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The solution-space structure of the 3-Satisfiability Peabl(3-SAT) is studied as a function of the control
parameter (ratio of number of clauses to the number of variables) usinmerical simulations. For this
purpose, one has to sample the solution space with uniforighivelt is shown here that standard stochastic
local-search (SLS) algorithms like “ASAT” and “MCMCMC” (ab known as “parallel tempering”) exhibit a
sampling bias. Nevertheless, unbiased samples of sadutian be obtained using the “ballistic-networking
approach”, which is introduced here. Itis a generalizatibtballistic search” methods and yields also a cluster
structure of the solution space.

As application, solutions of 3-SAT instances are generatédg ASAT plus ballistic networking. The nu-
merical results are compatible with a previous analytidtgon of a simple solution-space structure for small
values ofa and a transition to a clustered phaseat: 3.86, where the solution space breaks up into several
non-negligible clusters. Furthermore, in the thermodyigalimit there are, for values afi close to the SAT-
UNSAT transitionas =~ 4.267, always clusters without any frozen variables. This egylain why some SLS
algorithms are able to solve very large 3-SAT instancesecioghe SAT-UNSAT transition.

PACS numbers: 89.75.Fb, 89.20.Ff, 75.40.Mg, 75.10.N6@4{e,05.90.+m
Keywords: satisfiability, combinatorial optimization ptems, complexity, hierarchy, clusters, algorithms, Bastic local
search, phase transition, Monte Carlo simulations, ragdigmmetry breaking

I. INTRODUCTION well in one region of the phase diagram, close to the SAT-
UNSAT phase transition (see below), whereas Monte Carlo

The application of notions, analytical approaches and nu@PProaches performwell in the opposite part of the phase dia
merical algorithms from statistical mechanics has lead to gram. away from the SAT-UNSAT transitions. Unfortunately,
better understanding [1—3] of NP-hard optimization pratse the clustering transmon is chated right between theseexe
[4, 5]. One main underlying question is, why these optimiza—p_arts’ hgnce_numerlgally dlfflqult to study: We use a stochas
tion problems are computationally hard. This means no fasfi¢ &/gorithmin combination with a correction of the sanmgji
algorithms are available, where the running times increasg!@s introduced by the stochastic algorithm to study the-Clu
only polynomially with the problem size. The progress of t€fing phenomena. . _
gaining insight into this phenomenon has been consideible Thg outline of the paper is as follows. In the second secthn,
particular for thetypical-case complexityvhere ensembles of W€ give the necessary backgrOl_Jnd on _SAT and on clu_stenng
random instances are studied as a function of control paranff solution landscapes. In the third section, we briefly aipl
eters. These ensembles often exhibit phase transitionsewhethe algorithms we use to sample solutions and show that they
changes of the effective “hardness” of the problem can be obexhibita bias. Next, we introduce ballistic networking asel
served. Often, these transitions are connected to chariges l@ted methods, which we use to correct for the bias. In sectio
the structure of the solution space, comparable to enengl la f|\_/e, we show th_e results we have obtained for random 3-SAT.
scapes in physics. In particular, one is interested in tresgu Finally, we provide a conclusion and an outlook.
tion, how the change of the solution-space structures his an
fluence on the performance of exact and stochastic algasithm
For example, for the vertex-cover problem, which is defined Il. BACKGROUND
on graphs, a clustering transition has been found anallytica
[6] and numerically [7, 8] when increasing the edge dendity o
Erdds-Rényi random graphs. This transition coincides with a
change of the typical-case complexity from polynomial te ex

A. Satisfiability

ponential [9]. For other optimization problems, the sitoat Satisfiability is one of the fundamental problems of com-
is less clear, as for theatisfiability problen{SAT), which we ~ puter science, and has attracted a lot of attention over the
study in this work. past years, also by physicists, due to its similarity to spin

As we will explain, exact enumeration of solutions works glass problems. It is the first problem proven to belong to the
class of NP-complete problems [10], a class of problems for

which no algorithm has been found yet that exhibits a poly-

nomial worst-case running time as a function of the problem
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derlying structure of the solution space which may hinderth  This value is compatible with recent numerical results [19]
performance of algorithms. where the cluster structure was investigated using theceete
Satisfiability belongs to the class of constraint sati$fect tion of community structures. Unfortunately, the sampling
problems [11]: GiverN Boolean variables; = 0,1 and a  was performed using an algorithm, which does not exhibit
Boolean formulaF describing a set of constraints, each of uniform sampling of the solutions, see below. Anyway, there
which forbids a certain assignment of values to some of thés no general rule how to translate the formal definition of
variables, you are to decide whethercan be satisfied, i. e., clusters, which holds in the thermodynamic limit, to finiyss
whether there is an assignmett (xg,...,xy) such that all ~ tem sizes, hence other approaches than community strecture
constraints are fulfilled simultaneously. In tKeSAT formu-  are possible. For numerical studies often a very appealing
lation, F is given in conjunctive normal form, approach is used, where a cluster is defined as the connected
components in a graph where each solution is represented by a

M meoim m vertex and edges connect solutions differing in only oné var
F= AWTVIZV...VI), able. This definition of a cluster will be used in this work as
m=1 well. For every two solutions belonging to the same cluster

there is therefore a “path” of configurations which all solve
the SAT instance at hand. Unfortunately, this path can bg lon
and peppered with many dead ends or loops which makes it
very difficult to decide whether two configurations belong to
dhe same cluster. The main problem when discussing clusters
In high-dimensional discrete solution spaces like thataifss
fiability is that one is tempted to think of clusters as bliz]
ell-seperated and homogeneous structures in configaratio
hase like, e. g., nano-clusters formed by agglomeration of
atoms. The clusters which occur in high-dimensional discre
solution spaces are yet of a completely different naturban t
they are more like fragmented and interweaved structurts wi

For lowa the problem is typically satisfiable whereas for high [°tS 0f dead-ends, loops and holes which makes it difficult to
values ofa there typically is no solution [12, 13]. It has been SPeak of spatially seperated clusters.

proven rigorously [14] that the transition between thessati The existence of a clustered phase has been proven rigor-
able and the unsatisfiable phase becomes shar forc. ~ ously forK > 8[17]. Inthe language of statistical physics this
Whilst the position of the threshold fa¢ = 2 is known ex-  clustering corresponds to one-step replica-symmetrykinga
actly [15], for largerK there are only numerical estimates. In (1-RSB) [20, 21]. A further substructure in terms of another

this paper we will stick to th& = 3 case, where every clause clustering of solutions taken from one cluster, giving araie
contains exactly three literals. The satisfiability traiosi is ~ chical structure of clusters is suspected where 1-RSB besom

which describes a logical conjunction d constraints
(clauses)Cr, each containing a disjunction & literals I

(m=1,...,M;k=1,...,K) which are either a variabbg or a
logically negated variabig.

A certain assignment of values to the variables is calle
a configuration in the following. If a configuration satisfies
all clauses inF it is called a solution. In the random-
SAT ensemble each clause is chosen randomly and uniform
amongst the 'Q(E) possible combinations in which no vari-
able appears twice.

One defines a control parameter= M/N which is the
number of clauseM divided by the number of variablds.

located in this case ats = 4.267 [16]. instable and higher steps of replica symmetry breaking occu
[22].
What makes cluster phenomena interesting from the algo-
B. Cluster phenomena rithmic point of view is the question if (and if so in what way)

clustering has an influence on the performance of local kearc

In addition to the SAT-UNSAT transition, analytical cal- heuristics. Usually it is assumed, that the existence ofyman
culations [17, 18] give rise to evidence that there are fth clusters is an indication for a complicated “rugged” energy
(“structural”) phase transitions which refer to the forinatof ~ landscape, which then also gives rise to many local minima,
disconnected clusters of solutions for high values of the co hindering the performance of local search heuristics [22].
trol parameten in the satisfiable phase. Formally, clustersthe same way, but with a slightly different focus, Krzaketa
in constraint satisfaction problems can be defined as emiremal. [18] propose that the appearance of locally frozen e
Gibbs measures which gives the following picture for Satis-in clusters is responsible for the slowdown of heuristicoalg
fiability: For small values ofr all solutions are contained in fithms close to the SAT-UNSAT threshold. A locally frozen
one connected Component (duster)_ WhaerWS, more and variable is a variable which takes the same value over all so-
more solutions disappear so that at some point the cluster déutions belonging to one cluster. A cluster containing aste
composes into smaller clusters which initially, up to a shre  One frozen variable is called frozen. One defines the freez-
old ag, make up 0n|y an exponentia”y small fraction of all Ing transitionas as the smallest value of above which all
solutions, whereas abowey many clusters contribute to the solutions belong to frozen clusters.
statisical behavior. Above a higher critical valog we en- To clarify the influence of phase transitions on the aver-
ter another type of clustered phase which is dominated by age computational hardness one can study the performance of
small number of large clusters. The case of 3-SAT is speciaktochastic algorithms as a function of the control paramete
as herang = ag, i. e., we directly enter the phase dominateda. Of particular interest is the algorithm-dependent valtie o
by few clusters. The position of the dynamical threshold toup to which an algorithm shows linear-time performance, and
the clustered phase is predicted to beats 3.86 [18]. compare this to threshold valuesm{23]. Studies of stochas-
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tic algorithms such as ASAT [23], WalkSat [24] and ChainSattions even in this regime. From counting all solutions using
[25] have shown however that those algorithms have linear beDPLL for systems up tdN = 160 we can estimate the solu-
haviour up to values considerably beyond the clusteringrtra tion entropys = S/N near the phase boundasy= 4.25 to
sition. This suggests that the cluster transition has nashp be roughly between.@1 and 012 which gives more than £0

on the performance of local search algorithms as long as thersolutions already foN > 160, thus taking up at least 2 GB.

are precautions against entropic traps. It is remarkalde th  To overcome these limitations one can turn to stochastic
ChainSat has this behaviour although it is greedy “in a wealalgorithms which, starting at an arbitrary configuratiom, d
sense” as it never allows steps which increase the number gluiccessive changes either completely randomly or based on
unsatisfied clauses. Naively one would therefore expeot it ta heuristic evaluating information about the local configur
get trapped very easily in local minima. The authors of [25]tional neighbourhood. Stochastic algorithms are not guara
interpret this as evidence for the belief that true localimm  teed to find a solution, even if solutions do exist, but thay ca
are very rare in high-dimensional search spaces. Thesksesube significantly faster than deterministic algorithmsslthus
could also indicate that indeed it is more the (non-) existen possible to obtain solutions for much larger systems, but on
of frozen clusters, which is responsible for the perforneapic  the other hand stochastic algorithms can never prove thet th

local-search algorithms. is no solution, tests for unsolvability can only be done by us
Nevertheless, for small instances there are always somieg deterministic algorithms.
frozen variables. Therefore in [26] a different notion adZen In this paper we study the cluster structure numerically

clusters via thavhitening corels used. There one looks, for for K = 3, which requires unbiased sampling of the solution
each solution, interatively for variables which can be ffigp space. Different types of sampling algorithms are studietl a
since they appear only in clauses satisfied by other vagableshown to be biased. We therefore present an algorithm which
or which contain variables already detected in the whitgnin uses a different approach to create a survey of the clusterst
core. The position of this freezing transition was then cal-ture of Satisfiability instances from which it is then po$sib
culated by exact enumeration and clustering of all solstion to derive unbiased samples. Itis an improvement on the “Bal-
for sufficiently small system sizes and is expected to lie atistic Search” algorithm which has originally been applied
o = 4.254 close to but below the satisfiability transition. spin glasses [37—39]. The main advantage of the algorithm is
In a similar way, [27] finds a cluster condensation transitio thatitis able to provide an overview of the cluster struetof
in the solutions generated by ASAT very closedatg again  the solution space without having to enumerate all solstion
these results rely on a non-uniform sampling of the soltion which is no longer possible already for moderate numbers of
Anyway, these results are compatible with the observatfon ovariables.
a good performance of local-search algorithms close to the
thresholdas.

ll.  SAMPLING ALGORITHMS

C. Algorithmic treatment of SAT A. Biasin SLS algorithms

Algorithms for SAT include a broad spectrum, both If stochastic local search (SLS) algorithms found all solu-
stochastic and exact, from simple and straight-forward-alg tions with the same probability one could use them directly t
rithms like RandomWalksat [28] and WalkSat [29, 30] to com-probe the solution space. Unfortunately, this is not the eas
plex algorithms like DPLL [31] and message-passing algowe will see in this section. Later on in this article we willeus
rithms such as Belief Propagation (BP) and Survey PropagaASAT as solution generator so we use it here for an exemplary
tion (SP) [21]. For small systems exact enumeration of allpresentation of the bias in SLS algorithms.
solutions is possible using one of the numerous standard al- ASAT is a simplified variant of Focused Metropolis Search
gorithms [32, 33] such as the aforementioned DPLL. It can24] and was first described in 2006 [23]. It starts at a ran-
be shown [34] that deterministic algorithms have longest avdom configuration and in each step picks a variable from an
erage run times close to; reflecting the difficulty of deciding unsatisfied clause. This variable is flipped if either this de
whether a given SAT formula is satisfiable or not. The prob-creases the number of unsatisfied clauses, or otherwise with
lem with exact enumeration is that it is limited to small sys-a constant probability which is a tuning parameter of the
tems due to hardware restrictions, especially becauseeof thalgorithm. ASAT has run times linear in the system size at
memory needed to store the huge number of configurationgeast up taa = 4.21 on 3-SAT. For instances of moderate size
as the number of solutions grows exponentially with systemike those we study here, it can well be used beyond this point
size. Furthermore the number of solutions is not a continuf27].
ous function when crossing the satisfiability threshold,ibu The test procedure is very simple: For a randomly cho-
drops from a finite number to zero. This correspondsto a nonsen small instance we run ASAT again and again starting
zero entropy at the phase transition, the entropy per viariab each time from a different randomly chosen configuration and
grows approximately linearly with decreasing[35, 36]. In  count how often each solution returned by ASAT is found. If
turn this means that even very close to the satisfiabilitgshs  there were no bias we would expect the histogram of solu-
old the number of solution grows exponentially, and quicklytion multiplicities to be flat except for statistical fluctiens
becomes so large that it is not feasible to enumerate alt soluaround a plateau value, i. e. the histogram should resemble a
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10 - random solutions y The Metropolis-Coupled Markov Chain Monte Carlo
S 8 | . (MCMCMC) method, first proposed in 1991 by Geyer [40],
% 20 e 6 L 1 also known as Parallel Tempering [41, 42], is a powerful and
> + versatile tool, commonly used in biophysics and statiktica
g 155 4 [—— 77 physics to perform equilibrium simulations and to generate
B 2+ | unbiased samples in large configuration spaces. MCMCMC
E 10 - 0 L L L 7] uses a set of replicas of single instances, simulated in par-
0 100 200 300 400 allel at different temperatures and linked by global update
S 7] in which replicas are swapped pair-wise with an acceptance
M probability depending on their energy difference and tempe
0 ' ature spacing (Metropolis-Hastings criterion), thuslftating
0 100 200 300 400

the tunneling through barriers seperating local minimahef t
phase space [43].
FIG. 1: Multiplicities of solutions found by ASAT in fOruns for To St“‘?'y the performa}nqe of MCMCMC on SAT W(,a em-
a randomly chosen instance with= 50, o — 4.0, compared to an p_loy a histogram test similar to the one described in sec-
unbiased distribution. Inset: Multiplicities of the ASABlstions  tion Il A for the performance of ASAT. For several values
after an additional’ = 0-MC step with 10 sweeps. of a = 1.00...4.25 scattered over the satisfiable phase, the

number of variable®N is chosen such that expected number

of solutions is 1000. This, e. g., results for the smalletiea

of a considered here in a system si¥e= 14, while for the
Gaussian error function. highest value ofi, N = 50 is feasible.

We apply a straight-forward implementation of MCMCMC
Fig. 1 shows the resulting histogram, in comparison to &o a set of 50 instances for each value of the control parame-

histogram filled with the same number of random integersera, where we use 15 temperatures, the lowest, at which the
drawn from a truely flat distribution over the range corre- samples are taken, being initially = 0.1, the highest such
sponding to the number of solutions of the SAT instance showthat the corresponding energy is found to be approximately
ing what the distribution should look like if there were nasi M2-K which is the expected energy of a Comp|ete|y random
Clearly there is a strong bias favouring some solutions ovegonfiguration. Every 1000 steps the temperatures are adjust
others. To quantify the deviations we usg%est, and calcu- o drive the replica exchange rate between neighboring tem-
late thep-value giving the probability that an unbiased sam-peratures towards 50 lowest temperature fixed .4t OThe
pling process yielded a sample deviating at least as much thgyrocedure chosen to adjust the temperatures leads to & distr
the one at hand. Thp-values numerically are smaller than bution of temperatures where for the lowest temperatures th
1073%3(i. e., the resolution of outoubl e numbers). exchange rates indeed reach 50 whereas the highest tempera-

To test whether this bias can be corrected in a simple Wa}}ures all gather in the random phase. This can be seen as an
ihdication that the number of temperatures used is sufficien

\r,;(teu?rlw(lg k];u ri‘g;; t:j(?rc ekéﬂth%rree': Csrt]e: (;jluot;‘otrj]sllggntg% S?AlgtlAqrn%o allow the replicas to travel between the constrains, the.
y Y, y highest temperatures are indeed located in the “paramiagnet

a solution from the same cluster was generated usifig=e0 hase”. We tak I d ¢ t
Monte Carlo (MC) search starting at the ASAT result. ThePNase". e@a € one sample every second sweep 1o generate
outcome of this modification is shown in the inset of Fig. 1 for@ total c(j)f.l s?]mples.h Onl);] successfulfszmphn? step_s are
the same SAT instance as before. The distribution now g‘/learl_cl_oFmte , I . those where the energy of the configuration at
has 5 plateaus corresponding to the 5 clusters of the solutio ° IS Z€T0. ) . o

space and looks much flatter but exhibits still some bias. One_1N€ histograms with the resulting distribution look pretty
sees that most of the ASAT solutions stem from the smallest/oS€ to those drawn from a flat dlstrlbut|02n (not shown here)
cluster, hence the sampling does not respect the cluster siz//e again use thp-va_lues Obt"?"”ed from g test to quanufy
Hence, ths bias can be strongly decreased by additiorad the deviations af‘d fmd' that in most cases MCMCMC gives
MC simulations, but not completely. Further checks showed€2sonably flat distributions, hence this method appea-to

that the bias persists independently of the system size. ibit on the first sight a much lower s_ampling bias. . Never?
theless, there also are a number of histograms having a sig-

Since we want to study clustering properties of the solutiomificant bias exhibiting very smalp-values. The higher the
ensemble we need to remove the bias completely and samplalue of the control parametaris chosen, the larger becomes
solutions in proportion to the cluster sizes. To ensure thés  the spread of the distribution gd-values towards extremely
will perform reweighting using the Ballistic-Search algbm  small values. This can be seen from Fig. 2 where the distri-
as described in section IV. Before we come to the Ballis-bution of p-values, integrated over all system sizes and values
tic Search, we will show in the next section that MCMCMC, of the control parameter, is shown for the two cases where the
another important sampling method, fails on sampling SATinstances exhibit one or more than one cluster of solutions,
solutions uniformly as well. respectively. (The number of clusters can easily be caledla

solutions ordered by multiplicity
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FIG. 3: Between those 6 solutions (black circles) from theealus-
B [— = ter (light grey) Ballistic Search has found only 2 paths. @pparent
© T == — number of clusters is 4. We need to increase the density ofisns

— _i - _: i '! to make Ballistic Search more efficient.
I L  » 1

0 0.2 0.4 0.6 0.8 1

p value

a (small) set of solutioné;cgi)} from the clustei and an esti-

FIG. 2: Bias of MCMCMC: Dependence @kvalue on the number  4165() of the size of cluster. The survey should cover all
of clusters, integrated over all anda. Dashed line:p-values for . .tars or at least all but those which are negligibly $mal
instances with only one cluster, solid lingr-values for instances . -
: One can then sample the whole solution space with correct
with more than one cluster. . . . .
weights by generating the desired number of solution sasnple
from the representative sets of solutions for each cluster a

exactly for these small instances.) In the case that theisnlu c0rding to the respective cluster sizes. o
space consists of only one connected componenpveue Twp main !ngred|ents form the bgs,ls of the Ballistic _Search
distribution is flat showing that MCMCMC works unbiased as algorithm. Firstly, the above described data structurerggo
expected. The presence of clustering on the other hand leaggall sets of representative solutions for each clusteeaus
to a bias or imbalance in the sampling process resulting in &ll solutions. Secondly, a “ballistic path search” is used t
strong peak at smafi-values. analyse thg cluster space and gengrate thg survey fromm give
Since we are interested in particular in those instance§€t Of solutions. The basic operation of this procedureas th
which exhibit many clusters, MCMCMC turns out to be not We have to determine for any given pay, ¢, of solutions,
suitable as well, since all instances have to be sampled cowhether they belong to the same cluster. This has to work un-
rectly. Note that for larger system sizes, the number of in-der the assumption that for the case:g_fcb belonging to the_
stances having just one cluster, where MCMCMC seems t§2Me cluster, a complete nearest-neighbor path of sotution
work well, will strongly decrease. Hence, for large Systembetwgema andcy is notcontained in the set Qf already found
sizes, MCMCMC will exhibit a bias for basically all instarce  Solutions. Instead, one searches stochastically for gaths

of interest. To create an unbiased sample we need a differef¥€€nCa andcy, by starting at one solution and subsequently
method which will be presented in section V. changing a randomly choséeevariable. A variable is called

free if its value can be changed without violating any con-
straint, so that one never leaves the solution cluster. iBhis
repeated until either the target solution is reached or ae fr
variable is left, because as an additional stop conditi@myev
. ) . . variable shall be touched at most once. (Because of this ad-
Here, as mentioned in Sec. Il B, we are using the neighborgiional constraint the path search is called “ballisficThis
based definition of clusters: two solutions are consideoed timjies that in a successful ballistic path search the numbe
be in the same clusters, if there exists a path in solutionespa f steps taken is always equal to the Hamming distance of the
consisting of single-variable flips. , ~solutions, i. e., the number of variables in which the twaisol
We use Ballistic Search, which has been introduced in thgys differ.
year 2000 as a method for studying ground-state properfies 0 rjq res 3 and 4 give a graphical description of how the Bal-
spin glasses [37]. The approach is able to provide a survey Qfsiic Search algorithm works. We start with some randomly
the cluster landscape using stochastic algorithms, inquést  generated solutions depicted as black circles in Fig. 3, all
without the need to enumerate all grqund states as itislysual 5¢ \vhich belong to the same cluster which is drawn in grey
necessary when one aims at clustering. The sheer number pf 5 5_gimensional cartoon of the N-dimensional configura-
ground states forbids _exact enumeration when studying spifg, space. For the sake of simplicity we assume here that
glasses, and, as mentioned above, the same holds for SAT. Wg sq|utions belong to the same cluster, the generaliadtio
therefore use this method which relies on generating a $urvemore than one cluster is obvious. Running the ballistic path
of the most important clusters. search we find that some of the solutions can be connected by
The survey consists of a sét= {Ai} where each ele- paths drawn as lines in the picture, i. e., for these solstibe
mentA; = ({c§'>},z<'>) represents one cluster and consists ofalgorithms correctly finds that they belong to the same clus-

IV. BALLISTIC SEARCH



FIG. 4: Adding solutions (grey) has yielded a correct idécstion
of the cluster, because more paths (grey) have been foundcoe-
necting all solutions.

FIG. 5: This cluster has a more complex structure than theione
Fig. 4, illustrated by the additional holes. Here addingren®re
new solutions (grey) than before does not work. Still nosalutions
are recognized as belonging to the same cluster.

ter. The problem is that for low solution densities the agera
distance between solutions is large, and the efficiency ef th
ballistic-path search strongly decreases with largeadists
[37]. Therefore we only find a few paths and the apparen
number of clusters in this example is larger than its trueeal

FIG. 6: Ballistic Networking improves on the result of Batic
Search by not adding solutions randomly, but adding saistfoom
the same cluster using®= 0 MC search (arrows). Now all solu-
tions are found to belong to one cluster.

Cph, as belonging to the same cluster using ballistic path kearc
by again increasing the number of solutions. Instead ofgusin
ASAT to generate more solutions we generatgygadditional
solutions by performing independeht= 0 MC simulations
starting atc, andcy, respectively. Hence, we are sure that the
additional solutions belong to the same cluster as thgiees

tive “parent” solution. We then try to find connections using
the ordinary ballistic path search between(allqq+ 1) pairs

of solutions, where one solution belongs to the origin anel on
to the target. If at least one path is found, it is clear thand

¢p belong to the same cluster. We apply this test to all pairs
of solutions which have not yet been found to belong to the
same cluster. An artist’s view of this improvementis given i
figures 5 and 6. Fig. 5 shows how the standard ballistic search
fails due to a more complex structure of the cluster, alttoug
even more solutions than before have been used. In Fig. 6 the
solutions found by th& = 0 MC search are drawn as points
connected to their parent solution by arrows. We can see that
the number of successful ballistic path searches (grag)ine
does not have to be very high, but still is enough to correctly

cf. Fig. 3. What we need to do is to increase the ”Umbefdentify the cluster.

of solutions by rerunning ASAT. For few added solutions, the
measured number of clusters will increase, since only few ad

ditional paths within clusters are detected, less than tim-n
ber of added solutions. When generating even more solytion
we will find that the apparent number of clusters at some poi

paths between solutions are found, until finally all solngio

are correctly assigned to the same cluster as shown in Fig. 4h

A. Ballistic networking

: . . nEc path search without and with additional solutions. Tase
no longer increases, but instead it decreases as more aed mq

Indeed this procedure improves the performance of the
search so much that it outweighs the additional effort of hav
ing to carry out(nagq+ 1)? ballistic path searches instead of
ne. Fig. 7 shows a comparison of the performance of ballis-
Lo corresponds to the bare ballistic path search. The-hori
zontal axis shows the number of ballistic path searchestwhic
ave to be carried out in the worst case, i. e., when no con-
necting path is found. We found&n,qq < 10 to be a suitable
range for the system sizes under study.

When creating the additional solutions to test whether g pai
of solutionsc,, ¢, belongs to the same cluster, to improve the

Our studies have shown that the simple ballistic-path $earcsuccess probability, one can think of introducing a biae int

algorithm has very low efficiency when applied to Satisfiabil
ity which can be attributed to a high complexity of the solu-

the T = 0 MC search which pushes the additional solutions
derived from the first solution, closer to the second solution

tions space or large sizes of the clusters. We thereford-deveg, and vice versa. Indeed we found that such a bias has a pos-

oped a refinement of the algorithm named “ballistic network-

ing”, which is a very general extension of the ballistic path
search so that it can readily be applied to other problems.

itive influence on the success probability of the ballistitp
search. Yet we did not use this bias in the implementation,
because the positive influence comes at a high cost. For each

The idea of the algorithmic refinement is to increase thepair of solutions to be tested a dedicated biased set of addi-

probability of identifying two solutions, origi, and target

tional solutions has to be generated which cannot be reused



1 R e R ‘ 8 shows a comparison of the actual number of configurations
%ﬁﬁ” ] in one cluster to the number as estimated by Monte Carlo in-
m’f i tegration. We used several combinationd\bnda where
I o+l the total number of solutions (over all clusters) did noteed
09 - + » I%‘ 5.10P, such that all clusters could be calculated exactly, and
Lt O 45 afterwards for each cluster the MC estimation was run.
- * +10
i i | | | | | S 15
= 82 iy ! ! ! ! ! B. Implementation
’ +
g’; Combining ballistic networking and the cluster size estima
’0 . . . . LV +0 tion the full algorithm is comprised of two alternating step

0 50 100 150 200 250 300  The first step .is to generate.a _givg_n number (of the orde_r of
1000) of solutions of the Satisfiability instance at hanahgsi
the ASAT algorithm. The tuning parameter of ASAT is chosen
FIG. 7: Comparison of ballistic path search without and veitili- 10 bep = 0.21 which is the optimal value as given in [23]. In
tional solutions (“ballistic networking”) foN = 128 anda = 3.0.  the second step Ballistic Networking of the solutions fobyd

We show the probability for finding a path between two solutio ASAT is done as described above to create the cluster survey,
generated from the same cluster, as function of the totabeurof  and then the sizes of the clusters are estimated. Afterwards
ballistic path searches between all pairs of parent andigitilcon-  ASAT is run again and another set of new solutions is created.
figurations averaged over 1000 runs. The case “+0" corredptm  The cluster survey is then updated using Ballistic Netwugki

number of ballistic path searches (worst case)

the original ballistic path search. on the new solutions and the solutions representing therso fa
found clusters in the existing survey. Here new clusters may
106 be found, and if so, their size is estimated. This is repeated

until the cluster survey is considered complete, i. e., noemo
relevant clusters are found.
From the cluster survey for each instance a$eif un-
_ biased solutions can be generated using the cluster-dize es
1 mates. For each solution to be generated for a given instance
. first a cluster from the survey is selected with a probability
| proportional to the cluster size. One solution is selectethf
= the set of representative solutions and starting from thiis-s
] tion aT = 0 MC search is performed finally giving the solu-
E tion to be used in the analysis.
ot o Defining a good stopping criterion is a crucial point of the
10 5 . > 3 7 5 ¢  algorithm. As the cluster numberin Satisfiability can béeat
10 10 10 10 large, we decided not to generate all clusters, but all excep
actual cluster size for those which contain only a neglegibly number of solu-
tions. For this purpose we monitor the total cluster weight
FIG. 8: Comparison of the actual number of configurationsopes- 5, 5()_ We run the algorithm until the total cluster weight has
ter to the number estimated by Monte Carlo integration. Hawht not increased by more than50% over the last half of solu-
corresponds 1o one cluster. tions included in the clustering process. We store the drder
which the solutions have been generated by ASAT and label
each cluster with a number telling the position of the eatlie
when comparing eithes, or ¢, to a third solution. The neces- solution which has been found to belong to this cluster.
sary computational effort for generating each time newdslas  When trying to optimize the number of new solutions added
configurations by far outweighs the positive effect of th@sbi  in each round one has to consider two competing effects:
The second part of the cluster survggonsists of the sizes On the one hand adding solutions — as in ordinary Ballistic
2() of the clusters. An exact calculation of the cluster size isSearch — may reveal that two clusters actually are partseof th
possible, but takes too long, since it typically grows ex@on  same cluster, connected maybe by only a small path in config-
tially with N. We have therefore examined several differenturation space which has been too hard to find with fewer so-
estimation methods with respect to their reliability inigiy  lutions. On the other hand increasing the number of solstion
a correct estimate for the cluster size by comparing the estimakes Ballistic Networking slower and, even worse, incesas
mated cluster size to the exact cluster size on a random ensethe probability of false new clusters which in turn can lead t
ble of clusters for different values ofand small system sizes an on-going increase of the cluster number and total cluster
N. The best method known to us has been found to be the egeight and thus to a failure of the stopping criterion.
timation of the cluster size using a Monte Carlo integratisn The system sizes which can be reached using the method
it has been used in [44] in an application to spin glasses. Figlescribed above depend, of course, on the control parameter

MC estimation
—
o
T
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and a set of (arbitrarily ordered) clausgs(m=1, ..., Mnay)-

We choseMmax = 0maxN, whereamay is the largest value of

i the control parameter we want to consider. We can study the
behavior of each instance as functionMf< Myax by con-
siderung each time exactly the clausgsfor m=1,... M.

Also, we can average over these distances for each value of

=
L +a=1.0 the control parameter.
04 | < a=20 i
¥ a=3.0
O oa=35
02 a=3.8 - A. Hierarchical clustering
A a=4.0
v a=42 . . .
0 1 L For the analysis [45] of the behavior of 3-SAT as a function
0 10 20 30 40 50 60 70 80  ofthe control parametex, we start by looking at the hierar-

chical structure of a set of solutions sampled for a typical
3-SAT instance. We have used “Ward'’s algorithm” [46, 47],
FIG. 9: Dependence ipan Of ballistic path search oa anddyam &N agglomerative hierarchical matrix updating algorittum,
for N = 128. As the typical distance of two solutions dependsipn  the setil to extract a hierarchical clustering from which we
so do the ranges shown in the plot. For small distamizgs < 15,  can then draw a visual representation of the solution space.
a path is usually found, while for large distances, the pdtty de- Ward’s algorithm has been applied in many different fields
pends on the value of the control parametewhich can bt_e under- ranging from RNA secondary structures over optimization
stood by a more and more complex structure of the soluticstets. problems to spin glasses [8, 19, 39, 48]. It is an iteratie pr
cedure where initially each configuration comprises a gingl

, , i item cluster. In each step those two clusters are mergedwhic
a. For smalla all solutions are contained in only one large paye minimal distance with respect to an effective distance
cluster where there are many possible paths between configyeasyre chosen such that the sum of the variances in each
urations so that Ballistic Search is very efficient and syste ¢)yster is minimized. After each merger, the distances ef th
sizes of a few hundred variables are possible. For bigal-  remaining clusters to the new cluster have to be calculated,
ues in the solvable phase, the number of solutions is small sQ jetails see. e. g., Ref. [47]. Finally, one reorders the-c
that in this regime Ballistic Search still is rather effidieie g rations acéordiné to the hierarchy obtained in the theea
to the small extent of the clusters and relatively largeeyst merging process, and draws a color-coded visualizatiohef t
can be done. .. distance matrix.

Fig. 9 shows the dependence of the success probability of Ney; e present some results for a typical instance. We
ballistic path search on the Hamming distadiagn between  oqqe one which exhibits its SAT-UNSAT transition close to
the configurations foN = 128, for different values of the con- o numerical estimate of the ensemble average 4.267
trol parametemn. Up to a = 3.8 the probability decreases i en in [16]. Fig. 10 shows the color-coded distance matri-

strongly with increasing, as the clusters develop more holes. coq and the dendrogram which were generated for three dif-
Above this point the curve is approximately independemt.of ¢ ent values ofr . The difference in the solution landscape

We also find that the probability decreases weakly with in-yng cjyster structure between the phases is clearly visfole
creasing system size (not shown). The fact that the averagg,y q the Ward matrix is featureless and homogeneously grey.
distance between solutions decreases witakes Ballistic  aj so|utions belong to one single cluster and the phaseespac
Networking most difficult in the intermediate regime around gp,ys no specific features. In the intermediate range oree see

a ~ 3.3. Here the number of ballistic path searchs needed tQ jike structures along the diagonal in a darker grey.she

find a connection between two solutions from the same Clusgrespond to clusters, because darker means smaller Ham-
ter is highest. The cluster structure seems to be such tbeg th

" > . ming distance and the solutions inside a cluster are closer t
are many “dead ends” in which the search may get stuck. Togach other than to other solutions. Some of these boxes show
gether with the high number of clusters, which enters quadra 5 g hstructure which can be interpreted as the solutioms fro
ically in the running time, this limits the reachable systemps ¢|yster themselves forming sub-clusters. This is isns
size. All in all, Satisfiability instances of up 1 = 144 vari- ot with the theoretical prediction of replica-symmetrg k-
ables were doable in reasonable time over the whole range g beyond 1-RSB in the intermediaterange [22]. Never-
interest 30 < a < 4.2 while for smaller intervals of the control theless, as mentioned in the introduction, it is to be exgeect
parameter, we also studiétl= 256. that most of the clusters are not relevant in the thermodymam
limit and a small number of clusters contains almost all solu
tions. For higher values af the substructures inside the clus-
V. RESULTS ters become washed out whereas the first-level cluster-struc
ture becomes more pronounced as the cluster become smaller.
Here, we study the behavior of random 3-SAT instances at the replica symmetry breaking framework this would be in-
a function of the parameter. This is meant in the sense that terpreted as a vanishing of higher level RSB above a certain
we generate an instance using a given nunibef variables  threshold, but this cannot be deduced from looking at single

dham



FIG. 10: The hierarchical structure resulting from Wardgaaithm
visualized both as tree structure (dendrogram) and distametrix,
for N =256 andx = 1.00 (top), 400 and 425 (bottom). Darker grey
scales correspond to smaller distances.

instances, of course.

0.06

0.05

0.04 -

0.03 -

0.02 -

0.01 -

complexity = log(# of cluster)

4.5

FIG. 11: Complexityc as a function ofi and for several system sizes
between 32 and 144. Lines have been drawn to guide the eye. The
error bars give statistical errors.

B. Averaged quantities

The complexityc = & logN; is defined as the logarithm of
the number of clusters normalized to the system size. Fig. 11
shows the complexity as a function @fand for system sizes
up toN = 256 variables averaged over 200-500 instances for
each value ofr and each value dfl. The number of clusters
was taken directly from the cluster surveys created usieg th
Ballistic Networking method described above.

For the “easy” part of the satisfiable phase, where the value
of the control parameten is small, there is only one clus-
ter, thus the complexity is zero. In an intermediate range th
number of clusters grows peaking at a value which is strongly
affected by finite-size effects and then becomes smallénaga
This behaviour reflects the theoretical prediction of omg k&
cluster in the lowa regime “crumbling” into smaller pieces
whena is increased and the clustered phase is reached. For
even higher the vanishing of solutions leads to the disap-
pearance of clusters and the cluster number decreases again
Clearly, the peak of the complexity curves seems to converge
towardsa. with increasing system size, in accordance with
the analytic predictions [18].

Looking at this plot one has to keep in mind that the stop-
ping criterion used in the algorithm is based on the number
of solutions covered by the clusters that were found so far. |
a phase with a large number of small clusters we will miss
small clusters if they only comprise a negligible part of the
solutions (in the sense of the stopping criterion) and tloeee
underestimate the number of clusters. It is therefore ahtur
that the complexity found here is lower than the one given in
[26]. After all the complexity shown in the graph is only a
lower bound for the true complexity respecting all clusténs
phases dominated by few and large clusters its value should
nevertheless be close to the true value.

Fig. 12 displays the fraction of the solutions contained in
the largest cluster. Fan < d. this value seems to increase
with growing system size. Adl = d. it exhibits a minimum,
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+ N=32

0.9
0.8
0.7
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N =45

04 F o N=64 _

H=H N =91
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02 | et N=144 | T
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a overlap

FIG. 12: Fraction of the weight of the largest cluster witbpectto  FIG. 13: Overlap(r) of solutions in clusters found by Ballistic Net-
the total weight of all clusters. working, fora = 4.0. For(r) < 0.4 the curves are essentially zero.

. . . . . C. Freezing transition
while for a > a. it decreases slightly with growing system

size, but it is larger than the value found rightoet These ) ) .

results are also compatible with the analytical predicfids], ~To complete the picture we also studied the freezing tran-
which states that only for a range> o more than one cluster sition, which as me_nnoned in _sectlon IIB is defined as the
is relevant in the thermodynamic limit. Nevertheless, we-ca smallest above which gll solutions belong to frozen clusters
not deduce from the data, since system sizes we can reach £8d has been found to lie at = 4.254. _ _
fraction converges to one or to a smaller value. ables, we need to generate and compare all solutions from

this cluster, therefore cluster surveys do not help here: Us
Next, we have a closer look at the average structure of thg, oy act algorithms we find that for the system sizes we can

solution space. As mentioned in the discussion of the Wargaach for alla near the SAT-UNSAT transition there are al-

matrices, solutions belonging to the same cluster are morg,, < rozen variables in all clusters. This is probably due t
similar to each other, i. e., closer in terms of the Hammirsg di 5 small systems sizes.

tance, than pairs of solutions which belong to differenselu

ters. The cluster structure is thus reflected in the set of alétance taken at — 4.20 and 425 and for system sizes up
pairwise overlaps, where the overlapof two solutionsi and ., _ ,2048, we generated a solution using ASAT, which be-
j for which the Boolean variables take the values givesBy longs with high probability to the largest cluster. Then we

andx)’ is defined asi; := 3N, 8(x’,x)/N. Fig. 13shows ~performed a very long = 0 simulation starting from this so-
the overlap distribution foor = 4.0 and several values ®f.  lution, and measured the fractiqiozen of variables which
For each system size at least 1000 instances have been pf@ave never flipped while performing this _random walk inside
cessed with the algorithm described in section IV B and 500he solution cluster. We extrapolated this fraction to gédar
solutions have been generated from each cluster survey. ~ number of MC steps, yieldingg,,., see Fig. 14. With in-
- N _ creasing system sizqy, .., Seems to converge to zero, see
e soo T e ly158 0 i 1. Hence i — 20 anda _ 425 e largs

: b ot SOl nging clusters seems to contain no frozen variables in the thermo-
ter. With larger system size it moves slightly to low(ey val- R . : X .

dynamic limit. This is compatible witkis = 4.254, meaning

ues and becomes sharper. The second peak at &hoeu.7 . S
. : ; ! that in the thermodynamic limit no frozen clusters occur be-
is not discernible for the smallest system size, but onlyhevo .
: : ; . . low this value ofa.
ing with larger system sizes and only visible weakly agadmst
also growing background. Note that a pure two-peak strectur
would correspond to the picture of one-step broken replica
symmetry (1-RSB) [49]. Nevertheless, the result is notyfull
clear here, since in addition to the peaks, there is also a con
tious part between the two peaks. On the other hand, itis clea In this work we have shown that stochastic local search al-
that the overlap converges to zero for values of the overlagorithms cannot be expected to produce correctly weighted
smaller than 0.5. This speaks against a full-level RSB strucsamples of the solution space of Satisfiability. The saméshol
ture of the solutions space. Note that we have found similatrue for MCMCMC which is widely used to sample config-
results for other values of the control paramete o < dg uration spaces in many fields of application, when the SAT
(not shown). solutions are spread over several clusters.

Thus, we followed a different approach. For each in-

VI. CONCLUSION
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L. Yy=rrrmm ey ficiency for ballistic path search seems to be still much lowe
1.05— 0.9 than for the case dK = 3 which sets very restricting limits
- 0.8~ BB B A on the system sizes which can be reached. Nevertheless, the

1__ 0.7~ co 1 7] approach presented here should be useful for many disardere

0.95— 0.6 o otz © - - systems like other types of combinatorial optimizationtpro
0.904 0.5-{ O 0a=4.25 8 ] lems. S

& ETITI EEE R S AT In the case of Satisfiability, the range of low valuesoof

§0.85 ﬂﬂ 10 100 N 1000 100 (where many solutions exist but belong to only one cluster)

& ﬁ& ‘ 1 can be studied by MCMCMC. Furthermore, the case of high

FIG. 14: Fraction piozen(t) of never-flipped variables for the
“largest” (i. e. first detected) cluster durifig= 0 MC simulations for
o = 4.20 and different system siz&s The solid lines indicate fits to
functions of the formprrozen(t) = Piozent at—P Inset: Extrapolated
valuespy,,q, @s function of system sizK in a double-logarithmic

scale, fora = 4.20 anda = 4.25. The “?” marks a point where the

extrapolation failed and an upper limit was estimated by eye

values ofa close to the SAT-UNSAT transition (fewer solu-
tions contained in several clusters) can be studied usiagtex
enumeration of all solutions. In contrast, the algorithra-pr
sented here allows to study the full satisfiable phase, bsit it
limited to moderate system sizes in the intermediatange.
Nevertheless it is the only reliable method to generate-unbi
ased samples in this regime.

Using the method described here the ensemble properties
of Satisfiability with moderate system size could be studied
and analytic predictions about the cluster structure caeld
tested. To this aim we first did a visual inspection of the
cluster landscape using a graphical representation instefm
Ward distance matrices. These show the expected structural
differences of the different phases of Satisfiability. Rert
more we had a look at the complexity measure over the whole
o spectrum in the easy phase, and the overlap distribution of
the solutions for particular values of. Our findings are in
good agreement with the theoretical predictions and ptevio
numerical studies using other methods.

A new type of algorithm has been presented and used for

studying clustering phenomena in the solution landscape of
the Satisfiability problem. It is an improved version of the
Ballistic Search algorithm which has been successfullyduse
for studying spin-glasses. Its guiding principle is to gene
ate a survey of clusters of solutions represented by smigll se We have profited a lot from discussions with M. Alava,
of solutions rather than enumerating and clustering all-sol J. Ardelius, E. Aurell, P. Kaski, F. Krzakala, M. Mézard,
tions which is unfeasible already for moderate system sizesA. Montanari, P. Orponen, S. Seitz and L. Zdeborova. This
By using a different approach, Ballistic Networking, in the work was supported financially by theolkswagenStiftung
reconstructing process of the cluster structure the effayie  within the program “Nachwuchsgruppen an Universitaten”.
of the Ballistic Search could be improved so that its perfor-We furthermore wish to acknowledge the allocation of com-
mance becomes reasonably high when used on Satisfiabilitputer time by the Gesellschaft fir wissenschaftliche Daten
The method presented here is general enough to be suitable feerarbeitung mbH Goéttingen, by the Institute of Theordtica
many other problems. Of course, it would be natural to studyPhysics (University of Goéttingen), and by the Cluster forSc
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