
Aging in the three-dimensional Random Field Ising Model

Sebastian von Ohr,∗ Markus Manssen, and Alexander K. Hartmann
Institute of Physics, Carl von Ossietzky University, 26111 Oldenburg, Germany

(Dated: January 2, 2017)

We studied the nonequilibrium aging behavior of the Random Field Ising Model in three dimensions for
various values of the disorder strength. This allowed us to investigate how the aging behavior changes across
the ferromagnetic-paramagnetic phase transition. We investigated a largesystem size ofN = 2563 spins and up
to 108 Monte Carlo sweeps. To reach these necessary long simulation times we employed an implementation
running on Intel Xeon Phi coprocessors, reaching single spin flip timesas short as 6 ps. We measured typical
correlation functions in space and time to extract a growing length scale andcorresponding exponents.

PACS numbers: 75.50.Lk, 75.40.Mg, 75.10.Hk

I. INTRODUCTION

Studying the relationship between equilibrium (static) and
non-equilibrium (dynamic) behavior is one of the main aims
of statistical physics. A prominent example are structural
glasses [1], where it is not even clear whether the drastic
changes in dynamic behavior are accompanied by an equilib-
rium phase transition. On the other hand, lattice spin models
like spin glasses and random field systems [2] exhibit for sure
phase transitions in high enough spatial dimensions, but the
dynamics are still not fully understood.

The Random Field Ising Model [3] (RFIM) has been stud-
ied extensively in theory [4] and in experiments [5], realized
using dilute antiferromagnets. The equilibrium properties are
reasonably well understood. Here it is particularly conve-
nient that in any dimension exact ground states can be calcu-
lated numerically for large system sizes using mapping to the
maximum-flow problem [6], along the full disorder parame-
ter line. Nevertheless, the dynamics is still under discussion.
Of particular interest is the aging behavior, i.e., the dynamics
resulting from starting in an equilibrium state followed bya
rapid parameter change to a target point in phase space result-
ing in an non-equilibrium situation [7, 8]. Here we study the
quench from a random configuration at infinite temperature to
a low temperature with suitably small random-field disorder,
which results in domains of parallel spins forming and grow-
ing over time. The disorder introduced by the random field
pins the domain wall and slows down the growth of domains.

Typically, literature on aging concentrates on isolated target
points in phase diagrams. Here we are interested in correlat-
ing the aging behavior with a disorder-driven phase transition.
So far, aging in the RFIM has been analyzed mostly in the fer-
romagnetic phase [9–12]. Some recent articles [13, 14] cover
the two-dimensional (2D) RFIM in the disordered phase, but
no studies of the 3D RFIM in a larger space of the phase dia-
gram are known to the authors. This is probably be due to the
fact that such studies require many-parameter long-run simu-
lations of large systems, going beyond the amount of compu-
tational resources usually available. With the introduction of
comparable low-cost cards like GPU and Intel-Phi, such stud-
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ies become feasible. Similar to previous work [15] analyzing
the aging across the spin glass-ferromagnet transition in the
Edwards-Anderson model, we here present results for the dy-
namic behavior for the 3D RFIM across the disorder-driven
ferromagnet-paramagnet transition. We will be looking at the
spatial correlation and discuss different methods of extract-
ing the coherence length and corresponding exponents from
it. We will also look at the autocorrelation and try to collapse
it by rescaling the time in units of the coherence length, also
yielding suitably defined exponents.

To reach sufficient long simulation times we implemented
the model on the Intel Xeon Phi coprocessor. These cards
offer performance comparable to Graphic Processing Units
(GPUs), but the architecture is more similar to current CPUs,
just with more cores. Parallelization does not require learning
a new programming extension as for GPUs, but can be done
using well-known techniques, e.g., OpenMP [16], MPI [17] or
just creating threads manually. Porting a simulation from CPU
to Xeon Phi cards is straightforward; however, to fully utilize
the performance a lot of knowledge about the architecture and
careful optimization is necessary. Using our optimized imple-
mentation of the model we were able to simulate 108 sweeps
for 64 disorder samples of a largeN = 2563 system at many
different values of the disorder strength.

The remainder of this article is structured as follows. In
Sec. II we describe the RFIM and the observables used to
characterize the aging of the system. SectionIII describes
details of the implementation on Xeon Phi cards. Results of
the simulation are presented in Sec.IV. We close with our
conclusions in Sec.V.

II. MODEL

The Random Field Ising Model describes aD-dimensional
cubic system of side lengthL containingN = LD Ising spins
Si = ±1. The Hamiltonian is given by

H(S) = −J
∑

〈i, j〉

SiSj −
∑

i

hiSi (1)

where the sum runs over nearest neighbors〈i, j〉 and the field
hi = h0εi with εi = ±1 being a quenched random variable.
Here, we apply a symmetric bimodal distributionP(εi) =
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FIG. 1. (Color online) Sketch of the phase diagram: for low tem-
peratures and low disorder, the system is in a ferromagnetic phase,
otherwise in a paramagnetic phase.

[δ (εi − 1) + δ (εi + 1)]/2. The boundary conditions are pe-
riodic in all directions. The parameterh0 controls the strength
of the random field. Forh0 = 0 the well known pure Ising
Model is reproduced with a paramagnetic phase at high tem-
peraturesT > Tc and a ferromagnetic phase at low tempera-
tures. Withh0 > 0 additional disorder is introduced, which
lowers the transition temperature to the paramagnetic phase.
In Fig.1 a phase diagram forD≥ 3 dimensions is shown [18].
Even atT = 0 the system is in a paramagnetic phase if the field
strength becomes too largeh0 > hc. In the remainder of the
article will only be concerned with the caseD = 3, which has
a zero-disordered critical temperatureTc ≈ 4.5115 [19] and a
zero-temperature critical field strengthhc ≈ 2.20 [20, 21].

Simulations start with random initial configurations, em-
ulating a quench from infinite temperature. A single-spin
flip Monte Carlo simulation is performed, see below for de-
tails. We then examine the system at different waiting times
tw (measured in Monte Carlo sweeps) after the beginning of
the simulation. The order parameter is the magnetization

m=
1
N

∑

i

Si . (2)

To measure the growing length scale we make use of the spa-
tial two-point correlation

C2(r, tw) =
1
N

∑

i

Si(tw)Si+r(tw) (3)

between two points. Withi + r we denote a spin, which has a
spatial distancer from spini.

There exist different approaches to extract a growing coher-
ence (or dynamic correlation) lengthξ from the spatial cor-
relation function, for a recent comparison in the case of the
three-dimensional random-bond (spin-glass) model see, e.g.,
Ref.15. Most approaches are based on the assumption thatC2
follows the functional form

C2(r, tw) ∝ r−αg

(

r
ξ (tw)

)

, (4)

where the functiong is approximately a stretched exponential
g(x) ≈ exp(−xβ ). Extraction ofξ and corresponding expo-
nents works by fitting (4) to the data ofC2.

Alternatively one can use integral estimators, first used for
spin-glasses [22], which work without assuming the func-
tional form ofg. This is done by calculating the integral

Ik(tw) =

∫ L/2

0
rkC2(r, tw)dr (5)

which allows the calculation of the coherence length using

ξk,k+1(tw) =
Ik+1(tw)

Ik(tw)
∝ ξ (tw) . (6)

A value ofk = 1 is recommended in Ref.22 as a tradeoff be-
tween systematic errors for lowk values and statistical errors
for largerk. This method also allows to determine the expo-
nentα sinceI1 ∝ ξ 2−α

1,2 .
A different, but very simple, method of extracting the co-

herence length uses the inverse density of defects [12]. A de-
fect is a spin with at least one antiparallel neighbor. With
the number of defectsD(tw) the coherence length is given by
ξ (tw) = N/D(tw).

Another observable of interest is the autocorrelation

C(t, tw) =
1
N

∑

i

Si(tw)Si(tw + t) (7)

comparing the same system at different times. It is expectedto
split into two parts. The first quasi-equilibrated part fort ≪ tw
takes the form [23–27] of a power law

Ceq(t) ∝ t−x (8)

with a characteristic exponentx. The later aging part
Cage(t, tw) = f (ξ (tw + t)/ξ (tw)) is expected [7, 8] to depend
only of the ratio of the coherence lengths at the two times. For
long waiting times limtw→∞C(t, tw) =Ceq(t)+B2 a plateau is
expected [28, 29], with B equal to the equilibrium magnetiza-
tion M in the ferromagnetic phase.

III. IMPLEMENTATION

We implemented a standard Metropolis Monte Carlo sim-
ulation [30] of the model for the Intel Xeon Phi 3120P co-
processor. It is based on an earlier implementation for GPUs,
but in the remainder of the article we cover only the imple-
mentation for Xeon Phi cards. For details of a similar GPU
implementation see Ref.15. As a reference for the Xeon Phi
architecture we refer to the official documentation [31, 32].
It’s main points are the 57 Pentium based cores with 4-way
Hyper-Threading and the 512 bit wide vector processing unit.

In each sweep every spin is updated as follows. First, the
energy change

∆Ei = 2JSi

∑

j∈N(i)

Sj +2hiSi (9)
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FIG. 2. (Color online) Example memory layout of a 2D system,
before and after exchanging the odd (light color) spins. Each spin in
one interleaved memory block can be updated independently because
all neighbors are stored in the other memory block.

for a flip of spini is calculated. The sum runs over the neigh-
boring sitesN(i) of spin i. Next, a random number is gener-
ated and the spini is flipped with probability

paccept= min[1,exp(−∆Ei/T)] . (10)

To keep all cores of the Xeon Phi card busy, spins need to
be updated simultaneously. If each thread would update a cu-
bic subset of the system in a linear fashion then spins on the
border of each subset have neighbors in a different subset and
thus depend on data owned by a different thread. If threads
are not synchronized these neighboring spins may change in a
non-deterministic way, generating irreproducible results. In-
stead of synchronizing threads on the border, we chose to up-
date spins in a checkerboard pattern. First, all even (sum of
thex,y,z coordinates are even) spins are updated and the odd
spins stay the same. Next, threads are synchronized and the
roles are switched and all odd spins are updated. However,
this update scheme results in an unfavorable access pattern
to the memory, since we want to use SIMD instructions and
load large chunks of continuous data at a time. Instead, we
simulate two systems simultaneously and interleave them in
memory, so that the even spins from the first system are in
same memory block as the odd spins from the second system.
Fig. 2 shows how spins would be exchanged in a 2D system.
With this technique one can update all spins in one memory
block because all the neighboring spins are stored in the other
block. This also simplifies the spin update routine because
spins can be updated in a linear fashion again, which effec-
tively alternates between two samples. One sweep consists of
updating both memory blocks.

We also implemented multispin coding, which means, that
each spin is represented by a single bit and stored together
with other spins in a single byte or some bigger data type. We
used a 32 bit data type to store 32 spins of the same location
but of different samples. Since the random field only takes the
values±h0 it can also be encoded using the same technique.
Together with the memory interleaving this results in 64 sam-
ples for each run of the simulation. The calculation of the
energy difference is then mapped to bitwise logic operations.
In the case of the 3D RFIM there are a total of 14 possible

energy differences (spin aligned with 6, . . . ,0 neighbors, i.e.,
seven cases, times two cases for alignment or antialignment
with field) and the spin flip probability can be precalculated
for these cases and stored in a lookup table. The only thing
that cannot easily be mapped to bitwise logic operations is the
random number generation. So, we just use the same random
number for 32 samples.

Most traditional pseudorandom number generators (PRNG)
like the Mersenne Twister [33] are unsuitable for highly par-
allel architectures because each instance requires comparative
large amounts of memory, i.e., about 2.5 kB for the Mersenne
Twister. Depending on the PRNG it’s also nontrivial to ini-
tialize multiple instances of the same generator so that the
output streams do not overlap for a sufficient number of calls.
Instead, we used a counter-based random number generator
[34], namely the Philox PRNG. The difference compared to
traditional generators is that they do not operate one some
internal state, which is advanced with every number gener-
ated. Instead, they consist of a deterministic function, tak-
ing a key and a counter as parameters, and return a random
number generated from those parameters. The key is chosen
so that it’s different in each thread and the counter is incre-
mented after each function call. In our simulation we used
the index 0. . .N− 1 of the spin as the key. This effectively
reduces the state of the PRNG to a single counter, which is
shared across all threads. Since the reference implementation
by the authors of Ref.34 doesn’t support the Xeon Phi ar-
chitecture, we implemented our own optimized version using
SIMD instructions.

With the described optimizations we reached an effective
single spin-flip attempt time of≈6 ps on the Xeon Phi card,
corresponding to 57 (processors)×32 (spins per integer)×16
(vector processing unit) parallel flip attempts per 1.8 ·10−7 s,
equal to roughly 180 cycles at the 10−9 s cycle time of the
processors on the card. Compared to≈9 ps of our previous
implementation on a GeForce GTX 570 GPU the Xeon Phi
card implementation is faster. But this was expected since
the GPU is older than the Xeon Phi 3120P card. Overall, the
performance of the Xeon Phi card seems to be comparable
to GPUs. One advantage of the Xeon Phi card was, however,
that the reported spin flip time was archived with only 64 sam-
ples while the GPU implementation used 128 samples. This
is because operations with 32 bit integers on the GPU are only
marginal faster than operations with 64 bit integers, whileon
the Xeon Phi card 32 bit calculations are twice as fast as 64 bit
operations. So, reducing the number of samples on the GPU
to 64, increases the single spin flip time to≈13 ps.

IV. RESULTS

For system sizeN = 2563 we simulated 64 samples of ran-
domly initialized realizations. Simulations were performed
on 8 Intel Xeon Phi 3120P cards. The temperature was fixed
to T = 0.8 and the field strength was chosen in the range
h0 ∈ [1.2,3.2], covering the ferromagnetic and paramagnetic
phase. We do not know the precise critical field strength at
T = 0.8, but analysis of the phase diagram [18] suggest that
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FIG. 3. (Color online) Spatial correlationC2 over the distancer for
different waiting timestw of a 2563 system with field strength set to
h0 = 1.6. Only data points at integer values ofr are shown to give a
clearer picture.

the T = 0 valuehc is still very close to the real critical field
strength atT = 0.8. In most simulations 108 sweeps were per-
formed, which took about a week on a single Xeon Phi card.
At specific waiting timestw we saved the whole spin configu-
ration to disk, so that they can be post-processed to calculate
the observables. Forh0 ≥ 2.4 we performed only 107 sweeps,
mainly because they are close to equilibration and would re-
quire a large amount of disk space since the disordered spin
configurations can not be compressed very well.

An exemplary spatial correctionC2 for h0 = 1.6 is shown
in Fig. 3. The curves show an almost exponential decay with
a slight bend, which is captured by the exponentβ . The spa-
tial correlation decreases more slowly for larger waiting times,
suggesting a growing length scale.

Extracting the coherence length from the data proved to be
complicated and different approaches were tried. In the end
a combined approach of the integral method and fits to the
tail of the spatial correlation gave the best results. Integrals
(6) are calculated by numerically integrating the data until the
value first becomes smaller than three times it’s error. The
remaining part of the integral is approximated by fitting (4) to
the data and then integrating the fitted function. The choice
of the fit range is not critical since only the tail of the fitted
function is used and the contribution to the integral is small.
The exponentα is expected to be 0 for the RFIM, but was
added as a parameter nevertheless since previous works only
analyzed the system in the ferromagnetic region.

The extracted coherence length is shown in Fig.4 for dif-
ferent disorder values. Previous studies of the RFIM in one
to three dimensions [9–12, 14, 36, 37] showed a crossover
from a power law to logarithmic growth in the asymptotic
regime. This behavior of the coherence length seems to be
universal for disordered Ising systems [38–41]. Since com-
paratively high field strengthsh0 were chosen for our simula-
tion, the power law regime is not really visible, but insteadthe
crossover to logarithmic growth happens almost immediately.
The curves forh0 ≥ 2.8 equilibrate within the simulated wait-
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FIG. 4. (Color online) Coherence lengthξ1,2 as function of the wait-
ing timetw for different field strengthsh0. The coherence length was
extracted from the spatial correlation using integral estimators. Inset:
Section of the same data on a semi-log scale.
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FIG. 5. (Color online) Power law fits (dashed lines) to extract the
exponentα from the integral estimators. The color gradient shows
from which waiting time the values ofξ1,2 andI1 were extracted.

ing time. In the beginning the curves forh0 = 1.6 andh0 = 2.0
seem to grow faster than theh0 = 1.2 curve, but this is a result
of the undetermined proportionality factor.

It was checked that the coherence length shows no finite
size effects by simulating aL = 512 system for up totw = 107

sweeps and extracting the coherence length. It is essentially
the same as for theL = 256 system (not shown). Therefore,
we believe that the observables are free from finite size effects,
even fortw = 108.

The integral estimators also provides a means to extract the
exponentα, using the relationI1 ∝ ξ 2−α

1,2 . By plottingξ 2
1,2/I1

overξ1,2, as depicted in Fig.5, the exponent can be extracted
using a power law fit. It is observed, that the curves do not
show a clear power law, especially for smallξ1,2. However,
for largerξ1,2 all curves become more or less straight lines.
Power laws were fitted to those parts, subjectively choosing
the beginning of the fit range for every curve. It can be seen
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FIG. 6. Scaling exponentα of the spatial correlation over the field
strengthh0 for a 2563 system, extracted using different methods. The
vertical line marksh0 = hc. Inset: Associated scaling exponentβ .

that there is a clear crossover from a slope close to zero for
h0 ≤ 2.2 to a larger slope for largerh0. Note that for high dis-
order values the system equilibrates and the coherence length
stops growing. For these curves only the short waiting times
contribute to the power law, as it can be seen from the color
gradient. The resulting exponentα for different disorder val-
ues is displayed in Fig.6, together with the exponentsα andβ
extracted using a multi-branch fit of (4) to the spatial correla-
tion. By using a multi-branch fit [35] the exponents are forced
to a common optimal value for all waiting times. The differ-
ent methods to extractα mostly agree, except for the range
h0 ∈ [2.4,3] where theα from the integral estimators grows
faster. Below the critical field strength the exponentα is zero
within the error margin, just like expected. In the paramag-
netic regionα grows quickly with increasingh0. We also tried
to extract the exponentβ again using a fit with (4), but with
the parametersα andξ fixed to the already extracted values
from the integral estimator and with an additional adjustable
prefactor. Because of the discrepancies for the exponentα, no
reasonable fit was possible in theh0 ∈ [2.4,3] range. There-
fore, we only displayed theβ results from the multi-branch fit.
The exponentβ also undergoes a change nearh≈ 2.6, i.e., a
bit beyond the phase transition.

Next, we look at the autocorrelation from (7). An exem-
plary curve forh0 = 1.2 is shown in Fig.7. The two parts of
the autocorrelation with a transition aroundt ≈ tw can be ob-
served. The first quasi-equilibrated part looks like a constant
function while the second aging part first decays as a power
law which then slows down for short waiting times. In the
paramagnetic region the system equilibrates and the autocor-
relation relaxes to a plateau, as can be seen in Fig.8 for the
caseh0 = 2.8. This is because the spins are mostly aligned in
the direction of the field and the autocorrelation shows only
the fluctuation around this configuration. To extract the ex-
ponentx of the quasi-equilibrated part (8) a fit of the form
C∞(t) = A · t−x + B2 was performed. In the paramagnetic
phase the value ofB can be easily read from the height of
the plateau. The fit range was chosen by plottingC(t)−B2 on
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FIG. 7. (Color online) AutocorrelationC as a function of timet for
different waiting timestw at field strengthh0 = 1.2.
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FIG. 8. (Color online) AutocorrelationC as a function of timet for
different waiting timestw at field strengthh0 = 2.8. Note that the
data fortw = 104, 105 and 106 falls on top of each other.

a log-log scale and restricting the fit to the straight part ofthis
curve. In the ferromagnetic phase the exponentx is close to
0 and doesn’t allow to determineB with reasonable accuracy.
Therefore, we restricted the fit to the straight part ofC(t, tw)
and show only the results for the exponentx in Fig. 9. Here
again the change in dynamics is visible slightly above the crit-
ical field strength.

Last we check the assumption that the aging part scales with
ξ (tw+t)/ξ (tw). In the ferromagnetic phase we can just ignore
the quasi-equilibrated part, because it is close to a constant
function, and do a collapse ofC directly, as depicted in Fig.10
for the caseh0 = 1.2. We subtract one from the abscissa to
make the collapse for valuest ≪ tw better visible. It can be
seen that the quality of the collapse is very good.

In the paramagnetic phase the quasi-equilibrated part is not
constant and has to be accounted for in the collapse. We
tested an additive decompositionC(t, tw) =Ceq(t)+Cage(t, tw)
and also a multiplicative decompositionC(t, tw) = Ceq(t) ·
Cage(t, tw). We found that the additive decomposition gave
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FIG. 10. (Color online) Collapse of autocorrelationC for different
waiting timestw at field strengthh0 = 1.2.

a better collapse in thet ≪ tw range, as shown in Fig.11.
The parametersA, x and ξ0 were adjusted for the best col-
lapse. The parameterξ0 accounts for finite-size corrections
to scaling, e.g., due to the discreteness of the lattice, which
becomes notable at small scales, which is in particular truein
the paramagnetic phase (see Fig.4). The corrections are not
known here, thus our approach is purely heuristic. Neverthe-
less, forξ → ∞ the used term[ξ (tw + t) + ξ0]/[ξ (tw) + ξ0]
crosses over toξ (tw + t)/ξ (tw) as required. The magnitude
ξ0 ≈ −1.333 of the correction-to-scaling parameter is small
and comparable to the lattice spacing. Nevertheless, with-
out introducing the parameterξ0, the collapse in considerably
worse (not shown here).

For this example the parameterx is close to the one ex-
tracted using a fit, as shown in Fig.9, but in the ferromagnetic
phase the collapse gives unrealistic large values forx. Except
for the tails of the individual curves the collapse works rea-
sonably well. The slight increase toward the end can probably
be attributed to the system reaching equilibrium.
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FIG. 11. (Color online) Collapse of autocorrelationC with correction
for the quasi-equilibrated partCeq for different waiting timestw at
field strengthh0 = 2.8. An additional additive constantξ0 ≈−1.333
was added to the coherence length to give a better collapse.

V. CONCLUSION

For the Random Field Ising Magnet, we performed long-
time Monte Carlo simulations for large systems (N = 2563)
at low temperature and different disorder strengthsh0, cov-
ering the ferromagnetic and paramagnetic phase. This was
made possible by the usage of several Intel Xeon Phi cards and
an optimized implementation of the model. Getting the first
working simulation on the Xeon Phi card was relatively easy
because of the similar architecture to CPUs. However, such a
naive implementation was slower than the same naive imple-
mentation on a current CPU. The main reason for this seems
to be the poor usage of the vector processing unit. Therefore,
we rewrote most of the code and directly accessed the vec-
tor processing unit by using SIMD intrinsics. Implementing
the same model on GPUs was more complicated in the begin-
ning, but already the first version outperformed the CPU. We
observed that the overall time spent optimizing for the Xeon
Phi card and GPUs is roughly the same.

By using this implementation, we were able to study the ag-
ing behavior of the model. We analyzed the results by looking
at the spatial correlation and the autocorrelation. The coher-
ence length was extracted from the spatial correlation using
integral estimators. Further exponents were extracted using
multi-branch fits. Moving into the paramagnetic phase com-
plicated the analysis since the spatial correlation is veryshort
and the system equilibrates within the simulated timespan.
At the ferromagnet-paramagnet phase transition we found a
clear change of the aging behavior, as visible in the exponents
α, β andx. However, the exponentβ andx show a transi-
tion slightly abovehc, which might indicate a connection to a
percolation transition like that found slightly above the phase
transition for the similar RFIM with Gaussian disorder [42].
Note that in a previous study [15] of the Edwards-Anderson
model a change in dynamics was found that coincides fully
with the ferromagnet-spin glass transition, i.e., it was visible
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in all measured exponents simultaneously.
The autocorrelation splits into a quasi-equilibrated part,

which follows a power law with the exponentx, and a later
aging part. In the ferromagnetic phasex is close to 0 and starts
growing in the paramagnetic phase. Thus, we can mostly ig-
nore the quasi-equilibrated part in the ferromagnetic phase
and do a collapse of the aging part by plotting the autocorre-
lation over the quotientξ (tw + t)/ξ (tw). In the paramagnetic
phase the collapse is becoming more difficult with increasing
disorder strength. We found that an additive decompositionof
the autocorrelation and an additive constant to the coherence
length gave the best collapse.

Overall, we found that the equilibrium phase-transition be-
havior of the model and maybe a particular percolation transi-
tion are well reflected in the dynamic observables. Due to the
availability of relatively inexpensive yet powerful GPU and

Intel-Phi architectures, one could easily extend our studies to
the RFIM in higher dimensions [43, 44], to RFIM systems
with correlations [45]. Furthermore, it could be interesting
to investigate whether the aging behavior can be understood
in terms of non-trivial low lying excitations [46]. Certainly,
it would be interesting to perform such studies for other spin
models to investigate the relationship between the dynamic
behavior and equilibrium phase transitions.
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