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Abstract. Distributions of the resilience of transport networks are studied numerically, in particular the
large-deviation tails. Thus, not only typical quantities like average or variance but the distributions over
the (almost) full support can be studied. For a proof of principle, a simple transport model based on
the edge-betweenness and three abstract yet widely studied random network ensembles are considered
here: Erdős-Rényi random networks with finite connectivity, small world networks and spatial networks
embedded in a two-dimensional plane. Using specific numerical large-deviation techniques, probability
densities as small as 10−80 are obtained here. This allows to study typical but also the most and the
least resilient networks. The resulting distributions fulfill the mathematical large-deviation principle, i.e.,
can be well described by rate functions in the thermodynamic limit. The analysis of the limiting rate
function reveals that the resilience follows an exponential distribution almost everywhere. An analysis of
the structure of the network shows that the most-resilient networks can be obtained, as a rule of thumb, by
minimizing the diameter of a network. Also, trivially, by including more links a network can typically be
made more resilient. On the other hand, the least-resilient networks are very rare and characterized by one
(or few) small core(s) to which all other nodes are connected. In total, the spatial network ensemble turns
out to be most suitable for obtaining and studying resilience of real mostly finite-dimensional networks.
Studying this ensemble in combination with the presented large-deviation approach for more realistic, in
particular dynamic transport networks appears to be very promising.

1 Introduction

Transportation networks [1–6], like computer networks,
railway systems, water pipelines or energy grids, are ubi-
quitous in highly technological societies. Since the well
functioning of these societies depends heavily on trans-
portation networks, large-scale (cascading) failure are in
particular threatening. Previous work on cascading fail-
ures in networks have often analyzed the occurrence of
past failures [7,8] or studied phase transitions, as a func-
tion of some network parameter, from a resilient to a fail-
ure phase [9–12]. In this work we are concerned always
with the case of a design in such a way that a failure is
prevented, i.e., resilient networks, the typical task of an
engineer. In particular, we are interested on how to make
a network fail-safe against the failure of one link by in-
cluding enough, but as small as possible, backup capacity,
such that a cascading failure is prevented (called “N − 1
criterion” for power transmission). To gain a fundamental
understanding of the problem, no real-world networks are
studied here. Instead, this study is performed for three dif-
ferent network ensembles, two of them are highly relevant
for transport processes in spatial settings, another simple
model is included for comparison. Here, the behavior over
the range of (almost) each complete ensemble is addressed,

this means in particular the properties of typical as well as
extremely resilient and extremely weak networks are in-
vestigated. Namely, the distribution of backup capacities
is obtained for almost the complete support, for backup
capacities which appear about 10−80 less likely than in
typical networks. This requires to apply special but simple
numerical importance-sampling techniques, as explained in
section 5, to obtain the large-deviation properties of the
networks.

For many problems in science and in statistics, the
large-deviation properties play an important role [13,14].
Only for few cases analytical results can be obtained. Thus,
most problems have to be studied by numerical simula-
tions [15], in particular by Monte Carlo (MC) techniques
[16,17]. Classically, MC simulations have been applied to
ensembles of random systems in the following way: For
a finite number of independently drawn instances from
the ensemble, arbitrary properties of these instances have
been calculated using MC simulations. Later, it has been
noticed that MC simulations can be used via introducing
an artificial “temperature” to sample the random ensem-
ble such that the large-deviation properties of the (almost)
full ensemble can be obtained [18]. The results are re-
weighted in a way that the results for the original quenched
ensemble are obtained. In this way, the large-deviation
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properties of the distribution of alignment scores for pro-
tein comparison were studied [18–20], which is of impor-
tance to calculate the significance of results of protein-
data-base queries [21].

Motivated by these results, similar approaches have
been applied to other problems like the distribution of
the number of components of Erdős-Rényi (ER) random
networks [22], the size of the largest components of ER
random networks and of two-dimensional grids [23], the
partition function of Potts models [24], the distribution of
ground-state energies of spin glasses [25] and of directed
polymers in random media [26], the distribution of Lee-
Yang zeros for spin glasses [27], the distribution of success
probabilities of error-correcting codes [28], the distribu-
tion of free energies of RNA secondary structures [29],
and some large-deviation properties of random matrices
[30,31].

To the knowledge of the author, no corresponding study
has been performed to obtain the large-deviation proper-
ties of transport networks, in particular of failure-resilient
networks. Here, the large-deviation approach is applied to
a simple yet often used transport model on three stan-
dard random network ensembles. Thus, this work serves
in particular as a proof of principle that measuring large-
deviation properties of transport networks is possible and
allows one to obtain useful insight. This shows that similar
approaches should be applicable to more complex trans-
port networks, e.g., dynamic networks of oscillators as
used to study energy grids [32,33].

The remainder of the paper is organized as follows.
First, in Sec. 2, the different network ensembles under
scrutiny are presented. Then, the backup capacity is intro-
duced, which is used to describe how resilient a network is.
In Sec. 4 a couple of test simulations are presented, which
explore the concept of the backup capacity. In the fol-
lowing section, the large-deviation approach is presented.
Within the main Sec. 6, all results are given. The paper
is closed by a summary and a discussion.

2 Network Ensembles

This work is about the resilience of network ensembles,
since such ensembles are used often in theoretical studies
about various network properties. This type of approach
is different from the question how, e.g., the most resilient
network for a given set of nodes and real-space positions
looks like. For such a setup the notion of an ensemble
makes less sense and is thus not covered in this work. Also
no existing networks are studied empirically here since
that would be beyond the scope of the work. Nevertheless,
the present approach allows to gain insights about the
behavior of typical and atypical network instances, leading
to general design principles for resilient networks.

The most simple type of random networks is the Erdős-
Rényi (ER) network ensemble [34]. It makes no assump-
tion about the topology of the network, i.e., in particular
it exhibits no spacial structure, see Fig. 1 (top). Thus, it
is ideally suited for comparison with more complex net-
work ensembles as well as single network instances to see
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Fig. 1. Three different ensembles are treated. For each ensem-
ble, a sample network with N = 100 nodes is shown: Erdős-
Rényi random networks (top, with randomly placed nodes),
small-world networks (middle) and two-dimensional spatial
networks (bottom).

what effect the structures of these more complex networks
have regarding their behavior. To create an ER random
network, one starts with an empty network of N nodes.
For each pair i, j of nodes, with some given probability
pER
ij the link {i, j} is added to the network. Here,

pER
ij = c/(N − 1) (1)

is chosen such that, on average, each node has c connec-
tions. Nevertheless, all possible networks have a nonzero
(although sometimes quite small) probability, even the
complete (fully connected) as well as the empty network.
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Since ER random networks have a minimum amount of
structure, they often serve as a suitable null model when
comparing to other ensembles of random networks.

Next, a widely studied model of networks is considered
here, the small-world (SW) ensemble [35–37]. This ensem-
ble was found, e.g., to represent the U.S. power grid well
[35,36,38] and was used for modelling other transport net-
works as well [12]. For this model, in a first step N nodes
are distributed on a ring and connected with their direct
and second-nearest neighbors. Thus, each node has four
links. Next, for each existing link, with probability p (here
p = 0.1) it is disconnected at one terminal node and re-
connected with a completely randomly chosen node, hence
keeping the average number of links per node. Thus, for
p → 1 the SW networks become more similar to a modi-
fied ER ensemble where the average number of neighbors
is c = 4 and where the actual number of links does not fluc-
tuate. For p small, this results in a mixture of many local
short-range and few long-range links, see Fig. 1 (middle),
which is a key characteristics of many existing real-world
networks. Note that for easy comparison between differ-
ent network models, c = 4 was chosen here for the ER
ensemble, such that all network ensembles have the same
average number of neighbors.

Since many existing transport networks are embedded
on a two-dimensional (earth) surface, also a spatial (two-
dimensional) model [39] is included in the present study,
which exhibits even more spatial structure than the SW
ensemble. Here, N nodes are distributed randomly with
uniform weight in a [0, 1]2-plane. Afterward, for each pair
i, j of nodes, with probability

pspij = f · (1 +
√
Nπdij/α)

−α (2)

the link {i, j} is added to the network, where dij is the
Euclidean distance between nodes i, j. A sample network
is shown in Fig. 1 (bottom). Here, values f = 0.95 and
α = 3 are chosen, which results also in an average number
of neighbors close to 4. Note that several variants of spa-
tial networks exist in the literature. Although the model
appears to be in particular useful for surface-embedded
transportation networks, it is so far less established than
the SW model, so the many results for the SW model are
included here as well.

3 Resilience

The quantity to describe the resilience of a network against
a failure leading to cascading failures is based on a rather
simple (i.e., not time-dependent) yet established quantity
to measure loads in transport networks [38,40,12]. The
loads are given by the assumption that for each pair i, j
of nodes, a unit one of some quantity has to be trans-
ported between i, j. This requires the network to be con-
nected, i.e., to consist of a single connected component.
For the above random ensembles it means that they are
restricted to the subset of connected network instances.
For the SW model and the spatial model basically all net-
work instances are connected using the given parameters,

while for the ER model typically only a small fraction of
networks is connected (37% for N = 50, 15% for N = 100,
2.5% for N = 200 and 0.005% for N = 400). Note that
the sampling used here, see Sec. 5, ensures that only con-
nected networks are sampled.

For the transport between any pair i, j of nodes the
shortest path is chosen (if several shortest paths exist,
the transportation is divided equally among the different
paths). This is performed for all pairs of nodes, which are
connected in the network. The actual load li,j for an link
e = {i, j} is the total number of (possibly sums of frac-
tional) shortest paths which run through the link. Hence,
the load is equal to the well known edge-betweenness, which
can be calculated conveniently using a fast algorithm [41].

Now, the backup capacity cb is defined. For this pur-
pose, the link emax = argmax{i,j} li,j exhibiting the high-
est load is removed from the network. Next, all loads are
recalculated, resulting in load values {l̃i,j} of the modified
network. The backup capacity is defined as the highest in-
crement in the load, i.e.,

cb = max
{i,j}

(l̃i,j − li,j) . (3)

If the network is disconnected by the removal of emax,
cb = ∞ is chosen, i.e., such networks are actually disre-
garded as well. The (or one) link which exhibits the maxi-
mum increase in load is denoted here by eincr−max. Note
that in some link the load will actually decrease, but that
is no problem for the definition. Hence, the backup ca-
pacity represents a rough and rather safe estimate of how
much the capacities have to be chosen above the actual
load values to make the transportation network resilient
against the failure of one link.

4 Test simulations

To verify whether concentrating on the removal of the link
with the largest load (leading to backup capacity cb) is jus-
tified, simulations were performed such that for each net-
work the necessary backup capacity was also maximized
over the single-link removal of all links, resulting in a maxi-
mum backup capacity cfullb . Clearly, cfullb ≥ cb holds for any
network. In Fig. 2, results for small-world networks with
N = 100 nodes and rewiring probability p = 0.1 are dis-
played, the results for other network ensembles look simi-
lar. As visible, there is a strong correlation between the
full backup capacity cfullb and the actually used backup ca-
pacity cb. A linear correlation coefficient 0.85 was found.
In fact, for about 1/3 of all networks, both are exactly
equal and for more than 90% cfullb ≤ 2cb holds. Hence,
due to the strong correlation, when optimizing the net-
work topology with respect cb one will also obtain very
efficient networks with respect to cfullb .

Thus, for best efficiency, for the main simulations the
above quantity cb was evaluated, i.e. only one link was re-
moved and the load recalculated. Nevertheless, in principle
one is interested in global events, i.e., in cascading failures
[10]. The basic assumption is that when the backup capa-
city is not sufficient, a cascading failure will be triggered
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Fig. 2. Scatter plot of the full backup capacity cfullb , which is
optimized over the removal of every link, one at a time, as a
function of actually used backup capacity cb (where only the
link with the largest load is removed), for small-world networks
with N = 100 and p = 0.1.
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Fig. 3. Probability Pcascade of a cascade which disconnects the
network as a function of the fraction fb of the backup capacity
added to the link capacities. For small-world networks with
different sizes N = 20, N = 50, N = 100 and p = 0.1.

frequently. This assumption was also checked explicitly in
this work for the sample setup of SW networks (p = 0.1):
After the calculation of the backup capacity cb the ca-
pacity of every link was increased by the amount fbcb,
where fb is a factor in the range [0, 2.5], except for the link

eincr−max which exhibits the largest load increase after the
initial removal. For this link the capacity is increased only
by cp−ǫ, where ǫ > 0. Thus, this link will for sure fail next
with the recalculated load distribution since the capacity
is not sufficient. Thus it has to be removed as well and
the load distribution has to be recalculated again. Now
even more links may fail. This process is repeated, until
no more links fail, i.e., the network is able to redistribute
the load, or until a cascade of failures result in the net-
work breaking apart, i.e. a complete breakdown. In Fig. 3,
the probability Pcascade of a cascading failure leading to a
network breakdown is shown as a function of fb. Clearly,
for fb < 1 almost all failures trigger a network breakdown.
On the other hand, when increasing fb cascading failures
become less likely. Hence, it is justified to calculate just
the backup capacity cb, involving only two calculations of
the load distribution, to learn about the resilience of the
network against an event leading to a cascading failure.

5 Simulation and reweighting method

To determine the distribution P (cb) for any measurable
quantity cb, here denoting the backup capacity of a net-
work, simple sampling is straightforward: One generates a
certain number K of network samples and obtains cb(G)
for each sample G. This means each network G will appear
with its natural ensemble probabilityQ(G). The probabili-
ty to measure a value of cb is given by

P (cb) =
∑

G

Q(G)δcb(G),cb (4)

Therefore, by calculating a histogram of the values for
cb, a good estimation for P (cb) is obtained. Nevertheless,
P (cb) can only be measured in a regime where P (cb) is
relatively large, about P (cb) > 1/K. Unfortunately, the
distribution decreases for many systems exponentially fast
in the system size N when moving away from its typical
(peak) value. This means, even for moderate system sizes
N , the distribution will be unknown on almost its com-
plete support.

To estimate P (cb) for a much larger range, even pos-
sibly on the full support of P (cb), where probabilities
smaller than 10−10 may appear, a different approach is
used [18]. For self-containedness, the method is outlined
subsequently. The basic idea is to use an additional Boltz-
mann factor exp(−cb(G)/T ), T being a “temperature”
parameter, in the following manner: A Markov-chain MC
simulation [16,17] is performed, where in each step t from
the current network G(t) a candidate network G∗ is cre-
ated: A node i of the current network is selected ran-
domly, with uniform weight 1/N , and all adjacent links
are deleted. For all feasible links {i, j}, the link is added
with a weight corresponding to the natural weight Q(G),
e.g., with probability c/(N − 1) for ER random networks.
For SW and spatial networks it is done correspondingly,
see Sec. 2. Next, it is checked whether network G∗ is con-
nected, i.e., consists of one single connected component,
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because only for a connected network the backup capa-
city is defined. If G∗ is not connected, it is rejected, i.e.
G(t+1) = G(t). Note that it has to be made sure that the
initial network is connected. This was achieved by gene-
rating candidates for the initial network until a connected
instance was found.

If the candidate network is connected, the backup ca-
pacity cb(G

∗) is calculated. Finally, the candidate network
is accepted, (G(t + 1) = G∗) with the Metropolis proba-
bility

pMet = min
{

1, e−[cb(G
∗)−cb(G(t))]/T

}

. (5)

Otherwise the candidate network is also rejected (G(t +
1) = G(t)). By construction, the algorithm fulfills detailed
balance. Clearly the algorithm is also ergodic, since within
N steps, each possible network may be constructed, in
principle. Thus, in the limit of infinite long Markov chains,
the distribution of networks will follow the probability

qT (G) =
1

Z(T )
Q(G)e−cb(G)/T , (6)

where Z(T ) is the a priori unknown normalization factor.
The distribution for cb at temperature T is given by

PT (cb) =
∑

G

qT (G)δcb(G),cb

(6)
=

1

Z(T )

∑

G

Q(G)e−cb(G)/T δcb(G),cb

=
e−cb/T

Z(T )

∑

G

Q(G)δcb(G),cb

(4)
=

e−cb/T

Z(T )
P (cb)

⇒ P (cb) = ecb/TZ(T )PT (cb) (7)

Hence, the target distribution P (cb) can be estimated, up
to a normalization constant Z(T ), from sampling at finite
temperature T . For each temperature, a specific range of
the distribution P (cb) will be sampled: Using a positive
temperature allows to sample the region of a distribution
left to its peak (values smaller than the typical value),
while negative temperatures are used to access the right
tail. Temperatures of large absolute value will cause a sam-
pling of the distribution close to its typical value, while
temperatures of small absolute value are used to access
the tails of the distribution. Hence, by choosing a suitable
set of temperatures, P (cb) can be measured over a large
range, possibly on its full support.

The normalization constants Z(T ) can easily be ob-
tained by including a histogram obtained from simple sam-
pling, which corresponds to temperature T = ±∞, which
means Z ≈ 1 (within numerical accuracy). Using suitably
chosen temperatures T+1, T−1, one measures histograms
which overlap with the simple sampling histogram on its
left and right border, respectively. Then the corresponding
normalization constants Z(T±1) can be obtained by the

requirement that after rescaling the histograms according
to (7), they must agree in the overlapping regions with the
simple sampling histogram within error bars. This means,
the histograms are “glued” together, similar to the multi-
histogram approach of Ferrenberg and Swendsen [42]. In
the same manner, the range of covered cb values can be ex-
tended iteratively to the left and to the right by choosing
additional suitable temperatures T±2, T±3, . . . and gluing
the resulting histograms one to the other. A pedagogical
explanation and examples of this procedure can be found
in Ref. [43].

In order to obtain the correct result, the MC simula-
tions must be equilibrated. The equilibration of the sim-
ulation can be monitored by starting with two different
initial networks, respectively:

– First an unbiased random network is taken, which means
that the measure of interest is close to its typical value.

– Second, one uses a very atypical network, e.g., a fully
connected network.

In any case, for the two different initial conditions,
the evolution of cb(G(t)) will approach from two differ-
ent extremes, which allows for a simple equilibration test:
equilibration is achieved if the measured values of cb agree
within the range of fluctuations. For the simulations per-
formed in this work, equilibration was achieved always
within 200 Monte Carlo sweeps (i.e., 200∗N Monte Carlo
steps).

6 Results

Simulations where performed for ER, SW and spatial net-
works. For each type, several number of nodes were con-
sidered, to study finite-size effects. The evaluation of the
backup capacity is rather involved, compared, e.g., to past
large-deviation studies of the largest component of net-
works [23]. Thus, the largest networks under scrutiny here
exhibit N = 400 nodes. Nevertheless, many existing trans-
portation networks are of similar size.

Figure 4 shows the distribution of the backup capacity
for almost the full support for the ensemble of SW net-
works. Note that probabilities as small as 10−22 are easily
obtained which are clearly out of reach using conventional
simulation techniques. Typical, very reliable and very un-
reliable networks are accessible using the large-deviation
approach. Typical networks, near the peak of the distri-
butions, exhibit a rather small backup capacity. Very un-
reliable networks, where the backup capacity has to be
large to prevent cascading failures, are very rare and lo-
cated in the tails of the distributions to the right. The tails
of the distribution follow exponentials very well, as a fit
to a exp(−cb/c̃) to the tail of the data for the largest net-
works revealed, resulting in a = 2.4(1)×10−5, c̃ = 1022(1).
Below a more detailed analysis via an extrapolation of the
large-deviation rate function is given, supporting that the
limiting distribution is exponential.

An inspection of the networks in the far tail of the dis-
tribution showed that the most unreliable networks have
a quite special structure. They consist of a small core of
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Fig. 4. Probability distribution P (cb) for the backup capacity
cb, for small-world networks (p = 0.1) with different sizes N =
50, 100, 200 and 400. Standard error bars are at most of order
of symbol size. The line shows a fit of the tail (cb ≥ 20000)
of the N = 400 data to an exponential (a exp(−cb/c̃), a =
2.4(1)× 10−5, c̃ = 1022(1)). The inset enlarges the region near
cb = 0, the line being a guide to the eyes only.

core

Fig. 5. Network with highest backup capacity. Two largeO(N)
subnetworks are connected trough a small core network (a tri-
angle, here). The links with the highest loads are shown in
bold. Removing the highest load from the core part results
in an increase of the load through the other core links by an
amount N2/4.

connected nodes, e.g., a triangle of nodes in the simplest
case, see Fig. 5. All remaining (N−3) nodes are connected,
directly or indirectly, to one of two of these core nodes,
roughly partitioned equally into two sets, i.e. about N/2
per set of nodes. This means, a large number of (N/2)2

shortest-path connections runs from one set through a sin-
gle link of the core to the other set. This single link ex-
hibits the highest load, while the other core links are not
used much. By removing this extreme-load link, the load
is redistributed completely in the core, hence, increased
by an amount of ∼ N2/4. Clearly, such networks are very
rare by chance and rather special.
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Fig. 6. Probability distribution P (cb) for the backup capac-
ity cb, for Erdős-Rényi networks (c = 4) with different sizes
N = 50, 100, 200 and 400. Standard error bars are at most of
order of symbol size. The line shows a fit over almost the full
support (cb ≥ 5000) of the N = 400 data to an exponential
(a exp(−cb/c̃), a = 0.015(2), c̃ = 223(1)). The inset enlarges
the region near cb = 0, lines being guides to the eyes only.

On the other hand, there are also networks which have
even a much more resilient structure than typical net-
works, since they require only a rather small backup ca-
pacity. They are located near the origin of the distribution
and are also rather rare (probability < 10−9 for the largest
case considered here). Below we will identify some struc-
tural network properties that make it very resilient.

The inset of Fig. 4 shows also that with increasing net-
work size, the typical backup capacity, i.e., the location of
the peak, grows. A more detailed study, also involving
larger sizes which were studied by simple sampling, ex-
hibits that the growth is linear (not shown here).

For comparison with the most simple network model,
Erdős-Rényi (ER) random networks [34], the correspond-
ing results are shown in Fig. 6. The peak of the distribu-
tion again moves (linearly) to the right but is located rel-
atively much further left compared to the SW case. Again
an exponential fits the data well, now for almost over the
full support.

For comparison with the realistic spatial network model,
the corresponding results are shown in Fig. 7. Typically,
these networks are more resilient (smaller value of cb) than
the SW networks, but less resilient than the ER model.
Again, most of the distribution can be well fitted by an
exponential.

Comparing the insets of Fig. 4, 6 and 7, one observes
that both ER random networks as well spatial random
networks typically require a lower backup capacity com-
pared to the SW model. Typical values of the backup ca-
pacity cb for the ER model are located at small values
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Fig. 7. Probability distribution P (cb) for the backup capacity,
for spatial random networks (α = 3, f = 0.95) with different
sizes N = 50, N = 100, N = 200 and N = 400. Standard error
bars are at most of order of symbol size. The line shows a fit
over most of the support (cb ≥ 10000) of the N = 400 data to
an exponential (a exp(−cb/c̃), a = 2.7(4)× 10−5, c̃ = 392(1)).
The inset enlarges the region near cb = 0, lines being guides
to the eyes only.

(cb ≈ 40 for N = 400). The spatial networks are typi-
cally almost as resilient (cb ≈ 100 for N = 400). For the
SW ensemble, typical networks need much larger backup
capacity (cb ≈ 500 for N = 400). Correspondingly, large
values of cb are very unlikely for the ER ensemble (a den-
sity of 10−80 at cb = 40000 for N = 400) and quite un-
likely for the spatial networks (a density of 10−50). For the
SW model the density of 10−22 at rightmost tail is rela-
tively larger. These quantitative differences in the large-
deviation behavior are also reflected by the constants ob-
tained by fitting an exponential to the tail of the distribu-
tion. The drop of the tail is strongest for the ER model,
followed by the spatial ensemble and finally by the SW
networks. Thus, the SW ensemble relatively favors less re-
silient networks compared to the other two ensembles. For
the ER model this behavior is no big surprise because the
ER model does not exhibit any spatial structure, allowing
for arbitrary network topologies in particular many long-
range links (equivalent to a high dimension of the system)
which lead to a strong resilience. In particular the network
where all pairs of nodes are directly connected (complete
network) is contained in the ensemble, which is not pos-
sible for the SW ensemble because the average number of
neighbours is fixed to 4.

On the other hand, the SW and the spatial model
are both embedded in a low-dimensional structure, which
might indicate that both should need larger backup ca-
pacities than the ER ensemble. Nevertheless, the spatial
ensemble seems to be more similar to the ER networks

 0

 0.05

 0.1
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 0  0.2  0.4  0.6  0.8  1
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Fig. 8. Rate function φ for the rescaled backup capacity
r = cb/(N

2/4), for small-world networks (p = 0.1) with differ-
ent sizes N = 50, N = 100, N = 200, N = 400 and for the
extrapolation N → ∞. The line represents a power law fit to
the extrapolated values. The inset shows a sample extrapola-
tion (using a power law plus constant) for r = 0.4.

with respect to the resilience. First, one should note that
for the spatial networks in principle a complete network is
possible (but even more unlikely than for ER random net-
works) in contrast to the SW ensemble. Second, the SW
model exhibits indeed some long-range links, which can be
used to decrease to overall load, hence the backup capac-
ity. Nevertheless, by accident few of the long-range links
will be very suitable for many of the shortest paths, acquir-
ing much of the load, while many other long-range links
carry only a small load. This “channeling effect” leads to
a rather large backup capacity, thus a large load has to
be rerouted after the failure. Opposite to this, for the spa-
tial model, due to the distribution of the nodes in a two-
dimensional plane, the total all-to-all traffic is distributed
more over different paths, leading to a more uniform dis-
tribution of the load in the plane, in turn requiring less
backup capacity.

Thus, using a true two-dimensional model, like the one
applied here, appears from the present results the most
meaningful approach within this field. This type of net-
works exhibit on the one hand spatial structure, as needed
for most real-world applications, one the other hand, the
resilience is typically, and also optimally, rather large. This
is opposed to the SW model, which is often used to model
power grids [35,36,38], but exhibits rather low resilience
and is not embedded in a two-dimensional plane. Clearly,
by increasing the fraction p of randomized links, the SW
model can be made more resilient, but that will render
it much more similar to the ER model (without fluctuat-
ing number of links), but less finite-dimensional, i.e., less
realistic.
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Next, some information about the limiting distribution
for large network sizes is obtained using the so-called rate
function

φ = − 1

N
logP (cb) (8)

which is a standard quantity in large-deviation theory
[13,44]. It displays the leading behavior under the as-
sumption that away from the typical instances, the dis-
tribution decays exponentially fast in the system size, i.e.,
P (cb) ∼ e−Nφ. In Fig. 8 the rate function as a function of
the rescaled backup capacity r = cb/(N

2/4) is shown for
SW networks. This rescaling to r, motivated by the above
finding about the most unresilient networks, ensures that
the maximum of the support for the rate function is close
to r = 1. This allows for a comparison and extrapolation
of the results for different sizes N . Just from looking at
the data, the rate function seems to approach a limiting
shape for larger networks.

To make this statement quantitatively precise, an ex-
trapolation to N → ∞ was performed in the following
way: For selected fixed values of r, the rate function φ was
considered as a function of the system size N and fitted
to a power law φr(N) = φ∞

r + brN
−cr , which is a typical

finite-size behavior found in statistical mechanics models.
The inset of Fig. 8 shows the SW data and the resulting
fit for the case r = 0.4 (with φ∞

0.4 = 0.041(7), b0.4 = 1.9(6)
and c0.4 = 0.72(9)). The resulting extrapolated values φ∞

r

are also displayed in Fig. 8 together with a fit to a power
law φ∞

r = αrβ (α = 0.102(5),β = 0.97(10), i.e., close to
a linear behavior), which is compatible with an exponen-
tial distribution (β = 1) for the backup capacity in the
thermodynamic limit. For the two other network types,
the exponential nature of the tails of the distributions is
even more obvious from the data shown in Figs. 6 and 7
directly, hence corresponding analyses of the rate function
are omitted here. The fact that the data can be so well
described by the rate function in the thermodynamic limit
indicates that the problem studied here may be well ac-
cessible using analytical large-deviation approaches, which
often are based on obtaining the rate function.

Finally, we want to understand the source of resilience
in principle. Trivially, the higher the load in the most-
loaded link, the more load has to be redistributed when
this link is removed, i.e., the larger the needed backup ca-
pacity. More interesting it is to ask which network struc-
tures lead to resilient networks, without looking at the
actual load values. Here, selected results are shown for
the connection between the resilience and the number of
links and, respectively, the diameter of a network.

First, the relationship of the resilience to the num-
ber of links is investigated. For this purpose, the N = 400
networks obtained during the simulations at different tem-
peratures T were binned according to the number ne of
links. For the networks in each bin, the average backup
capacity cb was evaluated. The result is shown in Fig. 9
for the ER and the spatial random networks (for the SW
ensemble, the number of edges does not vary). One sees
that if only few links are available, the backup capacity
is very large, which is meaningful, because having more
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Fig. 9. The average resilience cb as a function of the number
ne of links for ER and spatial networks of size N = 400.

links allows to distribute the load making a network more
resilient. Interestingly, a sharp drop as a function of ne

is visible, looking like a phase transition. This drop ap-
pears for ER random networks at a smaller number of
edges, which is meaningful, because ER networks exhibit
no constraints, thus one has more “freedom” to arrange
the links such that a high resilience can be obtained. Note
that typical networks exhibit a very small backup capac-
ity compared the the “high-backup capacity phase” in the
left part of Fig. 9. Thus, this transition is not investigated
more thoroughly here.

Thus, including more edges leads, not surprisingly, to a
higher resilience. Note that examples exist, where adding
more links sometimes also decreases the stability of a net-
work [45]. Anyway, for real networks, including more links
leads almost always to larger costs (see also remarks be-
low). Thus, it would be interesting to see how the resilience
correlates with other topological measures of the network.
For this purpose, a scatter plot of the backup capacity ver-
sus the diameter d of a network (i.e., the longest among all
shortest i ↔ j paths) was recorded, see inset of Fig. 10 for
the SW model. One can observe that large backup capac-
ities go along with large diameters. Note that for the SW
model, the differences in backup capacity can not originate
from fluctuations of the number of edges. The positive re-
lation between diameter and backup capacity can be seen
even better in the main part of Fig. 10, where a binning
of the networks with respect to cb was performed (shown
here just for typical and very resilient networks, i.e., small
values of cb) and within each bin the average diameter was
evaluated. Again, the positive correlation between diam-
eter and backup capacity is visible, for all three network
ensembles. In particular very small backup capacities, i.e,
the most resilient graphs (which are not accessible using
standard simple-sampling simulation approaches) are re-
lated to extremely small diameters. This shows that the
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Fig. 10. The average diameter d as a function of the resilience
cb for SW, ER and spatial networks of size N = 400, in the
range of small value of cb. The inset shows a scatter plot of the
data for the entire range of backup capacities for the SW case.

diameter is a key quantity when considering and optimiz-
ing resilience of transport networks. Note that again ER
ensemble and spatial networks are very similar behaving,
although very different in definition. For the ER ensemble,
for the most resilient instances obtained, an average diam-
eter of d ≈ 2 was measured, close to the value of d = 1 of
the complete network. Note that a complete network mi-
nus one edge has already diameter two. This shows that
actually the most resilient networks were sampled during
the simulations.

On the other hand, the SW ensemble exhibits for the
same backup capacity a larger average diameter. This may
occur on the first sight interesting since it allows for longer
paths leading to the same resilience. On the other hand,
this effect is only visible for slightly higher backup capac-
ities. Therefore, in the region of extremely resilient net-
works, which are most interesting, the SW ensemble does
not contribute at all, because such resilient networks do
simple not exist there. Furthermore, extrapolating the SW
data of d by eye to small values of cb leads to small values
of the diameter, which simply cannot be obtained in this
ensemble.

Note finally that for real networks costs are an impor-
tant issue. In order to observe how the resilience scales
with the costs of a network, one would have to take into
account the spatial length of the links and built upon that
the costs which are a function of the number of links and
their lengths. This is certainly beyond the scope of the cur-
rent work which has its focus on abstract but standard and
widespread network ensembles. Nevertheless, the general
results as shown here will likely persist, in particular the
strong correlation with the diameter of a network, which
should be minimized for given costs.

7 Summary and outlook

The resilience of simple models of transportation networks
against failures of highly-loaded links were studied here.
For the random networks, three different ensembles were
considered: The Erdős-Rényi ensemble is the most simple
model for random networks, exhibiting no spatial struc-
ture at all, but serves well as a null model for comparison.
Small-world networks are also very simple but are used
often to model real-world transportation networks still
rather well, like, e.g., energy grids. Finally, spatial net-
works are considered here, which are more sophisticated,
but not well established. They might serve in the future
as standard models for surface-based transportation.

To model the resilience against single-link failures (lead-
ing to cascading failures) the backup capacity is defined,
which describes the amount of additional capacity, which
one has to be included in the links to prevent a failure.
The lower the backup capacity is, the more resilient, i.e.,
the better, is the structure of the network.

Here, a large-deviation approach was used to study
the distribution of the backup capacity. Since the method
allows to access a distribution (almost) on its complete
support, one can study the scaling behavior not only of
the typical and average but also of the best and the worst
network instances. Networks leading to very small proba-
bility densities of the backup capacity such as 10−80 could
be generated and studied with the correct weight via intro-
ducing a bias and reweighting the results for the analysis.

The main results are as follows: Trivially, by including
more links, a network can be made more resilient. More
interestingly, for all types of networks, even for the SW en-
semble with fixed number of links, the most-resilient net-
works can be obtained by minimizing the diameter of the
network. The typical backup capacity, on the other hand,
grows linearly with the number of nodes in the network.
In particular, spatial (two-dimensional) networks appear
most promising for future studies of resilience of models
of real-world transportation networks.

Furthermore, using the rate function approach, the
shape of the distribution could be extracted in the ther-
modynamic limit, which is exponential. In particular, the
large-deviation property is fulfilled, which means that it
appears promising to use standard mathematical large-
deviation techniques, e.g., generating functions, to study
the distribution of the backup capacity more rigorously.

Hence, this study shows that the full range of trans-
portation networks ranging from the rare very resilient,
over typical to the exponential rare very susceptible net-
works can be studied numerically using large-deviation
techniques. Here, a rather simple and unspecific trans-
portation model, yet widely used in the literature, was
used. Hence, it appears to be very promising to apply
similar approaches to more realistic and specific models of
transportation networks, e.g., time-dependent ac currents
based on Kuramoto oscillators to model energy grids [32,
33,45].
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