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Abstract. We study the statistical properties of the convex hull of a planar
run-and-tumble particle (RTP), also known as the “persistent random walk”,
where the particle/walker runs ballistically between tumble events at which it
changes its direction randomly. We consider two different statistical ensembles
where we either fix (i) the total number of tumblings n or (ii) the total duration
t of the time interval. In both cases, we derive exact expressions for the average
perimeter of the convex hull and then compare to numerical estimates finding
excellent agreement. Further, we numerically compute the full distribution of
the perimeter using Markov chain Monte Carlo techniques, in both ensembles,
probing the far tails of the distribution, up to a precision smaller than 10−100.
This also allows us to characterize the rare events that contribute to the tails of
these distributions.
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1. Introduction

Random walks belong probably to the most thoroughly studied class of stochastic
processes [1, 2, 3] with a wide variety of applications ranging from finance [4] to
biology [5] or online search [6]. In its simplest form a random walk consists of the
sum of independent and identically distributed random jumps, which converges, in
the long time limit when suitably scaled, to Brownian motion (provided the jump
distribution has a finite variance). However, to be a useful model for applications,
several variants of this simple model have been introduced and studied. For example,
one may introduce correlations between the steps to model animal movement [7, 8] or
polymers [9]. One can also consider interactions of the walker with its environment
to model organisms that are driven by concentration gradients [10, 11].

Here, we will focus on yet another variant, which has found interesting
applications in modeling active matter and active particles. The term “active particle”
refers to a class of self-propelled particles which, in contrast to “passive” particles
such as Brownian motion, can generate dissipative directed motion by consuming
energy directly from their environment [12, 13, 14]. Examples of active matter arise
in a wide variety of biological and soft matter systems, including bacterial motion
[5, 15, 16, 17], cellular tissue behavior [18], formation of fish schools [19, 20] as well as
flock of birds [21, 22], amongst others. In this context, one of the most studied model is
the run-and-tumble particle (RTP) [23, 24], initially introduced under the name of the
“persistent random walk” [25, 26]. As illustrated in Fig. 1, an RTP performs a ballistic
motion along a certain direction at a constant speed v0 ≥ 0 (“run”) during a certain
“time of flight” τ after which it “tumbles”, i.e., chooses a new direction uniformly
at random. Then it performs a new run along this new direction again with speed
v0 and so on. The tumblings occur instantaneously at random times with constant
rate γ, i.e., the τ of different runs are independently distributed via an exponential
distribution p(τ) = γe−γτ . Despite its simplicity, this RTP model exhibits complex
interesting features such as clustering at boundaries [13], non-Boltzmann distribution
in the steady state in the presence of a confining potential [23, 27, 28, 29, 30], motility-
induced phase separation [24], jamming [31], etc.

An interesting question related to the study of animal movements concerns the
home range of an animal, i.e., the two-dimensional territory it covers while searching
for food during a certain period of time [32]. This is a particularly useful information
for ecologists to decide and design habitat-conservation planning. A convenient way
to estimate this home range is to construct the convex hull of the trajectory, i.e., the
smallest convex polygon containing every point visited by the walker (see Fig. 1). The
perimeter and/or the area of this convex hull provide quantitative estimates of this
home range.

For Brownian motion, the statistics of the convex hull is a classical problem in
probability theory [33] and random convex geometry [34]. Quite recently, exploiting a
beautiful connection to extreme value statistics, exact results have been obtained for
the mean perimeter and mean area for the convex hull of multiple planar Brownian
motions [35, 36], as well as for the convex hull of a single randomly accelerated particle
(also called “the integrated Brownian motion”) in two dimensions [37]. Extensions
of these studies of the convex hull for Brownian motion in higher dimensions have
also been discussed, mainly in the mathematics literature [38, 39]. The convex
hull of random walks consisting of a finite number of discrete jumps drawn from
some distribution has also been widely studied, both in the mathematics literature
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[40, 41, 42, 43, 44] and more recently in physics [45, 46, 47]. In particular, using
sophisticated sampling methods, higher moments, like the variance, as well as the full
distributions of the perimeter and area of the convex hull of random walks in the plane
[46] and in higher dimensions [47] were recently obtained numerically.

The convex hull of several variants of the random walk has been studied, including
Lévy flights [48], continuous-time random walks [49], branching Brownian motion [51]
or self-avoiding random walks [52, 53]. However, to the best of our knowledge nothing
is known about the convex hull of a planar RTP, which, given the wide range of
applications of this model, is clearly an interesting and important observable. The
purpose of the present paper is to provide a detailed study, both analytical and
numerical, of the perimeter of the convex hull of an RTP in the plane.

The rest of the paper is organized as follows. In Section 2 we briefly introduce
the RTP model and present our main results. We proceed with Section 3 where
we present the details of our analytical computations. In Section 4 we outline the
numerical methods we have used to simulate RTP, to calculate convex hulls as well as
how to obtain the desired distributions for the perimeter of the convex hull even in
the tails down to extremely small probabilities, namely smaller than 10−100. Finally,
we present our short conclusions in Section 5.

2. Model: The run-and-tumble particle and its convex hull

We consider a single run-and-tumble particle in two dimensions (see Fig. 1). The
dynamics occurs in continuous time and is defined as follows. The particle starts at the
origin with an initial velocity of fixed magnitude v0 and chooses a direction at random,
i.e., the angle φ specifying the direction is chosen uniformly from [0, 2π]. Subsequently,
in a small time dt, with probability γ dt, the particle changes its direction of flight
by choosing a new angle uniformly in [0, 2π]—this is the “tumbling”. Otherwise with
the complementary probability 1 − γ dt, the particle continues to move ballistically
with speed v0 in its current direction. Thus v0 and γ are the only two parameters
in this model. The parameter γ denotes the rate of tumbling. The distance covered
between two successive tumblings is called a “run”. We count the starting point 0 as
a tumble and hence the number of tumblings is the same as the number of runs n and
by definition n ≥ 1. A typical trajectory for an RTP in the plane is shown in Fig. 1.

We consider two different ensembles: (i) an ensemble where we consider exactly
n runs, i.e., we stop the process exactly after n runs—here the total time spent by
the particle fluctuates from sample to sample while the number of runs n is fixed
and (ii) an ensemble where the total observation time t is fixed—here the number of
runs n fluctuates from sample to sample while the total duration t is fixed. In this
paper, we are interested in the convex hull containing the trajectory of the RTP as
an intuitive measure of the geometric size of the RTP. The convex hull is the smallest
convex polygon enclosing a set of points, in this case the set of points visited by the
RTP—imagine a rubber band around the points: it will contract and become their
convex hull (see Fig. 1).

For both ensembles, we consider each trajectory of the RTP, draw the unique
convex hull associated to it and compute the mean perimeter of the convex hull by
averaging over all trajectories. Our main analytical results are exact results for the
mean perimeter 〈Ln〉 in Eq. (19) for the ensemble (i) and 〈L(t)〉 in Eqs. (43) and
(44) for the ensemble (ii). Besides, we perform simulations of this model to sample
trajectories and measure the distribution of the perimeter of their hulls. In particular,
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Figure 1. a) A typical trajectory of an RTP in two dimensions with n = 7
steps. The particle starts at the origin O, chooses a random direction and moves
ballistically in that direction a distance l1 = v0 τ1 where v0 is constant and τ1
is a random time drawn from the exponential distribution p(τ) = γ e−γτ . At
the end of this first flight, the particle tumbles instantaneously and chooses a
new random direction and again moves ballistically a distance l2 = v0 τ2 with τ2
drawn independently from p(τ) = γ e−γ τ . Then the particle tumbles again and
so on. The schematic figure shows a trajectory of an RTP with n tumblings, with
the starting point is counted as a tumble. b) Same trajectory of an RTP where
we have depicted, in red, the convex hull.

our numerical results for the mean perimeter are in very good agreement with our
analytical predictions (see Fig. 4).

3. Exact mean perimeter of the convex hull of a run-and-tumble particle
in two dimensions

To compute the mean perimeter of the convex hull of a 2d RTP, in either fixed-n
or fixed-t ensemble, we use the strategy developed in Refs. [35, 36]. It was shown in
Refs. [35, 36] how Cauchy’s formula [54] for the perimeter of an arbitrary convex curve
in two dimensions can be applied to calculate the mean perimeter of the convex hull of
a generic 2d stochastic process. Using this procedure, the problem of computing the
mean perimeter of the convex hull of an arbitrary 2d stochastic process can be mapped
to computing the maximum of the one dimensional component process [35, 36]. Let us
briefly outline the key idea. Consider an arbitrary convex domain D in two dimensions
with its boundary C parametrized as {X (s),Y(s)} with s denoting the arc distance
along the boundary contour C. Cauchy’s formula states that the perimeter of the
convex domain D is given by

L =
∫ 2π

0

M(θ) dθ , (1)

where M(θ) is the so called support function

M(θ) = max
s

[X (s) cos(θ) + Y(s) sin(θ)] . (2)
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The quantity M(θ) can be interpreted as follows: Consider the projections of all
points of the boundary curve C along the direction θ and take the maximum of those
projections.

Consider now an arbitrary set of n vertices {(Xi, Yi), i = 1, 2, . . . , n} in 2d (they
may represent the positions of a stochastic process in 2d at successive times in a given
realization) and construct the convex hull C of these vertices. The perimeter of the
convex hull is given by Cauchy’s formula in Eq. (1). To apply this formula, we need
to first evaluate {X (s),Y(s)} of the convex hull C and then compute its maximum
over s which seems to be a formidable task. The key observation of Refs. [35, 36] that
bypasses this step is that the support function M(θ) of the convex hull can be obtained
directly from the underlying vertices (without the need to first compute {X (s),Y(s)}
of C and then maximizing over s) as

M(θ) = max
1≤i≤n

[Xi cos(θ) + Yi sin(θ)] . (3)

Next we average Eq. (1) over all realizations of the stochastic process, i.e., over different
realizations of the vertices {(Xi, Yi)} to get

〈Ln〉 =
∫ 2π

0

〈M(θ)〉 dθ . (4)

Moreover, if the 2d process is isotropic (e.g. the RTP process in 2d is isotropic), 〈M(θ)〉
can not depend on θ—hence, we may as well put θ = 0. This then simplifies Cauchy’s
formula and amounts to computing just the expected maximum of the one-dimensional
component process [35, 36]

〈Ln〉 = 2π 〈Mn〉 where Mn = max [X1, X2, . . . , Xn] . (5)

This mapping holds for any arbitrary 2d isotropic stochastic process. In recent
years, this procedure has been successfully used to compute the mean perimeter
for several 2d stochastic processes. These include a single/multiple planar Brownian
motions [35, 36], planar random acceleration process [37], 2d branching Brownian
motion with absorption in the context of epidemic outbreak [51], anomalous diffusion
processes in 2d [49], a 2d Brownian motion confined in the half-plane [55, 56], discrete-
time 2d random walks, Lévy flights [45], etc. Below we demonstrate that this procedure
is also suitable to compute exactly the mean perimeter of the convex hull of a 2d RTP,
both in the fixed-n and the fixed-t ensemble.

3.1. Fixed-n ensemble

In this ensemble, the total number of runs n of the RTP is fixed, but the duration t
fluctuates from sample to sample. Since the RTP process is isotropic, we can use the
general result in Eq. (5). For this, we need to first evaluate the probability distribution
of the coordinates {X1, X2, . . . , Xn} of the x-component of the 2d RTP. To proceed,
consider a particular run, say the i-th run in Fig. 1. The length of the run is li = v0τi,
where τi is distributed exponentially p(τi) = γ e−γ τi . When projected along the x-axis,
this corresponds to an increment xi = li cos(φi) in the x-direction, where the angle φi
is distributed uniformly over φi ∈ [0, 2π]. Let us write, xi = v τi, where v = v0 cos(φi).
Given the uniform distribution of φi, it is easy to compute the distribution P (v) of v
using P (v)dv = dφi/(2π) and we get

P (v) =
1

π
√
v2

0 − v2
; −v0 ≤ v ≤ v0 . (6)



Convex hull of a run-and-tumble particle 6

Consequently, the joint distribution p(x, τ) of the increment xi = v τi (along the x-
direction) and the duration τi of the i-th run is given by

p(x, τ) = Prob. [xi = x, τi = τ ] =
∫ v0

−v0
dv δ(x− vτ)

1
π
√
v2

0 − v2
γ e−γ τ . (7)

Integrating over v gives

p(x, τ) =
γ e−γ τ

π
√
v2

0τ
2 − x2

θ

(
τ − x

v0

)
, (8)

where θ(z) is the standard Heaviside step function: θ(z) = 1 if z > 0 and θ(z) = 0 if
z < 0.

Integrating further over τ , one sees that the increment xi is distributed via the
marginal probability density

f(x) = Prob.[xi = x] =
∫ ∞

0

p(x, τ) dτ =
γ

π

∫ ∞
x/v0

dτ e−γ τ√
v2

0τ
2 − x2

=
γ

π v0
K0

(
γ|x|
v0

)
, (9)

where Kν(z) is the modified Bessel function with index ν. One can check easily that
f(x) is normalized to unity:

∫∞
−∞ f(x)dx = 1. Furthermore, the variance σ2 of this

distribution is finite and is given by

σ2 =
∫ ∞
−∞

x2 f(x) dx =
2
π

(
v0

γ

)2 ∫ ∞
0

y2K0(y) dy =
(
v0

γ

)2

. (10)

Thus, each run of the 2d RTP gives rise to an independent increment x in
the x-direction which is distributed via the symmetric, continuous, normalized to
unity probability distribution function (PDF) f(x) in Eq. (9). Thus the projected
x-component process is just a one dimensional random walk, Xi = Xi−1 + xi with
independent and identically distributed (i.i.d.) increments xi, each drawn from f(x)
in Eq. (9), and starting at X0 = 0. Hence, we need to now compute the expected
maximum 〈Mn〉 of this reduced one dimensional random walk process of n steps. This
can be conveniently computed using a formula originally due to Kac [40] (see also
Ref. [41])

〈Mn〉 =
1
2

n∑
m=1

〈|Xm|〉
m

. (11)

To compute 〈|Xm|〉, we need to know the distribution Pm(X) = Prob.(Xm = X) of
the position of the 1d random walker at step m. This can be easily computed as
follows. Clearly, Xm = x1 + x2 + . . . + xm where xi are i.i.d. random variables each
drawn from f(x). Hence

Pm(X) =
∫ ∞
−∞

δ

(
X −

m∑
i=1

xi

)
n∏
i=1

f(xi) dxi . (12)

Taking the Fourier transform gives

P̃m(k) =
∫ ∞
∞

Pm(X) ei k X dX =
[
f̃(k)

]m
, (13)

where the Fourier transform of the jump distribution f(x) in Eq. (9) turns out to be
rather simple

f̃(k) =
γ

π v0

∫ ∞
−∞

ei k xK0

(
γ|x|
v0

)
dx =

1√
1 + v20 k

2

γ2

. (14)
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Substituting this in Eq. (13) and inverting the Fourier transform (fortunately it can
be done explicitly) we get

Pm(X) =
∫ ∞
−∞

[
1 +

v2
0 k

2

γ2

]−m/2
e−i k X dk

=
γ 2(1−m)/2

v0
√
π Γ(m/2)

(
γ |X|
v0

)(m−1)/2

K(1−m)/2

(
γ |X|
v0

)
. (15)

where Γ(z) is the standard Gamma function.
From this exact PDF of Xm in Eq. (15), one can easily compute 〈|Xm|〉

〈|Xm|〉 =
∫ ∞
−∞
|X|Pm(X) dX =

v0

γ

2(3−m)/2

√
π Γ(m/2)

∫ ∞
0

y(m+1)/2K(1−m)/2(y) dy (16)

=
2 v0

γ

Γ
(

1+m
2

)
√
π Γ(m/2)

. (17)

Substituting this result in Kac’s formula (11) and using Eq. (5) gives, for any n ≥ 1,

〈Ln〉 =
v0
√
π

γ

n∑
m=1

Γ
(
m
2 + 1

2

)
Γ
(
m
2 + 1

) . (18)

This sum can be done explicitly and we get

〈Ln〉 =
v0

γ

[
−(π + 2) + 2

√
π

{
Γ
(
2 + bn−1

2 c
)

Γ
(

3
2 + bn−1

2 c
) +

Γ
(

3
2 + bn2 c

)
Γ
(
1 + bn−1

2 c
)}] , (19)

where bzc denotes the integer part of z. It is easy to check that for large n one gets
the asymptotic behavior

〈Ln〉 → v0

γ

√
8πn as n→∞ . (20)

Using σ = v0/γ from Eq. (10), we see that for large n, 〈Ln〉 → σ
√

8π n which coincides
with the mean perimeter of the convex hull of a discrete two dimensional random walk
of n steps for any jump distribution with a finite variance σ2 [45].

3.2. Fixed-t ensemble

Here, we consider the total duration t fixed, but the number of runs n during t may
fluctuate from sample to sample and hence n is a random variable. Note that the
duration τn of the last interval (i.e., following the n-th tumbling) traveled by the
particle before the epoch t is yet to be complete. Consequently, its distribution is e−γ τn

(denoting the probability of no tumbling during the interval of duration τn) is not
normalized to unity. This is in contrast to the already completed preceding intervals
each of which is distributed independently according to the normalized distribution
p(τ) = γ e−γ τ . For each of these preceding intervals, the joint distribution of the
x-component and the duration of the interval is given by p(x, τ) in Eq. (8) and each
interval is independent of the other. The corresponding joint distribution for the last
(incomplete run) interval, in contrast, is different by a factor 1/γ

plast(x, τ) =
e−γ τ

π
√
v2

0τ
2 − x2

θ

(
τ − x

v0

)
=

1
γ
p(x, τ) , (21)

where p(x, τ) is given in Eq. (8). Note however that the sum of the durations of the
(n− 1) completed runs and the last incomplete run is fixed to be t. Hence, the grand
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joint distribution of the x-increments {xi}, their associated durations {τi} (where
i = 1, 2, . . . , n) and the number of runs n is given by

P [{xi}, {τi}, n|t] =
1
γ

[
n∏
i=1

p(xi, τi)

]
δ

(
n∑
i=1

τi − t
)

=
1
γ

[
n∏
i=1

γ e−γ τi

π
√
v2

0τ
2 − x2

i

θ

(
τi − xi

v0

)]
δ

(
n∑
i=1

τi − t
)
. (22)

The presence of the delta function on the right hand side (rhs) of Eq. (22) naturally
signals that it is convenient to work in the Laplace space conjugate to t. Taking the
Laplace transform of Eq. (22) with respect to t and integrating over the τi variables,
we obtain the Laplace transform of the marginal joint distribution P [{xi}, n|t] in a
factorized form∫ ∞

0

P [{xi}, n|t] e−s t dt =
1
γ

[
n∏
i=1

∫ ∞
xi/v0

γ e−(γ+s) τi

π
√
v2

0τ
2 − x2

i

dτi

]

=
1
γ

[
n∏
i=1

γ

v0 π
K0

(
(γ + s) |xi|

v0

)]
, (23)

where we used the result from Eq. (9). To proceed further, it is convenient to define
a normalized (to unity) PDF fs(x) parametrized by s as follows

fs(x) =
K0

(
(γ+s) |x|

v0

)
∫∞
−∞K0

(
(γ+s) |x|

v0

)
dx

=
γ + s

π v0
K0

(
(γ + s) |x|

v0

)
. (24)

In terms of this normalized PDF fs(x), we can rewrite Eq. (23) in a convenient form
as ∫ ∞

0

P [{xi}, n|t] e−s t dt =
1
γ

(
γ

γ + s

)n n∏
i=1

fs(xi) . (25)

We next invert the Laplace transform formally as

P [{xi}, n|t] =
∫

Γ

ds

2πi
es t

1
γ

(
γ

γ + s

)n n∏
i=1

fs(xi) , (26)

where Γ denotes a vertical Bromwich contour (to the right of all singularities of the
integrand) in the complex s plane. Note that the increments xi are correlated since
the rhs of Eq. (26) does not factorize.

So, once again, the projected x-increments {xi} (i = 1, 2 . . . , n) form a random
walk process in 1d where the position Xi of the walker evolves as Xi = Xi−1 + xi,
starting from X0 = 0. However, unlike in the fixed-n ensemble, the increments in
the fixed-t ensemble are not independent random variables, but are correlated as in
Eq. (26). To compute the mean perimeter 〈L(t)〉 of the convex hull for fixed t using
Eq. (5), we need to compute the expected maximum of the 1d process Xi with fixed
t whose increments and number of steps n are jointly distributed via Eq. (26), and
finally sum over all n. It is convenient to define the following quantity

Q(M,n|t) =
∫ ∞
−∞

dx1 . . .

∫ ∞
−∞

dxn Prob. [X1 < M,X2 < M, . . . ,Xn < M,n|t] , (27)

with Xi =
i∑

j=1

xj , (28)
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that denotes the joint probability that the maximum of the random walk process is
less than M and the number of steps is exactly n, for a given t. Taking a derivative
with respect to M gives the joint PDF of M and n: P (M,n|t) = ∂MQ(M,n|t). Using
Eq. (5) we then have

〈L(t)〉 = 2π
∞∑
n=1

∫ ∞
0

dM M ∂MQ(M,n|t) . (29)

Using the joint distribution in Eq. (26) and the definition Q(M,n|t) in Eq. (27) we
then get formally

〈L(t)〉 = 2π
∞∑
n=1

∫
Γ

ds

2πi
es t

1
γ

(
γ

γ + s

)n
〈Ms(n)〉 , (30)

with

〈Ms(n)〉 =
∫ ∞

0

dM M ∂MQs(M,n) (31)

where

Qs(M,n) =
∫ ∞
−∞

. . .

∫ ∞
−∞

[
n∏
i=1

fs(xi) dxi

]
Prob. [Y1 < M, Y2 < M, . . . , Yn < M ] (32)

with Yi =
i∑

j=1

xj . (33)

Thus, Qs(M,n) in Eq. (33) can be interpreted as the cumulative distribution of
the maximum of an auxiliary 1d random walk process {Yi} of n-steps, Yi = Yi−1 +xi,
with i.i.d. increments xi each distributed via fs(x) given in Eq. (24). Consequently,
〈Ms(n)〉 in Eq. (31) is simply the expected maximum of this auxiliary n-step 1d process
{Yi} parametrized by s. However, as mentioned before, the expected maximum of any
1d random walk process with i.i.d. increments can be computed using Kac’s formula in
Eq. (11), provided we can compute the expected absolute value of the process 〈|Ym|〉
at step m. Then, we get

〈Ms(n)〉 =
1
2

n∑
m=1

〈|Ym|〉
m

(34)

The average of |Ym| can be computed explicitly as in the case of the fixed-n ensemble
discussed before. Using Ym = x1 +x2 + . . . xm where xi are i.i.d. variables each drawn
from the PDF fs(x), the PDF Pm(Y ) of Ym can be computed in terms of the Fourier
transform of the jump distribution fs(x) as in Eq. (13)

Pm(Y ) =
∫ ∞
−∞

[
f̃s(k)

]m
e−i k Y

dk

2π
, (35)

where

f̃s(k) =
∫ ∞
−∞

fs(x) ei k x dx =
1√(

v0
γ+s

)2

k2 + 1

. (36)

We have used the explicit expression of fs(x) from Eq. (24) and the result in Eq. (14)
where we replaced γ by γ + s. Substituting Eq. (36) in Eq. (35) and performing the
integral (as in Eq. (15) with γ replaced γ + s) we get

Pm(Y ) =
(γ + s) 2(1−m)/2

v0
√
π Γ(m/2)

(
(γ + s) |Y |

v0

)(m−1)/2

K(1−m)/2

(
(γ + s) |Y |

v0

)
. (37)
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This then gives

〈|Ym|〉 =
∫ ∞
−∞
|Y |Pm(Y ) dY =

2 v0

γ + s

Γ
(

1+m
2

)
√
π Γ(m/2)

. (38)

Substituting this result in Eq. (34) we get

〈Ms(n)〉 =
v0

(γ + s)
√

4π

n∑
m=1

Γ
(
m
2 + 1

2

)
Γ
(
m
2 + 1

) (39)

and consequently Eq. (30) yields

〈L(t)〉 = v0

√
π

∞∑
n=1

γn−1

[
n∑

m=1

Γ
(
m
2 + 1

2

)
Γ
(
m
2 + 1

) ] ∫
Γ

ds

2πi
es t

1
(γ + s)n+1

. (40)

The Bromwich integral can now be trivially performed using∫
Γ

ds

2πi
es t

1
(γ + s)n+1

=
tn e−γ t

Γ(n+ 1)
. (41)

This then gives us the formula for 〈L(t)〉 in the fixed-t ensemble

〈L(t)〉 =
v0
√
π

γ
e−γ t

∞∑
n=1

(γ t)n

n!

[
n∑

m=1

Γ
(
m
2 + 1

2

)
Γ
(
m
2 + 1

) ] . (42)

The result in Eq. (42) is valid at any time t. Furthermore, it turns out that the
double summation can be performed explicitly and 〈L(t)〉 can be written in a scaling
form

〈L(t)〉 =
v0

γ
H(γ t) , (43)

where the scaling function H(z) is given exactly by

H(z) = e−z [2− (π + 2) ez + 2 z + π (1 + z) (I0(z) + L0(z)) + π z (I1(z) + L1(z))](44)

In Eq. (44), Iν(z) is the standard modified Bessel functions of index ν, while Lν(z)
denotes the Struve function of index ν defined as

Lν(z) =
(z

2

)ν+1 ∞∑
k=0

1
Γ
(

3
2 + k

)
Γ
(

3
2 + k + ν

) (z
2

)2k

. (45)

The function H(z) in Eq. (44) can be plotted using Mathematica—a plot of
〈L(t)〉 vs. t for v0 = 1 and γ = 1 is shown in Fig. 2. The scaling function H(z) has
the following asymptotic behaviors

H(z) =


2 z +

π − 4
4

z2 +O(z3) , as z → 0 ,

√
8π z − (π + 2) +O

(
1√
z

)
, as z →∞ .

(46)

Consequently, the mean perimeter 〈L(t)〉 initially grows ballistically for t� γ−1 and
eventually for t� γ−1, it crosses over to the diffusive behavior

〈L(t)〉 →


2 v0 t+O(t2) , for t� γ−1

v0

γ

[√
8πγt− (π + 2) +O

(
1√
t

)]
for t� γ−1 .

(47)

We remark that in the limit v0 → ∞, γ → ∞, but with the ratio v2
0/(2γ) = Deff

kept fixed, it is well known that the RTP converges to a standard Brownian motion
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Figure 2. The mean perimeter of the convex hull of an RTP 〈L(t)〉 in Eqs. (43)
and (44), plotted as a function of t (using Mathematica) for parameter values
v0 = 1 and γ = 1.

with an effective diffusion constant Deff . In this limit, we get from the second line
of Eq. (47), 〈L(t)〉 → √16πDeff t and thus coincides with the well known result for
the mean perimeter of the convex hull of a 2d Brownian motion of duration t and
diffusion constant Deff (see e.g. the review [36]). Thus, at short times t � γ−1, the
behavior of 〈L(t)〉 for the RTP is clearly different from that of a passive (ordinary)
Brownian motion. However, at late times, the signature of activity is present not
in the leading term (which effectively behaves as in the passive Brownian motion),
but in the subleading (second term in the last line of Eq. (47)) nontrivial constant
−(π + 2)v0/γ.

To summarize, our principal results in this section concern the exact formulae
for the mean perimeter of the convex hull of an RTP, both in the ensemble of fixed
number n of runs (as given in Eq. (19) which is valid for all n ) and in the fixed time
t ensemble (given in Eq. (43) which is valid for all t). Later, in subsection (4.2) we
compare the high precision simulation results to these exact formulae for the mean
perimeter derived in this section. In Figs. 4(a) and 4(b) we compare the simulation
results to the analytical formula for these two ensembles and find excellent agreement.

4. Numerically estimated mean perimeter and higher moments

Here we present the numerical part of this study. This section is split in three
parts: Subsection 4.1 is a rather technical part of interest for the reader wanting
to reproduce the results, which may be safely skipped when only interested in the
results. Subsection 4.2 verifies the analytic results and subsection 4.3 studies the full
distribution of the perimeter of the RTP’s convex hull.
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4.1. Methods

Modeling the RTP in simulation is straightforward. One draws random directions φi
uniformly from [0, 2π] and the duration of the runs, i.e., the run times between tumble
events, τi from the exponential distribution

p(τ) = γe−γτ , (48)

where the latter task is easily achieved using the standard inversion method [57].
This is repeated, depending on the ensemble we want to simulate, until we either have
drawn n random numbers of each or until the total time

∑
i τi ≥ t, in which case the

last waiting time is truncated to result in an equality.
The convex hull of point sets in a 2d plane is easy to obtain using well established

methods, such as Andrew’s Monotone Chain algorithm [58], which exploit the fact
that a convex hull in 2d is defined by the order of its vertices and find the hull of
a point set of size n in time O(n log(n)). For our purposes a further speedup can
be achieved by preprocessing the point set with Akl’s heuristic [59]. The main idea
behind this heuristic is that all points which are inside the convex hull of a subset, are
also inside of the convex hull of the actual set and therefore not part of the convex
hull. Using the points with minimal and maximal x- and y-coordinates, as well as
points with extreme x+ y and x− y as vertices for the subset hull, usually allows to
discard the majority of points in time O(n) such that the exact algorithm can operate
on a much smaller point set.

Given the set of n points in 2d, let m ≤ n denote the number of vertices of the
associated convex hull. Given these m vertices in order by their Cartesian coordinates
{(Xi, Yi)}, the calculation of its perimeter is trivial

L =
m−1∑
i=0

√
(Xi −Xi+1)2 + (Yi − Yi+1)2, (49)

with cyclical indexes, i.e., X0 = Xm.
We employ two types of simulation to obtain our numerical results. To estimate

the mean values and variances, we use simple sampling. That is, we generate 105

independent realizations of the RTP ensemble naively, construct their convex hulls
and calculate the perimeter of each. These samples can be used to estimate the mean
and variance. To obtain the distributions of the perimeter close to its typical values,
it is sufficient to create a histogram from the collected samples. But note that the
tails of this histogram will only contain events which occur with a probability, for our
sample size, of around 10−5 or higher.

To reach the tails of the distribution containing extremely rare events with
probabilities of, say, 10−100, we need to employ a more sophisticated sampling method.
Therefore, we use a Monte Carlo (MC) method based on Markov chains. Each state
of the Markov chain consists of one realization of an RTP trajectory. The general
idea is to use a Markov chain to generate realizations whose appearance probability
is weighted with a known weight depending on the observable of interest, here the
perimeter L. This weight has to exhibit a free parameter, which is used to bias
the realizations towards different regions in L-space, such that good statistics can be
sampled for atypical values of L. Afterwards the knowledge about the bias is used to
calculate the wanted distribution P (L), from the biased realizations.

An example of a Markov chain of realizations of RTP trajectories is sketched in
Fig. 3. To transition from the current state to the next state of the chain, we have
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to define a change move. To decide for a simple yet efficient change move, we have
to look at the representation of an RTP trajectory realization. Here we define it by a
tuple of times between tumble events (τ1, τ2, . . .) and a tuple of directions chosen at
the tumble events (φ1, φ2, . . .). A change move is constructed by replacing one random
entry of the tuples by a new random waiting time τ ′i from the exponential distribution
p(τ) or by a new random direction from the corresponding uniform distribution φ′i.
Note that if this change was always accepted, it would lead to a Markov chain whose
entries would be distributed uniformly over all RTP trajectory realizations.

L1 L2 L3 L4 L5

...change
accept

change
accept

change

reject

change
accept ...

Figure 3. Sketch of the Markov chain of RTP realizations. At each step a change
is proposed and either accepted, leading to a new entry in the chain or rejected,
leading to a duplicate of the old entry in the chain. In this example a negative
temperature leading to larger than usual hulls is used for the fixed-n ensemble
with n = 12.

To introduce the bias, we use the classical Metropolis algorithm [60] which
generates in its original formulation realizations of the canonical ensemble at a given
temperature. To foster intuition, in the canonical ensemble at low temperatures one
encounters realizations near the ground state, i.e., very low energies, and at high
temperatures realizations with high energies. Here, we identify the observable of
interest L with the energy appearing in the original Metropolis algorithm and can use
the temperature Θ as a free parameter to bias the resulting distribution. Therefore
we accept each proposed change with the probability pacc = min

{
1, e−∆L/Θ

}
, where

∆L is the difference of the perimeter in the current and the proposed state.
If a proposed change is rejected, the current step will be repeated in the

Markov chain. This way a sample of the states appearing in the Markov chain
will eventually be distributed such that realizations C appear distributed according
to QΘ(C) = 1

Z(Θ)Q(C)e−L(C)/Θ, where Q(C) is the distribution of the realizations,
i.e., when drawing uniformly from all realizations of RTP trajectories. The quasi-
Boltzmann factor biases the samples to large or small values of L depending on the
artificial temperature Θ, which can assume positive and negative values. Note that
negative Θ will lead to realizations with atypically large perimeter.

Summing the distribution Q(C) over all realizations with the same perimeter
results in the wanted distribution P (L), and after some elemental algebra we obtain
the relation

P (L) = eL/ΘZ(Θ)PΘ(L) (50)

between the distribution we measure in the biased ensembles PΘ(L) and the wanted
distribution P (L). The ratios of the two unknown constants Z(Θi) and Z(Θj) can be
obtained by enforcing that the two estimates of the corresponding biased distributions
PΘ(L) must coincide in overlapping regions. The absolute value of Z(Θ) is obtained
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by normalization of the entire distribution. This way, the wanted distribution P (L)
is obtained over a very large range.

Due to the small changes the single members of the Markov chain are correlated.
Therefore, it will take some time to reach equilibrium and to forget the initial
condition, which usually have a dramatically different value of the observable L than
the typical realizations for the biased ensemble at the given Θ. The links in the chain
until equilibration have to be discarded. Also in equilibrium subsequent samples
will be correlated, which could lead to an underestimation of the statistical error.
Therefore we use the integrated autocorrelation time [61] to only consider statistically
uncorrelated samples for our results.

This technique was used before to study diverse problems ranging from traffic
models [62], over sequence alignment [63] to the ground state energy distribution of a
random energy model [64]. Even more general formulations of this algorithm exist for
problems, where correct change moves are not easily defined, e.g., growth processes
[52, 53, 65].

For the results obtained here (see Figs. 7(a) and 7(b)), we used about 20
temperatures per system size, and chains with a length of 105 sweeps, each sweep
being n respectively dte change move proposals. Equilibration was always achieved
in less than 1000 sweeps and did not pose any problems. The autocorrelation times
range from less than 10 sweeps to around 100 for temperatures close to 0, such that
even our very far tails consist of multiple thousand independent samples.

4.2. Mean and variance of the perimeter of the convex hull of RTP

First, we compare the analytical result for the mean perimeter for the fixed-n ensemble
Eq. (18) and the fixed-t ensemble Eq. (43) to our simulations. These comparisons are
shown in Fig. 4. The agreement between numerical and analytical results is excellent
for all values of n, and respectively for all t. Figure 5 shows that this agreement spans
over 6 orders of magnitude of our simulations.

Next, we give an outlook for the mean perimeter of the convex hulls in both
ensembles, as well as the variances of the perimeter in both ensembles, in Fig. 5. Here,
we will scale the results in an unusual way, to enable the visualization of different values
of the parameter γ and a very large range of sizes in a way which enables a qualitative
comparison of the different ensembles. Since we are mainly interested in the behavior
at finite sizes and less in the asymptotic behavior, which should converge to the known
case of Brownian motion, we will remove the asymptotic growth by showing 〈Ln〉 /

√
n,

respectively 〈L(t)〉 /√t. Note that this way, for large sizes the curves will converge
to a limit value and therefore compress the y-axis to allow the observation of fine
details. For different values of γ these limit values are different, but connected by
a simple relation depending on the variance of the jump-length distribution σj , i.e.,
σj = v0

γ (cf. Eq. (10)) for fixed n and σj = v0√
γ for fixed t. Therefore, we also scale

with this factor which will lead to all values for the perimeter converging to the same
limit value, which makes it possible to directly observe the qualitative influence of
γ on the finite-size behavior. Also note the logarithmic x-axis to allow for a higher
visual resolution at small times. Also, the variance is scaled appropriately with σ2

j

and reproduces the limit values which were also measured before [46, 47], but are not
known exactly even for the Brownian motion case (the only currently known exact
result for variance is for the perimeter of the convex hull of Brownian bridges [66].)

The finite-size behavior of the mean perimeter shown in the left panel of Fig. 5
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Figure 4. Left: Comparison of the exact mean perimeter 〈Ln〉 of Eq. (18) (lines)
for the fixed-n ensemble with simulation results (symbols). Right: Comparison
of the exact mean perimeter 〈L(t)〉 of Eq. (43) (lines) with simulation results
(symbols). The errorbars are the standard errors of our simulation results and
indicate excellent agreement, which is especially well visible when considering the
relative difference ∆ between our analytical and numerical result shown at the
bottom of both plots. The shown data are for v0 = 1 and γ = 1.
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Figure 5. Left: Behavior of the mean perimeter of the convex hull. The exact
values from Eqs. (18) and (43) are shown as lines. Symbols show values for
the scaled mean perimeter of both ensembles ln = 〈Ln〉 /(

√
nσj) and l(t) =

〈L(t)〉 /(
√
tσj). Right: Behavior of the variance of the perimeter of the convex

hull. Symbols show values for the scaled variance of the perimeter of both
ensembles vn = Var(Ln)/(nσ2

j ) and v(t) = Var(L(t))/(tσ2
j ). Two values γ = 1

and γ = 1/2 are shown. For motivation of the unusual scaling see text. Errorbars
are far smaller than the symbols.

mirrors the result obtained in the previous section for the perimeter: The behavior
of the fixed-t ensemble changes with γ at small times, and converges to Brownian
motion for long times. The fixed-n ensemble becomes indistinguishable for all values
of γ when using this rescaling. This is consistent with the result stated in Eq. (18).

The behavior of the variance in the right panel shows the same effect. But
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interestingly, in contrast to the mean, where the fixed-n and fixed-t ensemble behave
similarly, the variance approaches for the perimeter the asymptotic value from different
directions depending on whether t is fixed (from below) or n is fixed (from above).

We also estimated the asymptotic values 〈Ln〉 /
√
n → µ∞ for the means and

Var(Ln)/n → σ2
∞ for the variances and analogously for the fixed-t ensemble. All

coincide within statistical errors with the current best estimates for Brownian motion,
as expected. This is mainly a cross check, to establish the good quality of our data.
They are obtained by fits to the form

L(t) = µ∞ + at−0.5 + bt−1, (51)

and analogously for fixed n, as well as for σ2
∞. They are shown in table 1 in comparison

to the current best values for them.

Table 1. Table of the asymptotic values in comparison to the known values for
Brownian motion (BM). Note that the γ = 1/2 case corresponds for the fixed-
n ensemble to σj = 2 and for the fixed-t ensemble to σj =

√
2. Dividing the

shown values with the corresponding power of σj , leads to values compatible with
Brownian motion. The asymptotic values are obtained by fits to Eq. (51) for
n ≥ 100 respectively t ≥ 100 and show goodness of fit χ2

red between 0.5 and 1.4.

L
µ∞ σ2

∞

BM [38, 47], 5.0132.. 1.077(1)
fixed-n, γ = 1, µ 5.014(1) 1.078(2)
fixed-t, γ = 1, µ 5.011(1) 1.076(2)
fixed-n, γ = 1/2, µ 10.027(3) 4.306(10)
fixed-t, γ = 1/2, µ 7.092(2) 2.152(5)

4.3. Full distributions

Here, we study the whole distribution of the perimeter of the convex hulls of RTP. We
concentrate on two regions: First, we examine the region around the mean describing
typical fluctuations, where we show the distribution for a large range of sizes. Second,
we investigate the intermediate and far tail, which requires a much larger numerical
effort, and is therefore restricted to small sizes.

When visualizing the distribution, we will scale it with the expected perimeter.
The reasoning is similar to the unusual scaling of Fig. 5: First, this enables us to
compare the distribution for values of n and t of different magnitudes. Second, it
was observed previously that the distributions of standard random walks for different
sizes collapse on a common curve when scaled with the mean perimeter in the limit
of Brownian motion [46, 47].

Unsurprisingly the distributions for the perimeter of the RTP’s convex hull to
collapse in the limit of large sizes, which corresponds to Brownian motion, on the
same curve when rescaled with the exact mean perimeter according to Eqs. (18) and
(43). This is shown in Fig. 6. While small sizes show significant deviations from this
limit shape, it is interesting that the fixed-t ensemble is apparently converging much
faster.

With the large-deviation approach, we are able to sample the distribution of the
perimeter over more than one hundred decades, see Figs. 7(a) and 7(b). Examining
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Figure 6. Distribution of the perimeter L of the RTP with v0 = 1 and γ = 1.
Both fixed-n and fixed-t are shown in comparison and scaled with the leading
order of their mean. Note that a scaling with their exact mean does also not lead
to a collapse of the small sizes (not shown).

the tails of the distribution, one sees that the scaling of the distribution with its mean
value works not only in the high probability region, but also in the intermediate tails,
as shown in the insets. In the far tails this collapse ceases to work. Also in the far
tail, we can observe a curious difference between the fixed-t and fixed-n ensemble. For
fixed-n smaller numbers of tumblings lead to a larger value of the scaled probability
for extremely large hulls, while for fixed-t a longer total time leads to a lower value of
the scaled probability for extremely large hulls.

As expected due to previous results on convex hulls of random walks, which
converge to Brownian motion in the long time limit, we test whether a large deviation
principle holds [67]. That is, the rate function Φ, defined by Pn(L) ≈ exp (−nΦ(Ln)),
respectively Pt(L) ≈ exp (−tΦ(L(t))) (without explicit dependency on n or t) for
large n respectively t, exists in the right tail. As an intuitive interpretation, the rate
function determines how fast the probability density decays in the tails with increasing
n respectively t. For the present distribution we can verify this directly using the tails
of the distributions we obtained: The empirical rate functions Φn(L/n), respectively
Φt(L/t) calculated from our data (not shown here) collapse on a power law with
exponent 2 over a large range (including the full right tail) where they are independent
of the system size, which is a strong hint that these forms are the actual n, respectively
t independent rate functions. The exponent 2 is also compatible with previous results
[46, 47].

To understand what characterizes the instances of extremely large and extremely
small convex hulls, we measured during the large-deviation Markov chain MC
simulations for the fixed-n ensemble the total time traveled t and for the fixed-t
ensemble the number of tumble events n, for each realization encountered, respectively.
To end up with a very large hull, the RTP can either make very large steps, which
become exponentially rare with their length, or can take steps persistently into one
direction, which also becomes exponentially improbable with the number of tumble
events. If we look in Fig. 8 at the correlations between the perimeter of the hull and
the number of tumble events n (for fixed-t), respectively the total time of the walk t
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Figure 7. Probability density function of the perimeter of the convex hull around
RTP including high quality statistics for extremely rare configurations with very
large and very small hulls. Left for the fixed-n ensemble, right for the fixed-t
ensemble.
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Figure 8. Left: Strong correlation of the total time t with the perimeter for
the fixed-n ensemble. Right: Anticorrelation of the number of tumble events
n with the perimeter for the fixed-t ensemble. Data for γ = 1 und n = 1024,
respectively t = 1024. Events with a high probability (gathered using simple
sampling) are marked black. Note that the density of points does not mirror the
actual probability of the events.

(for fixed-n), we can identify the mechanism in both ensembles leading to extremely
large hulls. In the fixed-n ensemble the perimeter of the hull is strongly correlated with
the total time, i.e., the size of the hull is inflated by taking longer steps. The question
is whether this correlation is sufficient to explain the large-deviation behavior. For a
configuration of fixed “shape” (i.e. directions), if one blows up all traveling times by
a certain factor, this would result in a growth of the perimeter by the same factor.
Now, the extreme configurations exhibit about a ten times higher perimeter, but only
about a factor of 1.4 longer time. Hence, rare configurations are not only characterized
by atypical large times between two tumble events, but also by rare combination of
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chosen directions.
Correspondingly, in the fixed-t ensemble, the number of steps is anticorrelated

with the perimeter. A smaller number of tumble events, while having the same total
traveling time, leads intuitively to more extended RTP trajectories, i.e., to larger
perimeters. Nevertheless, since the extreme perimeter values are much larger than
the typical ones and the number of tumble events is only moderately decreased, the
large-deviation behavior is also for this ensemble influenced by rare combination of
chosen directions.

5. Conclusion

In this paper we have studied the statistics of the perimeter of the convex hull of a
single run-and-tumble particle in two dimensions. This run-and-tumble particle moves
with constant speed (ballistically) during an exponentially distributed run time and
changes its direction of motion at tumble events instantaneously by choosing a new
direction at random. We derived exact expressions for the mean perimeter of the
convex hull of its trajectory for two ensembles, with a fixed number of tumblings
and with a fixed total time. Our numerical simulations in both ensembles are in
excellent agreement with analytical results. For higher moments of the perimeter
we could not derive exact results, but we obtained numerical results with very high
precision. In particular, for both ensembles we presented detailed numerical studies of
the variances as well as the full probability distributions of the perimeter of the convex
hull. Deriving analytically the higher moments as well as the full distribution of the
perimeter remains a challenging open problem. In particular, it would be interesting
to understand in more detail what leads to the smaller variance of the perimeter of
the fixed-t ensemble in comparison to the fixed-n ensemble for finite sizes.

Another closely related observable is the area of the convex hull of the trajectory.
For Brownian motion and other stochastic processes, the mean area of the associated
convex hull has been calculated analytically (for a review see [36]). In fact, a second
formula due to Cauchy for the area of an arbitrary convex curves in 2d was applied to
convex hulls [35, 36] that allows one to compute the mean area of the convex hull of
an arbitrary stochastic process in 2d. Let {Xi, Yi} (with i = 1, 2, . . . , n) denote the n
vertices of a stochastic process in 2d where i labels the time. Let C denote the convex
hull of these vertices. Then the mean area of the convex hull of these vertices is given
by [35, 36]

〈An〉 = π
[〈M2

n〉 − 〈Y 2
m〉
]
. (52)

where Mn = max [X1, X2, . . . , Xn] denotes the maximum of the x-coordinates which
is achieved at step m. In formula (52) Ym denotes the y-coordinate at step m, i.e, at
the time when the x-coordinate achieves its maximum. This formula (52) is valid for
any set of random points in 2d [36], and hence it is also valid for the 2d RTP process.
However this analytic computation of the mean area is not that easy and we have
not done it yet. However, we could easily obtain the mean area, as well as its higher
moments and the full distribution numerically, using the same method that we used
for the perimeter (not presented in this paper). Hence, it would be interesting if this
mean area can be computed analytically to compare with our simulation data.

Finally, in this paper, we have considered the simplest version of the run-and-
tumble model where the walker tumbles instantaneously. In more realistic models,
there is an additional waiting time after each run during which the particle tumbles,
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before starting a new run. It would be interesting to see how the mean perimeter
of the convex hull gets affected by the finite waiting time. Evidently, the result for
the fixed-n ensemble will not depend on the waiting time. However, in the fixed-t
ensemble, the mean perimeter will certainly depend on the waiting time, and it would
be interesting to compute this.
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