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We studied the nonequilibrium aging behavior of the Random Field Ising Modérree dimensions for
various values of the disorder strength. This allowed us to investigate leagihg behavior changes across
the ferromagnetic-paramagnetic phase transition. We investigated @atgen size oN = 256° spins and up
to 10° Monte Carlo sweeps. To reach these necessary long simulation timespl@yethan implementation
running on Intel Xeon Phi coprocessors, reaching single spin flip tameshort as 6 ps. We measured typical
correlation functions in space and time to extract a growing length scalecaresponding exponents.

PACS numbers: 75.50.Lk, 75.40.Mg, 75.10.Hk

I. INTRODUCTION ies become feasible. Similar to previous wotl][analyzing
the aging across the spin glass-ferromagnet transitiohen t

Studying the relationship between equilibrium (staticil an Edwards-Anderson model, we here present results for the dy-
non-equilibrium (dynamic) behavior is one of the main aimshamic behavior for the 3D RFIM across the disorder-driven

of statistical physics. A prominent example are structuraféromagnet-paramagnet transition. We will be lookinghat t

glasses ], where it is not even clear whether the drastic SPatial correlation and discuss different methods of ektra

changes in dynamic behavior are accompanied by an equilidtg the coherence length and corresponding exponents from

rium phase transition. On the other hand, lattice spin nmdelit: We will also look at the autocorrelation and try to cobiap

like spin glasses and random field syste@jskhibit for sure it by rescaling the time in units of the coherence lengthp als

phase transitions in high enough spatial dimensions, taut thyi€lding suitably defined exponents. .

dynamics are still not fully understood. To reach sufficient long smulapon times we implemented
The Random Field Ising ModeB[ (RFIM) has been stud- the model on the Intel Xeon Phi Ccoprocessor. These car_ds

ied extensively in theory4] and in experimentsd)], realized ~ offer performance comparable to Graphic Processing Units

using dilute antiferromagnets. The equilibrium properiee  (GPUS), but the architecture is more similar to current GPUs

reasonably well understood. Here it is particularly conve-ust with more cores. Parallelization does not requirerliey

nient that in any dimension exact ground states can be calc@ NéW programming extension as for GPUs, but can be done

lated numerically for large system sizes using mappingéo th Using well-known techniques, e.g., OpenMEJ[ MPI[17] or

maximum-flow problem§], along the full disorder parame- just creating threads manually. Porting a simulation fraft/C

ter line. Nevertheless, the dynamics is still under discmss {0 Xeon Phi cards is straightforward; however, to fully ia8l

Of particular interest is the aging behavior, i.e., the dgits  the performance a lot of knowledge about the architectude an

resulting from starting in an equilibrium state followed &y ~careful optimization is necessary. Using our optimizedignp

rapid parameter change to a target point in phase spacé resunentation of the model we were able to simulaté s@eeps

ing in an non-equilibrium situatior7[ 8]. Here we study the for 64 disorder samples of a large—= 256° system at many

quench from a random configuration at infinite temperature télifferent values of the disorder strength.

a low temperature with suitably small random-field disorder The remainder of this article is structured as follows. In

which results in domains of parallel spins forming and grow-Sec. Il we describe the RFIM and the observables used to

ing over time. The disorder introduced by the random fieldcharacterize the aging of the system. Sectibndescribes

pins the domain wall and slows down the growth of domains_ details of the implementation on Xeon Phi cards. Results of
Typically, literature on aging concentrates on isolategasn ~ the simulation are presented in Sé¢. We close with our

points in phase diagrams. Here we are interested in correlagonclusions in Sed/.

ing the aging behavior with a disorder-driven phase tramsit

So far, aging in the RFIM has been analyzed mostly in the fer-

romagnetic phas@f12]. Some recent articled B, 14] cover II. MODEL

the two-dimensional (2D) RFIM in the disordered phase, but

no studies of the 3D RFIM in a larger space of the phase dia- The Random Field Ising Model describe®alimensional

gram are known to the authors. This is probably be due to theubic system of side length containingN = LP Ising spins

fact that such studies require many-parameter long-run-sim § = +1. The Hamiltonian is given by

lations of large systems, going beyond the amount of compu-

tational resources usually available. With the introducinf H(S) =-J Zssj — Z hS (1)

comparable low-cost cards like GPU and Intel-Phi, such-stud Q) i

where the sum runs over nearest neighlorp and the field
_ ' hi = hog with & = +1 being a quenched random variable.
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hiJ where the functiomy is approximately a stretched exponential
T g(x) ~ exp(—xP). Extraction of¢ and corresponding expo-
h.1J nents works by fitting4) to the data ot,.

Alternatively one can use integral estimators, first used fo
spin-glasses??], which work without assuming the func-
tional form ofg. This is done by calculating the integral

Paramagnet

L/2
() = /O rkCa(r,ty) dr (5)

Ferromagnet

which allows the calculation of the coherence length using

T/ J
0 L./J ~ lega(tw)
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FIG. 1. (Color online) Sketch of the phase diagram: for low tem- k\w

peratur_es gnd low disorder, the system is in a ferromagnetic phasg\, value ofk = 1 is recommended in Re?2 as a tradeoff be-
otherwise in a paramagnetic phase. tween systematic errors for lokwalues and statistical errors
for largerk. This method also allows to determine the expo-
nenta sincely oc £2,7.

A different, but very simple, method of extracting the co-
erence length uses the inverse density of defd@is A de-

o & (tw) - (6)

[0(& — 1)+ 0(& + 1)]/2. The boundary conditions are pe-
riodic in all directions. The paramethg controls the strength h

of the random field. Foho = 0 the well known pure ISing (ot 5 4 spin with at least one antiparallel neighbor. With

Model is reproduced with a parama_lgnetic phase at high Mhe number of defect®(ty) the coherence length is given by
peraturesT > T and a ferromagnetic phase at low tempera—é (tw) = N/D(tw).

tures. Withhy > 0 additional disorder is introduced, which
lowers the transition temperature to the paramagneticephas
In Fig. 1 a phase diagram f@ > 3 dimensions is showrif].
Even afl =0 the systemis in a paramagnetic phase if the field
strength becomes too lardpg > hc. In the remainder of the
article will only be concerned with the caBe= 3, which has
a zero-disordered critical temperatdkex~ 4.5115 [L9] and a
zero-temperature critical field strendth~ 2.20 [20, 21].
Simulations start with random initial configurations, em-
ulating a quench from infinite temperature. A single-spin (8)
flip Monte Carlo simulation is performed, see below for de-
tails. We then examine the system at different waiting timesvith a characteristic exponent. The later aging part
ty (measured in Monte Carlo sweeps) after the beginning o€agdt,tw) = f(&(tw +1)/&(tw)) is expectedT, 8] to depend
the simulation. The order parameter is the magnetization  only of the ratio of the coherence lengths at the two times. Fo
long waiting times ling, .. C(t,tw) = Ceq(t) + B? a plateau is
m— 1 ZS expected28, 29, with B equal to the equilibrium magnetiza-
N i ' tion M in the ferromagnetic phase.
To measure the growing length scale we make use of the spa-
tial two-point correlation

Another observable of interest is the autocorrelation

Clt.tw) = 5 3 S (t)S -+ @

comparing the same system at different times. It is expedoted
splitinto two parts. The first quasi-equilibrated parttfet: t,,
takes the form23-27] of a power law

Ceg(t) ox t™

)

[11. IMPLEMENTATION

We implemented a standard Metropolis Monte Carlo sim-
ulation [30] of the model for the Intel Xeon Phi 3120P co-
processor. It is based on an earlier implementation for GPUs

between two points. With+r we denote a spin, which has a but in the remainder of the article we cover only the imple-
spatial distance from spini. mentation for Xeon Phi cards. For details of a similar GPU

There exist different approaches to extract a growing cohefMplémentation see ReiS. As a reference for the Xeon Phi
ence (or dynamic correlation) lengéhfrom the spatial cor- archnepture_ we refer to the offlc_lal documentat|($1,[32].
relation function, for a recent comparison in the case of thdl'S main points are the 57 Pentium based cores with 4-way
three-dimensional random-bond (spin-glass) model sge, e. Hyper-Threading and the 512 bit wide vector processing unit
Ref.15. Most approaches are based on the assumptio@shat N €ach sweep every spin is updated as follows. First, the
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System 1 System 2 energy differences (spin aligned with.6.,0 neighbors, i.e.,
seven cases, times two cases for alignment or antialignment
Original with field) and the spin flip probability can be precalculated
memory layout for these cases and stored in a lookup table. The only thing

that cannot easily be mapped to bitwise logic operatiortsas t
random number generation. So, we just use the same random
number for 32 samples.

Most traditional pseudorandom number generators (PRNG)
like the Mersenne Twistei3B] are unsuitable for highly par-
allel architectures because each instance requires cativear
large amounts of memory, i.e., about 2.5 kB for the Mersenne

Twister. Depending on the PRNG it’s also nontrivial to ini-

tialize multiple instances of the same generator so that the

FIG. 2. (Color online) Example memory layout of a 2D system, oytput streams do not overlap for a sufficient number of calls
before and after exchanging the odd (light color) spins. Each spin i stead. we used a counter-based random number generator
one interleaved memory block can be updated independently becauE;§4] na,mel the Philox PRNG. The difference compared to
all neighbors are stored in the other memory block. L y . : P
traditional generators is that they do not operate one some
internal state, which is advanced with every number gener-

for a flip of spini is calculated. The sum runs over the neigh-ated. Instead, they consist of a deterministic functioks ta
boring sitesN(i) of spini. Next, a random number is gener- N9 & key and a counter as parameters, and return a random

Interleaved
memory layout

ated and the spinis flipped with probability number generated from those parameters. The key is chosen
. so that it's different in each thread and the counter is incre
Paccept= MiN[1,exp(—AE; /T)] . (10)  mented after each function call. In our simulation we used

the index 0..N — 1 of the spin as the key. This effectively

To keep all cores of the Xeon Phi card busy, spins need Weduces the state of the PRNG to a single counter, which is
be updated simultaneously. If each thread would update a cu-

bic subset of the system in a linear fashion then spins on thshared across all threads. Since the reference implerimntat

. i . Ey the authors of Ref34 doesn’t support the Xeon Phi ar-
border of each subset have neighbors in a different subdet a%hitecture, we implemented our own optimized version using

thus depend on data owned by a different thread. If thread : :
are not synchronized these neighboring spins may change in a{MDmstrucUons.
y g gsp Y g With the described optimizations we reached an effective

non-deterministic way, generating irreproducible resulh- . - . :
stead of synchronizing threads on the border, we chose to usmgle spin-flip atempt time 6&6 ps on the Xeon Phi card,

date spins in a checkerboard pattern. First, all even (sum Oqorrespond|ng to 57 (processoss’,%_z (Spins per mtege@?lG
thex,y,z coordinates are even) spins are updated and the oo‘efecmr processing unit) parallel flip asttt)gmpts pg?-no S
spins stay the same. Next, threads are synchronized and tﬁgual to roughly 180 cycles at the 105 cycle time of.the
roles are switched and all odd spins are updated. Howevel 0¢€ssOrs on the card. Compared-8ps of our previous .
this update scheme results in an unfavorable access pattémplementatmn on a GeForce GTX 570 GPU the Xeon Phi

: : : ard implementation is faster. But this was expected since

to the memory, since we want to use SIMD instructions an . X
load large chunks of continuous data at a time. Instead, w e GPU is older than the Xeqn Phi 3120P card. Overall, the
erformance of the Xeon Phi card seems to be comparable

simulate two systems simultaneously and interleave them i .
memory, so that the even spins from the first system are i 0 GPUs. One advantage of the Xeon Phi card was, however,

same memory block as the odd spins from the second syste at the reported spin flip time was archived with only 64 sam-

Fig. 2 shows how spins would be exchanged in a 2D system‘.)res while the GP.U impl_ementgtion used 128 samples. This
With this technigue one can update all spins in one memon because operations with 32 bit integers on the GPU are only

- : ; : arginal faster than operations with 64 bit integers, whbile
block because all the neighboring spins are stored in they oth ) : : . .
block. This also simplifies the spin update routine becauséhe Xeon Phi card 32 bit calculations are twice as fast ast64 bi

spins can be updated in a linear fashion again, which eﬁecgperatmns. So, reducing the number of samples on the GPU

tively alternates between two samples. One sweep con$ists Bo 64, increases the single spin flip time44.3 ps.
updating both memory blocks.

We also implemented multispin coding, which means, that
each spin is represented by a single bit and stored together IV. RESULTS
with other spins in a single byte or some bigger data type. We
used a 32 bit data type to store 32 spins of the same location For system siz&l = 256° we simulated 64 samples of ran-
but of different samples. Since the random field only takes thdomly initialized realizations. Simulations were perf@un
values=+hg it can also be encoded using the same techniqueon 8 Intel Xeon Phi 3120P cards. The temperature was fixed
Together with the memory interleaving this results in 64 samto T = 0.8 and the field strength was chosen in the range
ples for each run of the simulation. The calculation of thehy € [1.2,3.2], covering the ferromagnetic and paramagnetic
energy difference is then mapped to bitwise logic operation phase. We do not know the precise critical field strength at
In the case of the 3D RFIM there are a total of 14 possiblel = 0.8, but analysis of the phase diagrah@] suggest that
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FIG. 3. (Color online) Spatial correlatid®, over the distance for FIG. 4. (Color online) Coherence lengh» as function of the wait-
different waiting timedy of a 256 system with field strength set to ing timety for different field strengthlky. The coherence length was
hp = 1.6. Only data points at integer valuesrodre shown to give a  extracted from the spatial correlation using integral estimators. Inset:

clearer picture. Section of the same data on a semi-log scale.

B L " ) 6 —— S — 107
the T = 0 valueh, is still very close to the real critical field o =12 + !
strength afl = 0.8. In most simulations fosweeps were per- K VA =38 5 B 106
formed, which took about a week on a single Xeon Phi card. R ) =22 2 1l
At specific waiting times,, we saved the whole spin configu- Zj £ i 7 o fo=28 v |ES 10°
ration to disk, so that they can be post-processed to cédcula 4  §.¢ & 7 =30 o |
the observables. Ftwg > 2.4 we performed only 10sweeps, <= | % 70 ho=32 o b4 10¢ _
mainly because they are close to equilibration and would reysi et T 3T
quire a large amount of disk space since the disordered spin 3 | x oogee™™™ qf
configurations can not be compressed very well. SLEFL | B 10

An exemplary spatial correctio@, for hg = 1.6 is shown * xx*xx,xxxm'“"j::::,,_,,,,,.,w.,,.,—rr—-r
in Fig. 3. The curves show an almost exponential decay with IR i 10"
a slight bend, which is captured by the expon@niThe spa- 2 . 10°
tial correlation decreases more slowly for larger waitinggts, 10° 10t 10?
suggesting a growing length scale. 12

Extracting the coherence length from the data proved to be
complicated and different approaches were tried. In the endIG. 5. (Color online) Power law fits (dashed lines) to extract the
a combined approach of the integral method and fits to thexponenta from the integral estimators. The color gradient shows
tail of the spatial correlation gave the best results. Iratisy ~from which waiting time the values & > andl; were extracted.
(6) are calculated by numerically integrating the data uh#l t
value first becomes smaller than three times it's error. The
remaining part of the integral is approximated by fittidyto ~ ing time. In the beginning the curves flag = 1.6 andho = 2.0
the data and then integrating the fitted function. The choicéeem to grow faster than the = 1.2 curve, but this is a result
of the fit range is not critical since only the tail of the fitted of the undetermined proportionality factor.
function is used and the contribution to the integral is $mal It was checked that the coherence length shows no finite
The exponentr is expected to be 0 for the RFIM, but was Size effects by simulatingla= 512 system for up tt, = 10
added as a parameter nevertheless since previous works orfiyeeps and extracting the coherence length. It is esdgntial
analyzed the system in the ferromagnetic region. the same as for the = 256 system (not shown). Therefore,
The extracted coherence length is shown in Bifpr dif- ~ we believe that the observables are free from finite sizetsife
ferent disorder values. Previous studies of the RFIM in oneeven forty = 10°.
to three dimensions9F12, 14, 36, 37 showed a crossover ~ The integral estimators also provides a means to extract the
from a power law to logarithmic growth in the asymptotic €xponent, using the relatiory oc €7, . By plotting &2,/11
regime. This behavior of the coherence length seems to beveré; », as depicted in Figh, the exponent can be extracted
universal for disordered Ising systen®3f41]. Since com- using a power law fit. It is observed, that the curves do not
paratively high field strengths, were chosen for our simula- show a clear power law, especially for sm&fl,. However,
tion, the power law regime is not really visible, but instélael  for larger &1, all curves become more or less straight lines.
crossover to logarithmic growth happens almost immedjatel Power laws were fitted to those parts, subjectively choosing
The curves fohy > 2.8 equilibrate within the simulated wait- the beginning of the fit range for every curve. It can be seen
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FIG. 6. Scaling exponera of the spatial correlation over the field FIG. 7. (Color online) Autocorrelatio@ as a function of time for
strengthhg for a 256 system, extracted using different methods. Thedifferent waiting timegy at field strengthg = 1.2.
vertical line marksg = hc. Inset: Associated scaling exponght
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that there is a clear crossover from a slope close to zero for "8g32Z“eeeeeeeeeeeeeeeeeeeeeeeeeeeeee‘
ho < 2.2 to a larger slope for largdw. Note that for high dis- eeeeeeeeeee
order values the system equilibrates and the coherencthleng o, feoeececoesecececocy
stops growing. For these curves only the short waiting times e,
contribute to the power law, as it can be seen from the color e,
gradient. The resulting exponeatfor different disorder val- e‘aeeeeeae |
ues is displayed in Fid, together with the exponentsand feeeeccccececcoceceacs
extracted using a multi-branch fit of)(to the spatial correla- %x - ﬁ o
tion. By using a multi-branch fit35] the exponents are forced {x = 1832
to a common optimal value for all waiting times. The differ- gleg;‘ o
ent methods to extraat mostly agree, except for the range ty=10° rei , , , ,
ho € [2.4,3] where thea from the integral estimators grows 1° 10t 1% 18 100 1P 1f 107
faster. Below the critical field strength the exponernis zero t

within the error margin, just like expected. In the paramag-

netic regiona grows quickly with increasingo. We also tried  FIG. 8. (Color online) Autocorrelatiof as a function of time for

to extract the exponer@ again using a fit with4), but with  different waiting timesty at field strengtrhg = 2.8. Note that the

the parametera andé fixed to the already extracted values data forty = 10%, 10° and 18 falls on top of each other.

from the integral estimator and with an additional adjukgab

prefactor. Because of the discrepancies for the expangmb

reasonable fit was possible in thg € [2.4,3] range. There- alog-log scale and restricting the fit to the straight pathaf

fore, we only displayed thg results from the multi-branch fit. curve. In the ferromagnetic phase the exponeistclose to

The exponenf also undergoes a change nbar 2.6, i.e., a 0 and doesn't allow to determiri2with reasonable accuracy.

bit beyond the phase transition. Therefore, we restricted the fit to the straight parCef,ty)
Next, we look at the autocorrelation frord)( An exem-  and show only the results for the exponerih Fig. 9. Here

plary curve forhg = 1.2 is shown in Fig7. The two parts of again the change in dynamics is visible slightly above tite cr

the autocorrelation with a transition arounet t,, can be ob- ical field strength.

served. The first quasi-equilibrated part looks like a camist Last we check the assumption that the aging part scales with

function while the second aging part first decays as a poweg (ty+1)/& (tw). In the ferromagnetic phase we can justignore

law which then slows down for short waiting times. In the the quasi-equilibrated part, because it is close to a consta

paramagnetic region the system equilibrates and the adtocdunction, and do a collapse Gfdirectly, as depicted in Fig.0

relation relaxes to a plateau, as can be seen in&igr the  for the caseéhy = 1.2. We subtract one from the abscissa to

casehp = 2.8. This is because the spins are mostly aligned irmake the collapse for valués< t, better visible. It can be

the direction of the field and the autocorrelation shows onlyseen that the quality of the collapse is very good.

the fluctuation around this configuration. To extract the ex- Inthe paramagnetic phase the quasi-equilibrated partis no

ponentx of the quasi-equilibrated par8) a fit of the form  constant and has to be accounted for in the collapse. We

Co(t) = A-t™+ B? was performed. In the paramagnetic tested an additive decompositiBii, t,) = Ceq(t) +Cagel(t, tw)

phase the value dB can be easily read from the height of and also a multiplicative decompositidi(t,ty) = Ceq(t) -

the plateau. The fit range was chosen by plot@ig — B2 on Cagdt,tw). We found that the additive decomposition gave
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FIG. 10. (Color online) Collapse of autocorrelati@rfor different

waiting timesty at field strengtthg = 1.2.

a better collapse in the< t,, range, as shown in Fidll

The parameter#\, x and &y were adjusted for the best col-
lapse. The parametép accounts for finite-size corrections
to scaling, e.g., due to the discreteness of the latticectwhi
becomes notable at small scales, which is in particularitrue
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FIG. 11. (Color online) Collapse of autocorrelati@mvith correction
for the quasi-equilibrated pa@eq for different waiting times at
field strengthhg = 2.8. An additional additive constagg ~ —1.333
was added to the coherence length to give a better collapse.

V. CONCLUSION

For the Random Field Ising Magnet, we performed long-
time Monte Carlo simulations for large systent$ £ 256°)
at low temperature and different disorder strendifhscov-
ering the ferromagnetic and paramagnetic phase. This was
made possible by the usage of several Intel Xeon Phi cards and
an optimized implementation of the model. Getting the first
working simulation on the Xeon Phi card was relatively easy
because of the similar architecture to CPUs. However, such a
naive implementation was slower than the same naive imple-
mentation on a current CPU. The main reason for this seems
to be the poor usage of the vector processing unit. Therefore
we rewrote most of the code and directly accessed the vec-
tor processing unit by using SIMD intrinsics. Implementing
the same model on GPUs was more complicated in the begin-
ning, but already the first version outperformed the CPU. We
observed that the overall time spent optimizing for the Xeon
Phi card and GPUs is roughly the same.

By using this implementation, we were able to study the ag-

ing behavior of the model. We analyzed the results by looking
at the spatial correlation and the autocorrelation. Theecoh

the paramagnetic phase (see Hj. The corrections are not ence length was extracted from the spatial correlationgusin
known here, thus our approach is purely heuristic. Neverthejntegral estimators. Further exponents were extracteugusi

less, foré — oo the used termé (ty +t) + &l /[& (tw) + o

multi-branch fits. Moving into the paramagnetic phase com-

crosses over td (ty +t)/& (tw) as required. The magnitude plicated the analysis since the spatial correlation is séiyrt
o ~ —1.333 of the correction-to-scaling parameter is smalland the system equilibrates within the simulated timespan.
and comparable to the lattice spacing. Nevertheless, withat the ferromagnet-paramagnet phase transition we found a

out introducing the parametég, the collapse in considerably

worse (not shown here).

For this example the parameteris close to the one ex-
tracted using a fit, as shown in F@.but in the ferromagnetic
phase the collapse gives unrealistic large values.f@&@xcept

clear change of the aging behavior, as visible in the expsnen
o, B andx. However, the exponer@ andx show a transi-
tion slightly aboveh., which might indicate a connection to a
percolation transition like that found slightly above theape
transition for the similar RFIM with Gaussian disordd2].

for the tails of the individual curves the collapse works-rea Note that in a previous studyl ] of the Edwards-Anderson
sonably well. The slight increase toward the end can prgbablmodel a change in dynamics was found that coincides fully
be attributed to the system reaching equilibrium.

with the ferromagnet-spin glass transition, i.e., it wasihle



in all measured exponents simultaneously. Intel-Phi architectures, one could easily extend our s&ith

The autocorrelation splits into a quasi-equilibrated partthe RFIM in higher dimensionsAB, 44], to RFIM systems
which follows a power law with the exponert and a later ~ with correlations 45]. Furthermore, it could be interesting
aging part. In the ferromagnetic phasis close to 0 and starts to investigate whether the aging behavior can be understood
growing in the paramagnetic phase. Thus, we can mostly ign terms of non-trivial low lying excitations4f]. Certainly,
nore the quasi-equilibrated part in the ferromagnetic ghasit would be interesting to perform such studies for othenspi
and do a collapse of the aging part by plotting the autocorremodels to investigate the relationship between the dynamic
lation over the quotienf (ty, +1)/& (ty). In the paramagnetic behavior and equilibrium phase transitions.
phase the collapse is becoming more difficult with incregsin
disorder strength. We found that an additive decomposgfon
the autocorrelation and an additive constant to the colkeren ACKNOWLEDGMENTS
length gave the best collapse.

Overall, we found that the equilibrium phase-transition be  This work was financially supported from the German Sci-
havior of the model and maybe a particular percolation trans ence Foundation (DPG) within the Graduiertenkolleg GRK
tion are well reflected in the dynamic observables. Due to thd885. We thank A. Peter Young for many interesting discus-
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