, we can average over these distances for each value of
the control parameter.

A. Hierarchical clustering

For the analysis [45] of the behavior of 3-SAT as a function
of the control parameterα, we start by looking at the hierar-
chical structure of a setU of solutions sampled for a typical
3-SAT instance. We have used “Ward’s algorithm” [46, 47],
an agglomerative hierarchical matrix updating algorithm,on
the setU to extract a hierarchical clustering from which we
can then draw a visual representation of the solution space.

Ward’s algorithm has been applied in many different fields
ranging from RNA secondary structures over optimization
problems to spin glasses [8, 19, 39, 48]. It is an iterative pro-
cedure where initially each configuration comprises a single
item cluster. In each step those two clusters are merged which
have minimal distance with respect to an effective distance
measure chosen such that the sum of the variances in each
cluster is minimized. After each merger, the distances of the
remaining clusters to the new cluster have to be calculated,
for details see, e. g., Ref. [47]. Finally, one reorders the con-
figurations according to the hierarchy obtained in the iterative
merging process, and draws a color-coded visualization of the
distance matrix.

Next, we present some results for a typical instance. We
chose one which exhibits its SAT-UNSAT transition close to
the numerical estimate of the ensemble averageαs = 4.267
given in [16]. Fig. 10 shows the color-coded distance matri-
ces and the dendrogram which were generated for three dif-
ferent values ofα . The difference in the solution landscape
and cluster structure between the phases is clearly visible. For
low α the Ward matrix is featureless and homogeneously grey.
All solutions belong to one single cluster and the phase space
shows no specific features. In the intermediate range one sees
box-like structures along the diagonal in a darker grey. These
correspond to clusters, because darker means smaller Ham-
ming distance and the solutions inside a cluster are closer to
each other than to other solutions. Some of these boxes show
a substructure which can be interpreted as the solutions from
this cluster themselves forming sub-clusters. This is consis-
tent with the theoretical prediction of replica-symmetry break-
ing beyond 1-RSB in the intermediateα range [22]. Never-
theless, as mentioned in the introduction, it is to be expected
that most of the clusters are not relevant in the thermodynamic
limit and a small number of clusters contains almost all solu-
tions. For higher values ofα the substructures inside the clus-
ters become washed out whereas the first-level cluster struc-
ture becomes more pronounced as the cluster become smaller.
In the replica symmetry breaking framework this would be in-
terpreted as a vanishing of higher level RSB above a certain
threshold, but this cannot be deduced from looking at single
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FIG. 10: The hierarchical structure resulting from Ward’s algorithm
visualized both as tree structure (dendrogram) and distance matrix,
for N = 256 andα = 1.00 (top), 4.00 and 4.25 (bottom). Darker grey
scales correspond to smaller distances.

instances, of course.
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FIG. 11: Complexityc as a function ofα and for several system sizes
between 32 and 144. Lines have been drawn to guide the eye. The
error bars give statistical errors.

B. Averaged quantities

The complexityc = 1
N logNc is defined as the logarithm of

the number of clusters normalized to the system size. Fig. 11
shows the complexity as a function ofα and for system sizes
up toN = 256 variables averaged over 200–500 instances for
each value ofα and each value ofN. The number of clusters
was taken directly from the cluster surveys created using the
Ballistic Networking method described above.

For the “easy” part of the satisfiable phase, where the value
of the control parameterα is small, there is only one clus-
ter, thus the complexity is zero. In an intermediate range the
number of clusters grows peaking at a value which is strongly
affected by finite-size effects and then becomes smaller again.
This behaviour reflects the theoretical prediction of one single
cluster in the lowα regime “crumbling” into smaller pieces
whenα is increased and the clustered phase is reached. For
even higherα the vanishing of solutions leads to the disap-
pearance of clusters and the cluster number decreases again.
Clearly, the peak of the complexity curves seems to converge
towardsαc with increasing system size, in accordance with
the analytic predictions [18].

Looking at this plot one has to keep in mind that the stop-
ping criterion used in the algorithm is based on the number
of solutions covered by the clusters that were found so far. In
a phase with a large number of small clusters we will miss
small clusters if they only comprise a negligible part of the
solutions (in the sense of the stopping criterion) and therefore
underestimate the number of clusters. It is therefore natural
that the complexity found here is lower than the one given in
[26]. After all the complexity shown in the graph is only a
lower bound for the true complexity respecting all clusters. In
phases dominated by few and large clusters its value should
nevertheless be close to the true value.

Fig. 12 displays the fraction of the solutions contained in
the largest cluster. Forα < αc this value seems to increase
with growing system size. Atα = αc it exhibits a minimum,
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FIG. 12: Fraction of the weight of the largest cluster with respect to
the total weight of all clusters.

while for α > αc it decreases slightly with growing system
size, but it is larger than the value found right atαc. These
results are also compatible with the analytical prediction[18],
which states that only for a rangeα≥αc more than one cluster
is relevant in the thermodynamic limit. Nevertheless, we can-
not deduce from the data, since system sizes we can reach are
rather limited, whether for all values ofα < αc this growing
fraction converges to one or to a smaller value.

Next, we have a closer look at the average structure of the
solution space. As mentioned in the discussion of the Ward
matrices, solutions belonging to the same cluster are more
similar to each other, i. e., closer in terms of the Hamming dis-
tance, than pairs of solutions which belong to different clus-
ters. The cluster structure is thus reflected in the set of all
pairwise overlaps, where the overlapr i j of two solutionsi and

j for which the Boolean variables take the values given byx(i)
n

andx( j)
n is defined asr i j := ∑N

n=1 δ(x(i)
n ,x( j)

n )/N. Fig. 13 shows
the overlap distribution forα = 4.0 and several values ofN.
For each system size at least 1000 instances have been pro-
cessed with the algorithm described in section IV B and 500
solutions have been generated from each cluster survey.

Two peaks are visible. One peak is lying close to〈r〉 = 1
and due to the overlap of solutions belonging to the same clus-
ter. With larger system size it moves slightly to lower〈r〉 val-
ues and becomes sharper. The second peak at about〈r〉 = 0.7
is not discernible for the smallest system size, but only evolv-
ing with larger system sizes and only visible weakly againstan
also growing background. Note that a pure two-peak structure
would correspond to the picture of one-step broken replica
symmetry (1-RSB) [49]. Nevertheless, the result is not fully
clear here, since in addition to the peaks, there is also a con-
tious part between the two peaks. On the other hand, it is clear
that the overlap converges to zero for values of the overlap
smaller than 0.5. This speaks against a full-level RSB struc-
ture of the solutions space. Note that we have found similar
results for other values of the control parameterαc < α < αs
(not shown).
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FIG. 13: Overlap〈r〉 of solutions in clusters found by Ballistic Net-
working, forα = 4.0. For〈r〉 < 0.4 the curves are essentially zero.

C. Freezing transition

To complete the picture we also studied the freezing tran-
sition, which as mentioned in section II B is defined as the
smallestα above which all solutions belong to frozen clusters
and has been found to lie atα f = 4.254.

To check directly whether a cluster contains frozen vari-
ables, we need to generate and compare all solutions from
this cluster, therefore cluster surveys do not help here. Us-
ing exact algorithms we find that for the system sizes we can
reach, for allα near the SAT-UNSAT transition there are al-
ways frozen variables in all clusters. This is probably due to
too small systems sizes.

Thus, we followed a different approach. For each in-
stance, taken atα = 4.20 and 4.25 and for system sizes up
to N = 2048, we generated a solution using ASAT, which be-
longs with high probability to the largest cluster. Then we
performed a very longT = 0 simulation starting from this so-
lution, and measured the fractionpfrozen of variables which
have never flipped while performing this random walk inside
the solution cluster. We extrapolated this fraction to a large
number of MC steps, yieldingp∞

frozen, see Fig. 14. With in-
creasing system size,p∞

frozen seems to converge to zero, see
inset of Fig. 14. Hence forα = 4.20 andα = 4.25 the largest
clusters seems to contain no frozen variables in the thermo-
dynamic limit. This is compatible withα f = 4.254, meaning
that in the thermodynamic limit no frozen clusters occur be-
low this value ofα.

VI. CONCLUSION

In this work we have shown that stochastic local search al-
gorithms cannot be expected to produce correctly weighted
samples of the solution space of Satisfiability. The same holds
true for MCMCMC which is widely used to sample config-
uration spaces in many fields of application, when the SAT
solutions are spread over several clusters.
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α = 4.20 and different system sizesN. The solid lines indicate fits to
functions of the formpfrozen(t) = p∞

frozen+at−β Inset: Extrapolated
valuesp∞

frozen as function of system sizeN in a double-logarithmic
scale, forα = 4.20 andα = 4.25. The “?” marks a point where the
extrapolation failed and an upper limit was estimated by eye.

A new type of algorithm has been presented and used for
studying clustering phenomena in the solution landscape of
the Satisfiability problem. It is an improved version of the
Ballistic Search algorithm which has been successfully used
for studying spin-glasses. Its guiding principle is to gener-
ate a survey of clusters of solutions represented by small sets
of solutions rather than enumerating and clustering all solu-
tions which is unfeasible already for moderate system sizes.
By using a different approach, Ballistic Networking, in the
reconstructing process of the cluster structure the efficiency
of the Ballistic Search could be improved so that its perfor-
mance becomes reasonably high when used on Satisfiability.
The method presented here is general enough to be suitable for
many other problems. Of course, it would be natural to study
Satisfiability forK > 3 using Ballistic Networking, but the ef-

ficiency for ballistic path search seems to be still much lower
than for the case ofK = 3 which sets very restricting limits
on the system sizes which can be reached. Nevertheless, the
approach presented here should be useful for many disordered
systems like other types of combinatorial optimization prob-
lems.

In the case of Satisfiability, the range of low values ofα
(where many solutions exist but belong to only one cluster)
can be studied by MCMCMC. Furthermore, the case of high
values ofα close to the SAT-UNSAT transition (fewer solu-
tions contained in several clusters) can be studied using exact
enumeration of all solutions. In contrast, the algorithm pre-
sented here allows to study the full satisfiable phase, but itis
limited to moderate system sizes in the intermediateα range.
Nevertheless it is the only reliable method to generate unbi-
ased samples in this regime.

Using the method described here the ensemble properties
of Satisfiability with moderate system size could be studied
and analytic predictions about the cluster structure couldbe
tested. To this aim we first did a visual inspection of the
cluster landscape using a graphical representation in terms of
Ward distance matrices. These show the expected structural
differences of the different phases of Satisfiability. Further-
more we had a look at the complexity measure over the whole
α spectrum in the easy phase, and the overlap distribution of
the solutions for particular values ofα. Our findings are in
good agreement with the theoretical predictions and previous
numerical studies using other methods.
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