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In this paper, we study a simple model of a diffusive particle on a line, undergoing a stochastic
resetting with rate r, via rescaling its current position by a factor a, which can be either positive or
negative. For |a| < 1, the position distribution becomes stationary at long times and we compute
this limiting distribution exactly for all |a| < 1. This symmetric distribution has a Gaussian shape
near its peak at x = 0, but decays exponentially for large |x|. We also studied the mean first-passage
time (MFPT) T (0) to a target located at a distance L from the initial position (the origin) of the
particle. As a function of the initial position x, the MFPT T (x) satisfies a nonlocal second order
differential equation and we have solved it explicitly for 0 ≤ a < 1. For −1 < a ≤ 0, we also solved
it analytically but up to a constant factor κ whose value can be determined independently from
numerical simulations. Our results show that, for all −1 < a < 1, the MFPT T (0) (starting from
the origin) shows a minimum at r = r∗(a). However, the optimised MFPT Topt(a) turns out to be
a monotonically increasing function of a for −1 < a < 1. This demonstrates that, compared to the
standard resetting to the origin (a = 0), while the positive rescaling is not beneficial for the search
of a target, the negative rescaling is. Thus resetting via rescaling followed by a reflection around
the origin expedites the search of a target in one dimension.

I. INTRODUCTION

Search processes are ubiquitous in nature, e.g., animals searching for food, a helicopter searching for survivors after
a ship wreck, a protein searching for a site to bind on a DNA strand, or even finding a bug in a computer program [1, 2].
In many of these search processes, natural intuition tells us that, if one is unsuccessful in finding a target for a while,
perhaps one should stop the search and restart from the beginning. The rationale behind this intuition is that, if one
restarts the search, perhaps one will find a new pathway that leads to the target in a shorter time. This idea was
given a concrete form by studying a simple analytical toy model of a particle diffusing and subjected to a stochastic
resetting to its initial position with a constant rate r. For example, in one dimension, let us consider a particle with
position x(t) at time t that starts from x(0) = 0 and the position gets updated by the rule [3, 4]

x(t+ dt) =

{
x(0) = 0 , with probability r dt

x(t) +
√
2D dt ξ(t) , with probability 1− r dt ,

(1)

whereD is the diffusion constant and ξ(t), for each t, are independent Gaussian random variables of zero mean and unit

variance. In the limit dt → 0, the increment ξ(t) can be replaced by
√
dt η(t), resulting in the stochastic differential

equation dx/dt =
√
2Dη(t). Here η(t) is the standard Gaussian white noise with zero mean and a delta-correlator

⟨η(t)η(t′)⟩ = δ(t− t′). This simple toy model leads to two principle paradigms.

The first natural question is: what is the position distribution Pr(x, t) at time t? When r = 0, Pr=0(x, t) =

e−x2/(4Dt)/
√
4πD t is simply a Gaussian. One of the first effects of resetting to the origin is that it breaks the detailed

balance and drives the system to a nonequilibrium steady state (NESS) where the position distribution becomes
non-Gaussian and is given by [3, 4]

Pr(x) = lim
t→∞

Pr(x, t) =
1

2

√
r

D
e−

√
r
D |x| . (2)

This theoretical prediction has been verified experimentally, using holographic optical tweezers [5]. The emergence of
a new type of NESS induced by resetting is the first paradigm.

The second natural question is whether such a resetting really helps in reducing the search time of a target. Indeed,
if one puts a target at a fixed distance L from the origin, the mean first-passage time (MFPT) to the target (a simple
measure of the search time) can be computed exactly. For a particle starting at and resetting to the origin, this
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MFPT is given by [3, 4]

T (0) =
1

r

[
e
√

r
D L − 1

]
, (3)

where the argument ′0′ refers to the starting position, i.e., the origin x = 0. In the absence of resetting, the MFPT
is infinite, while it becomes finite for any nonzero resetting rate r. Moreover, as a function of r, the MFPT exhibits
a minimum at r = r∗, indicating the existence of an optimal resetting rate. Indeed, from Eq. (3), the dimensionless
MFPT defined as

T̃ (0) =
DT (0)

L2
, (4)

can be expressed as a function of the dimensionless parameter β =
√

r/DL as

T̃ (0) =
1

β2

(
eβ − 1

)
. (5)

As a function of β, it has a minimum at β = 1.59362 · · · . This clearly shows that in this simple toy model, switching
on the resetting is not only advantageous to find a target, but there even exists an optimal resetting rate that optimises
the search time. This is the second paradigm of this toy model.

These two paradigms, deduced from this simple toy model, have subsequently been found in several stochastic
processes with resetting. The conditions for the existence of a NESS as well as an optimal r∗ have been studied in
a variety of situations. Furthermore, some of these analytical predictions have been verified in experiments using
optical trap setups. For recent reviews of these developments, see [6–8] .

In this original toy model, the walker’s position is always reset to the origin. However, this model can be analytically
solved even when the reset position is not fixed after every reset, but rather is drawn independently from a distribution
after each reset [4]. In fact, in the experimental setups used in Refs. [9, 10], the resetting position typically corresponds
to the Boltzmann distribution of the particle confined in a potential U(x). However, the two paradigms discussed
above, namely the existence of a NESS and a finite MFPT remain true when the resetting position is drawn from a
distribution. In these models, the position after the resetting is uncorrelated with the position before reset, i.e., the
post-resetting position has no memory of the pre-resetting position. A simple model that retains some dependence
on the pre-resetting position has recently been studied under the name of “backtrack resetting” where the evolution
rule (1) is modified to [11, 12]

x(t+ dt) =

{
a x(t) with probability rdt ,

x(t) +
√
2D dt ξ(t) with probability 1− rdt ,

(6)

where 0 ≤ a ≤ 1 is a backtracking parameter. This model represents for example the situation where x(t) denotes
the population of a habitat at time t, a fraction of which gets wiped out after a catastrophic event that occurs at
random times distributed via a Poisson distribution with rate r [11]. This model for a > 0 sometimes goes by the
name of “partial resetting” [11–14]. For a = 0, this model reduces to the standard model of diffusion with stochastic
resetting defined in Eq. (1). For a = 1, clearly the post and pre-resetting positions are the same (thus effectively
there is no resetting) and the particle simply diffuses. For a > 1 the particle eventually escapes to ±∞. Thus there
is no stationary state for a ≥ 1 and the NESS exists only for 0 ≤ a < 1. In this range of a, the stationary position
distribution has been computed in several recent papers [11–15]. However, to the best of our knowledge, no result for
the MFPT exists for general a > 0. In all these studies on the “partial resetting” model above, the parameter a was
considered to be nonnegative a ≥ 0. However, in principle, one can study resetting for a < 0 also [15]. A negative
value of a means a partial resetting coupled with a reflection around the origin. It is clear that for a ≤ −1, there
is no stationary state and the stationary state exists only in the range −1 < a ≤ 0 [15]. However, the stationary
position distribution for −1 < a < 0 is not known explicitly. Furthermore, the MFPT has also not been studied for
−1 < a < 0. To summarize, for this partial resetting model with parameters −1 < a < +1, the position distribution
does become stationary at late times and is known explicitly only in the range 0 ≤ a < 1. The MFPT is essentially
unknown in the full range −1 < a < +1, except for a = 0. One interesting open question is whether this additional
parameter a can reduce the MFPT compared the standard a = 0 model of stochastic resetting.

In this paper, we revisit this problem and compute analytically the stationary position distribution in the full range
−1 < a < +1. Our results for 0 < a < +1 coincide with the known results, while the result for −1 < a < 0 is new.
Furthermore, we compute exactly the MFPT in the range 0 ≤ a < 1 and show that it increases as a increases from 0,
for any fixed r. This indicates that a positive value of the fraction a is not beneficial for the search of a target. For
−1 < a < 0, we show that the underlying nonlocal differential equation for the MFPT has a fundamentally different
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FIG. 1. Schematic trajectories of a rescaling random walk, as defined in Eq. (6) for 0 < a < 1 (left panel), −1 < a < 0 (middle
panel) and a > 1 (right panel). The orange part of the curves represents the purely diffusive part of the trajectory, while the
dashed vertical black lines correspond to long-range rescaling (resetting) moves. As shown in the text, the position distribution
of the walker becomes stationary only for −1 < a < 1, while it remains non-stationary at all times for |a| ≥ 1.

structure compared to the case 0 ≤ a < 1. Here we succeeded in finding an exact formula for the MFPT, but only
up to an unknown constant that can however be easily inferred from numerical simulations. With this numerically
determined constant we then have an exact formula for the MFPT. This solution shows that the MFPT actually
decreases when a decreases from 0, for fixed r. This means a negative value of the parameter −1 < a < 0, i.e.,
when the partial resetting gets coupled with a reflection, is more optimal than the simple resetting (a = 0). We also
performed numerical simulations and found a perfect agreement with our theoretical predictions.

The rest of this paper is organized as follows. In Section II, we compute the exact stationary position distribution
in the full range −1 < a < 1. In Section IIIA, we compute the exact MFPT in the range 0 ≤ a < 1, while in Section
III B we study the MFPT for −1 < a < 0. In Section IV, we provide details of numerical simulations. Finally, in
Section V we conclude with a summary and outlook, while some details are relegated to the Appendices.

II. NON-EQUILIBRIUM STEADY STATE

We consider the process x(t) evolving via the Langevin equation (6). Let Pr,a(x, t) denote the probability density
that the particle arrives at x at time t, starting from the origin x = 0 at time t = 0. One can easily deduce the
Fokker-Planck equation for Pr,a(x, t), valid for arbitrary a as follows. Suppose we increment the time from t to t+dt.
Then the evolution of Pr,a(x, t) can be expressed as

Pr,a(x, t+ dt) = (1− rdt)
〈
Pr,a(x−

√
2D dt ξ(t), t)

〉
ξ
+

r dt

|a|
Pr,a

(x
a
, t
)

, (7)

where the notation ⟨· · · ⟩ξ means an average over the instantaneous noise ξ(t), which is distributed via a Gaussian
with zero mean and unit variance. In Eq. (7), the first term denotes the diffusive move in time dt, which occurs with

probability 1− r dt (see Eq. (6)). If the particle has to reach x at time t+ dt, it must have been at x−
√
2D dt ξ(t)

at time t and one needs to average over all possible values of ξ(t). The second term denotes the resetting move that
brings the particle from x/a to x in time dt. This resetting move with probability r dt (see Eq. (6)). The factor
1/|a| is a Jacobian factor associated to the probability density Pr,a

(
x
a , t
)
in x. In the limit dt → 0, we expand the

first term in a Taylor series in
√
dt. Keeping terms up to order O(dt) and taking the limit dt → 0 one arrives at the

Fokker-Planck equation

∂Pr,a(x, t)

∂t
= D

∂2Pr,a(x, t)

∂x2
− rPr,a(x, t) +

r

|a|
Pr,a

(x
a
, t
)

. (8)

This equation is valid for all a and, for a ≥ 0, it was already derived in Refs. [11–13, 15]. By integrating it over x
from −∞ to +∞, one clearly sees that Eq. (8) conserves the normalization∫ ∞

−∞
Pr,a(x, t) dx = 1 . (9)

As mentioned in the introduction, the NESS exists only in the range |a| < 1. Assuming that the NESS exists, one
can obtain it by setting the left hand side (LHS) of Eq. (8) to zero. This gives

0 = D
d2Pr,a(x)

dx2
− rPr,a(x) +

r

|a|
Pr,a

(x
a

)
, |a| < 1 . (10)



4

 0.001

 0.01

 0.1

 1

-5 -4 -3 -2 -1  0  1  2  3  4  5

P(
x)

x

a=±0.3 analytic
a=±0.6 analytic
a=±0.9 analytic

a=0.3 numeric
a=0.6 numeric
a=0.9 numeric

a=-0.3 numeric
a=-0.6 numeric
a=-0.9 numeric

P r
,a

(x
)

x

FIG. 2. Plot of the steady-state probability density Pr,a(x) vs x for different values of the parameter a ∈ (−1, 1) and for
fixed r = 1 and D = 1. The analytical result in Eq. (17) is in perfect agreement with the results obtained from numerical
simulations.

Even though this is an ordinary differential equation, it is nonlocal in x and hence is nontrivial to solve. This type
of nonlocal equations have appeared in other contexts before, e.g., in the modelling of cell growth [16], in the growth
of clusters in a generalized Eden model on a tree [17] and also in the context of the discrete Ornstein-Uhlenbeck
processes [18, 19], etc. These works suggest to look for a solution of (10) in the form

Pr,a(x) =

+∞∑
n=0

cne
− 1

|a|n
√

r
D |x| , (11)

where cn are constants. Substituting this in Eq. (10) we obtain

0 =

+∞∑
n=0

(
r

|a|2n
cn − rcn +

r

|a|
cn−1

)
e−

1
|a|n

√
r
D |x| . (12)

Since Eq. (12) must hold for any x the prefactor to the exponential in the series must vanish for any n yielding the
recursion relation

cn

(
1

|a|2n
− 1

)
= − 1

|a|
cn−1 . (13)

Iterating the recursion in Eq. (13) we can express any cn in terms of c0 as

cn =
1

|a|n
c0∏n

k=1(1− |a|−2k)
. (14)

Using Eq. (14) in Eq. (11) we obtain

Pr,a(x) = c0

[
+∞∑
n=1

1

|a|n
1∏n

k=1(1− |a|−2k)
e−

1
|a|n

√
r
D |x| + e−

√
r
D |x|

]
, (15)

where we have separated out the n = 0 term. The only unknown constant c0 is then determined from the normalization
condition (9), giving

c−1
0 = 2

√
D

r

(
+∞∑
n=1

1∏n
k=1(1− |a|−2k)

+ 1

)
. (16)
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This gives the exact stationary position distribution

Pr,a(x) =
1

2

√
r

D

1[
1 +

∑+∞
n=1

1∏n
k=1(1−|a|−2k)

] (e−√ r
D |x| +

+∞∑
n=1

1

|a|n
1∏n

k=1(1− |a|−2k)
e−

1
|a|n

√
r
D |x|

)
. (17)

The stationary distribution is evidently symmetric around x = 0 and is plotted in Fig. 2 for three different values of
a, showing a perfect agreement with numerical simulations. In the limit a → 0, we recover the result in Eq. (2), as
expected. For 0 < a < 1, this solution already appeared in Refs. [12, 13], but for −1 < a < 0, we have not seen this
solution in the literature.

It is interesting to derive the asymptotic behaviors of Pr,a(x) for small and large x. The large x behavior is simple,
since the term containing the sum becomes subleading for large x. Hence, we get

Pr,a(x) ≃
1

2

√
r

D

1[
1 +

∑+∞
n=1

1∏n
k=1(1−|a|−2k)

] e−
√

r
D |x| , as |x| → ∞ . (18)

In contrast, the small x behavior turns out to be much more tricky. From the plot in Fig. 2, it seems to behave as
Pr,a(x) ∼ Pr,a(0) − bx2, as x → 0, i.e., the linear term in the small x expansion vanishes. Indeed, by expanding Eq.
(11) up to linear order in x, we get

Pr,a(x) ≃ Pr,a(0)−
√

r

D
|x|

∞∑
n=0

cn
|a|n

, (19)

where the coefficients cn’s are given in Eqs. (14) and (16). For the linear term to vanish, we must have the identity∑∞
n=0 cn/|a|n = 0. Using the explicit expressions for cn’s, this amounts to the identity valid for all 0 < |a| < 1

1 +

∞∑
n=1

1

|a|2n
1∏n

k=1(1− |a|−2k)
= 0 . (20)

We have numerically checked with Mathematica that it is indeed true for several values of 0 < |a| < 1. However, we
could not prove this nontrivial identity. For |a| > 1, the left hand side of Eq. (20) can be expressed as the inverse
of the Euler function, however we are not able to find an expression for it for 0 < |a| < 1. Proving this identity
remains an interesting number theoretical challenge. Thus, to summarize, the stationary distribution behaves as a
Gaussian distribution for small x, while having an exponential tail for large x. Similar asymptotic behaviors for
scaling functions also appeared in several models, e.g., in the time-dependent position distribution in models of
diffusing diffusivity [20–22], for particles driven by a resetting noise [23] and in certain experimental systems [24, 25].

III. MEAN FIRST PASSAGE TIME

For a diffusing particle starting at the origin in d = 1 and resetting stochastically to the origin with rate r, we have
seen in Eq. (3) that the MFPT T (0) is not only finite, but can also be optimised with respect to r. In this section,
we study whether the introduction of the additional parameter a, with |a| < 1, lowers the MFPT compared to the
a = 0 case.

We consider a particle in one-dimension, starting at x, and evolving via Eq. (6), with a target located at x = L.
Our goal is to compute the MFPT Tr,a,L(x) to find the target at L, starting at x. Eventually, for simplicity, we will
focus on the case x = 0, but for the moment we keep x arbitrary, since we will derive a backward Fokker-Planck type
differential equation for Tr,a,L(x), with x as a variable. To derive this equation, it is convenient to start with S(x, t)
denoting the survival probability of the target up to time t, i.e., the probability that the target is not found by the
particle up to time t. Consequently F (x, t) = −∂tS(x, t) denotes the first-passage time distribution to the target. The
MFPT is just the first moment of F (x, t), i.e.,

Tr,a,L(x) =

∫ +∞

0

dt

(
−∂S(x, t)

∂t

)
t =

∫ +∞

0

S(x, t)dt , (21)

where we performed an integration by parts and assumed that S(x, t)t → 0 as t → +∞ which can be checked a
posteriori. For the brevity of notations, we will omit the subscripts of the MFPT T (x) ≡ Tr,a,L(x). We now consider
the backward evolution equation for S(x, t). We consider a trajectory of duration t+dt, starting at x and evolving via
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Eq. (6). We split the interval [0, t+ dt] into two intervals [0,dt] and [dt, t+ dt]. During the first interval, the walker

diffuses to a new position x +
√
2D dt ξ(0) with probability 1 − r dt and with the complementary probability r dt, it

resets to a new position a x. Here ξ(0) denotes the initial random jump. During the second interval, the evolution
proceeds starting at the new position at the end of the first interval [0,dt]. Consequently, we can write

S(x, t+ dt) = (1− rdt)
〈
S(x+

√
2D dt ξ(0))

〉
ξ
+ r dt S (a x, t) . (22)

Taking the limit dt → 0, one arrives at the backward equation

∂S(x, t)

∂t
= D

∂2S(x, t)

∂x2
− rS(x, t) + rS(ax, t) . (23)

This equation is valid in the range x ∈ (−∞,+∞) with the absorbing boundary condition

S(x = L, t) = 0 , for all t ≥ 0 . (24)

This condition comes from the fact that if the particle starts exactly at x = L, it immediately finds the target
and hence the survival probability vanishes. Furthermore, as x → ±∞, the survival probability must remain upper
bounded by unity. The initial condition reads

S(x, t = 0) = 1 for all x ̸= L . (25)

Integrating Eq. (23) over t from 0 to ∞ and using the initial condition (25), we get, using Eq. (21), the backward
differential equation for T (x)

DT ′′(x)− rT (x) + rT (ax) = −1 , (26)

valid for x ∈ (−∞,+∞) with the absorbing boundary condition

T (L) = 0 . (27)

In addition, as x → ±∞, the MFPT T (x) can not diverge faster than ∼ x2, since diffusion is the slowest mode
of transport and the resetting can only reduce the MFPT. Once again, this ordinary second-order equation (26) is
nonlocal in x, making it nontrivial to solve. We will see below that the solution is actually very different for 0 ≤ a < 1
and −1 < a ≤ 0. We discuss the two cases separately in the two subsections below.

A. Positive rescaling: 0 ≤ a < 1

In this subsection, our goal is to calculate the MFPT T (0) starting from the origin for the case 0 ≤ a < 1. To
compute this, we need to solve the nonlocal backward differential equation (26) with T (x) denoting the MFPT starting
from the initial position x ≤ L. Upon finding the solution for T (x) for arbitrary x ≤ L, we will eventually set x = 0.
Since x = 0 ≤ L, we need to solve the differential equation only in the region x ≤ L and henceforth we will not
consider the case x > L. Note that the nonlocal term in Eq. (26) involves the location a x which always stays to the
left of L. Hence, the particle never jumps to the right of L and we just need to solve the differential equation for
x ≤ L. Since there is no known general method to solve such nonlocal equations, we try below a power series solution
in x and show that it leads to an exact solution. We substitute

T (x) =

+∞∑
n=0

bnx
n (28)

in Eq. (26) and solve recursively for the bn’s. This gives

−1 =

+∞∑
n=0

[Dbn+2(n+ 2)(n+ 1)− rbn + rbna
n]xn . (29)

This equation holds for any x ≤ L. Therefore setting x = 0 sets the first even constant

−1 = 2Db2 . (30)
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Then the remaining terms of the series must all vanish which leads to the following recursion relation

bn+2D(n+ 2)(n+ 1) = r(1− an)bn . (31)

Iterating Eq. (31) we can express any bn for n ≥ 1 as a function of b1 and b2

b2n =
2b2
(2n)!

( r

D

)n−1 n−1∏
j=1

(1− a2j) and b2n+1 =
b1

(2n+ 1)!

( r

D

)n n−1∏
j=0

(1− a2j+1) . (32)

Hence the only constants which are still undetermined are b1 and b0. Putting Eqs. (30), (32) and (28) together we
obtain

T (x) = b0 + b1

√
D

r

+∞∑
n=0

1

(2n+ 1)!

(√
r

D
x

)2n+1 n−1∏
j=0

(1− a2j+1)− 1

r

+∞∑
n=1

1

(2n)!

(√
r

D
x

)2n n−1∏
j=1

(1− a2j) . (33)

Note that in the n = 0 term of the sum multiplying b1, the product is interpreted as unity. Using the absorbing
boundary condition in Eq. (27) gives the first relation

b0 = −b1

√
D

r

+∞∑
n=0

1

(2n+ 1)!

(√
r

D
L

)2n+1 n−1∏
j=0

(1− a2j+1) +
1

r

+∞∑
n=1

1

(2n)!

(√
r

D
L

)2n n−1∏
j=1

(1− a2j) . (34)

Using Eq. (34) we can re-write Eq. (33) as

T (x) = b1

√
D

r

+∞∑
n=0

1

(2n+ 1)!

(√
r

D

)2n+1

(x2n+1 − L2n+1)

n−1∏
j=0

(1− a2j+1)

−1

r

+∞∑
n=1

1

(2n)!

(√
r

D

)2n

(x2n − L2n)

n−1∏
j=1

(1− a2j) . (35)

To simplify these expressions, we introduce the following compact notations

C1 = 1, C2 = 1, C2n =

n−1∏
j=1

(1− a2j) for n ≥ 2, C2n+1 =

n−1∏
j=0

(1− a2j+1) for n ≥ 1 (36)

and rescaled distances

β = L

√
r

D
, y = x

√
r

D
. (37)

In terms of these rescaled quantities, Eq. (35) simplifies to

T (x) = b1

√
D

r

+∞∑
n=0

C2n+1

(2n+ 1)!

(
y2n+1 − β2n+1

)
− 1

r

+∞∑
n=1

C2n

(2n)!

(
y2n − β2n

)
. (38)

We have already used the absorbing boundary condition at x = L. To fix the only unknown constant b1, we need to
investigate the other boundary when x → −∞. As mentioned earlier, the MFPT T (x) should not grow faster than
∼ x2 as x → −∞. We now show that this condition uniquely fixes the unknown constant b1.

To analyse T (x) in Eq. (38) in the limit x → −∞, we first note that
(
y2n+1 − β2n+1

)
∼ y2n+1 and similarly(

y2n − β2n
)
∼ y2n. Furthermore, for large |y| both sums in Eq. (38) are dominated by large n. Hence, we can replace

C2n+1 and C2n by their respective n → ∞ limits, i.e.,

lim
n→∞

C2n+1 =

∞∏
j=0

(1− a2j+1) , lim
n→∞

C2n =

∞∏
j=1

(1− a2j) . (39)

Therefore, to leading order for large |y|, we can take out the C-factors outside the sums and evaluate the sums
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Eq. (45) is in excellent agreement with the results of numerical simulations for different values of 0 ≤ a < 1. For a fixed a, the

MFPT T̃ (0), as a function of β, has a minimum at β = β∗(a).

explicitly to get

T (x) ≃
x→−∞

−b1

√
D

r

 ∞∏
j=0

(1− a2j+1)

 sinh (y) +
1

r

 ∞∏
j=1

(1− a2j)

 (cosh (y)− 1) . (40)

Thus, to leading order for large |x|, this expression diverges as T (x) ∼ exp{|y|} = exp
(√

r/D|x|
)
. Since this is not

allowed physically, the amplitude of this term must vanish. This fixes the constant b1 uniquely as

−b1

√
D

r
=

1

r

∏+∞
j=1(1− a2j)∏+∞

j=0(1− a2j+1)
=

1

r
Ra . (41)

where Ra is given by the ratio

R(a) =
limn→+∞ C2n

limn→+∞ C2n+1
=

∏+∞
j=1(1− a2j)∏+∞

j=0(1− a2j+1)
. (42)

Thus the final expression for the MFPT T (x), in terms of the rescaled coordinates (37), reads

T

(
x = y

√
D

r

)
=

1

r

[
R(a)

+∞∑
n=0

C2n+1

(2n+ 1)!
(β2n+1 − y2n+1) +

+∞∑
n=1

C2n

(2n)!
(β2n − y2n)

]
. (43)

Setting x = 0 we obtain the MFPT for a random walk starting at the origin to reach a target at L

T (0) =
1

r

[
+∞∑
n=1

C2n

(2n)!
β2n +R(a)

+∞∑
n=0

C2n+1

(2n+ 1)!
β2n+1

]
, (44)

with R(a) defined in Eq. (42). Furthermore, one can also define a dimensionless MFPT T̃ (0) = DT (0)/L2, that

depends only on two dimensionless parameters: a and β = L
√

r/D, which reads

T̃ (0) =
1

β2

[
+∞∑
n=1

C2nβ
2n

(2n)!
+R(a)

+∞∑
n=0

C2n+1β
2n+1

(2n+ 1)!

]
. (45)

For fixed a, the asymptotic behaviors of T̃ (0) for small and large β are given by
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FIG. 4. Left: The optimal value β∗(a), at which T̃ (0) achieves its minimum as a function of β for a fixed a, plotted as a

function of a for 0 ≤ a < 1. Right: The optimal MFPT Topt(a), i.e., T̃ (0) evaluated at β = β∗(a), plotted as a function of
0 ≤ a < 1.

T̃ (0) ≃


R(a)/β when β ≪ 1

eβ

β2

+∞∏
j=1

(1− a2j) when β ≫ 1 .
(46)

The small β asymptotics is easy to obtain from Eq. (45) where the n = 0 term contributes to the dominant order
for small β, leading to the first line in Eq. (46). To derive the large β behavior in the second line of Eq. (46), we
note that the sums in Eq. (46) are dominated by the large values of n where both C2n and C2n+1 converge to the
asymptotic values [see Eq. (36)]

C2n −→
n→∞

∞∏
j=1

(1− a2j) , C2n+1 −→
n→∞

∞∏
j=0

(1− a2j+1) . (47)

Substituting these behaviors in Eq. (45) and using (46), we get the second line of Eq. (46). Thus we see that, as a

function of β for fixed a, the MFPT T̃ (0) diverges in both limits β → 0 and β → ∞. Thus, it indicates that it may
have a unique minimum at β = β∗(a). Indeed, the analytical result in Eq. (45) can easily be plotted and it shows a
unique minimum (see Fig. 3). This minimum β∗(a) can easily be determined by setting the derivative of Eq. (45)
with respect to β to zero and determining the root using Mathematica. This optimal value β∗(a), as a function of a,

is shown in the left panel of Fig. 4. Finally, the optimal value Topt(a) of the MFPT, i.e., T̃ (0) evaluated at β = β∗(a),
is plotted as a function of a in the right panel of Fig. 4. Clearly, one sees that Topt(a) is a monotonically increasing
function of a in the range a ∈ [0, 1].

Small a expansion. For small a, one can make an explicit analysis. Expanding Eq. (45) to linear order for small a,
we get

T̃ (0) ≃ 1

β2

[
eβ − 1 + aβ +O(a2)

]
when a ≪ 1 . (48)

Note that for a = 0, we perfectly recover the known result stated in Eq. (3). In fact, this result in Eq. (48) for small
a can also be derived directly from the differential equation (26) by making an expansion for small a, as shown in
Appendix A. Thus, for fixed β, as a increases from 0, the MFPT also increases. Taking a derivative of Eq. (48) with
respect to β and setting it to zero, we get the optimal β∗(a) to linear order in a

β∗(a) = β∗(0) + a
β∗(0)

β∗(0)− 1
e−β∗(0) +O(a2) = 1.59362 . . .+ a 0.54547 . . .+O(a2) , (49)

where β∗(0) = 1.59362 . . . is the optimal value of β for a = 0. Thus as a increases from 0, the optimal β∗(a) increases
for small a, which is consistent with the result shown in the left panel of Fig. 4. Subsequently, the optimal MFPT
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FIG. 5. For −1 < a ≤ 0, the nonlocal differential equation (51) needs to be solved in different segments that are interconnected.
The segment I denotes the region x ∈ [−L/|a|, L], the segment II denotes the region [−L/|a|2,−L/|a|] and the segment III
denotes the region [L,L/|a|].

Topt(a), up to linear order in a, reads

Topt(a) = Topt(0) + a
[β∗(0)]2 − 2(1− e−β∗(0))

[β∗(0)]2(β∗(0)− 1)
+O(a2) = 1.54413 . . .+ a 0.627500 . . .+O(a2) . (50)

Therefore, as a increases from 0, the optimal MFPT increases linearly with a for small a, consistent with the results
reported in the right panel of Fig. 4.

Thus, in conclusion, introducing a positive value of the rescaling parameter a does not improve the efficiency of
the search process, since Topt(a) increases with an increasing positive a. In the next subsection, we will see that the
situation is drastically different for −1 < a ≤ 0. In this case, the optimal MFPT with −1 < a ≤ 0 is lower than its
value at a = 0.

B. Negative rescaling: −1 < a ≤ 0

In this subsection we consider the complementary case −1 < a ≤ 0. Once again, we need to solve the differential
equation (26) for T (x) and eventually set x = 0. However, contrary to the case 0 ≤ a < 1 discussed in the previous
subsection, for −1 < a ≤ 0, solving the nonlocal differential equation (26) is much more complicated. To see why, we
first rewrite Eq. (26) for −1 < a ≤ 0 as

−1 = DT ′′(x)− rT (x) + rT (−|a|x) . (51)

We still have the boundary conditions T (L) = 0 and the fact that T (x) should not grow faster ∼ |x|2 as x → ±∞.
To solve this nonlocal equation (51) at a given point x, the source term rT (−|a|x) comes from the point −|a|x.
Consequently, one needs to separate the full line into different segments, as shown in Fig. 5. First, we note that, if
−L/|a| ≤ x ≤ L (segment I in Fig. 5), the source point −|a|x also belongs to this segment. Thus, the segment I closes
onto itself. However, we have only one known boundary condition T (L) = 0 and have no information on the MFPT
at the other edge at x = −L/|a|. For the moment, let us denote this value by κ > 0. In other words, the Eq. (51) in
segment I satisfies the boundary conditions

T (L) = 0 and T (−L/|a|) = κ , (52)

where κ is unknown. To determine κ, we need to solve Eq. (51) in segment II, where −L/|a|2 ≤ x ≤ −L/|a|. However,
for x belonging to this segment II, the source point −|a|x belongs to the segment III in Fig. 5 where x ∈ [L,L/|a|].
Thus the solution in segment II requires the solution from segment III and this mechanism continues till one arrives
at x = ±∞. Thus this breaks the whole line into different segments. In Fig. 5, for simplicity, we show only three of
them. Hence we have to iteratively solve (51) in each segment in order to use the boundary condition as x → ±∞.
This makes the problem much more complicated to solve. However we see that the segment I is “closed” onto itself
(i.e., it does not involve other segments), and the full function T (x) for −L/|a| ≤ x ≤ L can be fully determined,
but up to only one unknown constant κ representing the MFPT at −L/|a|. Hence our strategy would be to first
analytically solve Eq. (51) in segment I, i.e., for −L/|a| ≤ x ≤ L with κ as a given parameter and then use the value
of κ obtained from numerical simulations. This will fully determine T (x) in segment I and since the origin belongs to
that segment, we can set x = 0 to find T (0). Below, we derive the solution T (x) in terms of κ.
We note that to solve T (x) in segment I, i.e., for −L/|a| ≤ x ≤ 0, with −1 < a ≤ 0, the procedure is identical as
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for T̃ (0). For a fixed a, the MFPT T̃ (0), as a function of β, has a minimum at β = β∗(a).

in the previous subsection, i.e., we try a series expansion as in Eq. (28). Following exactly the same steps that led to
the result in Eq. (35), we obtain

T (x) = b1

√
D

r

+∞∑
n=0

1

(2n+ 1)!

(√
r

D

)2n+1

(x2n+1 − L2n+1)

n−1∏
j=0

(1 + |a|2j+1)

−1

r

+∞∑
n=1

1

(2n)!

(√
r

D

)2n

(x2n − L2n)

n−1∏
j=1

(1− |a|2j) , (53)

where we used the boundary condition T (x = L) = 0. We now use the other boundary condition T (−L/|a|) = κ.
This gives

κ = T (−L/|a|) = b1

√
D

r

+∞∑
n=0

C2n+1

(2n+ 1)!

(√
r

D
L

)2n+1

(−1/|a|2n+1 − 1)− 1

r

+∞∑
n=1

C2n

(2n)!

(√
r

D
L

)2n

(1/|a|2n − 1) , (54)

where the coefficients Cn’s are the same as in Eq. (36). The unknown constant b1 is then determined by solving
Eq. (54). To express this solution in a more compact form, it is convenient to introduce two functions

feven(x) =

+∞∑
n=1

C2n

(2n)!
x2n and fodd(x) =

+∞∑
n=0

C2n+1

(2n+ 1)!
x2n+1 . (55)

Then solving Eq. (54) for b1 we get

b1 = −
√

r

D

rκ+ feven

(√
r
D

L
|a|

)
− feven

(√
r
DL
)

rfodd

(√
r
D

L
|a|

)
+ rfodd

(√
r
DL
)
 . (56)

Substituting this expression for b1 in Eq. (53) we obtain the full MFPT T (x) in segment I (i.e., for x ∈ [−L/|a|, L])
for the case −1 < a ≤ 0 as

T (x) =
feven

(√
r
DL
)
− feven

(√
r
D

L
|a|

)
− rκ

rfodd

(√
r
D

L
|a|

)
+ rfodd

(√
r
DL
) [

fodd

(√
r

D
x

)
− fodd

(√
r

D
L

)]

−1

r

[
feven

(√
r

D
x

)
− feven

(√
r

D
L

)]
. (57)



12

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

-0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1

β

 a

analytic data
numeric data

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

-0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1

T~   (
0)

 a

analytic data
numeric data

a a

β*
(a

)

T o
pt

(a
)

FIG. 7. Left: The optimal value β∗(a), at which T̃ (0) achieves its minimum as a function of β for a fixed a, is shown for few

values of a, for −1 < a ≤ 0. Right: The optimal MFPT Topt(a), i.e., T̃ (0) evaluated at β = β∗(a), for the same values of
−1 ≤ a < 1, as in the left panel. Unlike for 0 ≤ a < 1 in Fig. 4, we do not show a continuous theoretical curve of β∗(a) vs a
because, for −1 < a ≤ 0, for each value of a, we need to take κ as an input from numerical simulations and this is done only
for few select values of a. The right panel shows that the optimal MFPT Topt(a), as a function of a, decreases compared to
a = 0. Thus a negative value of a clearly reduces the optimal MFPT.

Setting x = 0 we obtain the MFPT for a walker starting from the origin to reach a target at L

T (0) =
1

r

1

fodd

(√
r
D

L
|a|

)
+ fodd

(√
r
DL
) [feven(√ r

D
L

)
fodd

(√
r

D

L

|a|

)
+ fodd

(√
r

D
L

)(
rκ+ feven

(√
r

D

L

|a|

))]
.

(58)

As before, it is convenient to define the dimensionless MFPT T̃ (x) = DT (x)/L2, and in particular, the unknown
boundary value

T̃ (−L/|a|) = Dκ

L2
. (59)

The dimensionless MFPT T̃ (0) = DT (0)/L2 can then be expressed as a function of two dimensionless parameters

−1 < a ≤ 0 and β = L
√
r/D and the unknown boundary value T̃ (−L/|a|) in Eq. (59), leading to

T̃ (0) =
1

β2

feven(β)fodd(β/|a|) + fodd(β)
(
β2T̃ (−L/|a|) + feven(β/|a|)

)
[fodd (β/|a|) + fodd(β)]

. (60)

Thus the only unknown factor in the exact solution in Eq. (60) is the single number T̃ (−L/|a|) = Dκ/L2. As
explained in the beginning of this subsection, there is no simple way to determine this unknown boundary value κ
without solving for T (x) on the full line, which is rather cumbersome unfortunately. Hence our strategy is to use the

numerical value of T̃ (−L/|a|) obtained from simulations and then compare the analytical solution for T̃ (0) in Eq. (60)

with the numerical answer for T̃ (0), for different values of the parameters β and a. This is reported in Fig. 6, where

we see a perfect agreement between the analytical T̃ (0) (with κ as a numerical input) and the value of T̃ (0) obtained
from simulations for different β and −1 < a ≤ 0.

Having fixed this only unknown κ from the simulations, we have access to the full analytical formula for T̃ (0) as

a function of β, for different values of −1 < a ≤ 0. As seen from Fig. 6, the MFPT T̃ (0) exhibits a minimum at
β = β∗(a). This optimal value β∗(a) is plotted as a function of −1 < a ≤ 0 in the left panel of Fig. 7. Finally, the

optimised MFPT Topt(a) (i.e., T̃ (0) evaluated at β = β∗(a)) is plotted as a function of −1 < a ≤ 0 in the right panel
of Fig. 7. Contrary to the case 0 ≤ a < 1, we see that, for −1 < a ≤ 0, the optimal MFPT decreases from its value
at a = 0 as a decreases. This indicates that, a negative −1 < a ≤ 0 actually expedites the search process compared
to the a = 0 case, i.e., the standard resetting to the origin.

As in the case of 0 ≤ a < 1, one can perform a small a expansion of T̃ (0) in Eq. (60) which, fortunately, does not

require the knowledge of the unknown κ. Indeed, in the a → 0 limit, the term β2T̃ (−L/|a|) ≪ feven(β/|a|) on the
right hand side of Eq. (60). This is due to the fact that feven(β/|a|) ∼ eβ/|a| as a → 0 – this follows from Eq. (55)

since C2n → 1 as a → 0. In contrast, the term β2T̃ (−L/|a|) can not grow faster than L2/|a|2 as a → 0 (this follows
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from the boundary condition at x → −∞ discussed earlier). Consequently, neglecting β2T̃ (−L/|a|) on the right hand
side of Eq. (60) and taking the a → 0 limit in the functions feven and fodd, we arrive at

T̃ (0) =
1

β2

[
eβ − 1− |a|β

]
when |a| ≪ 1 . (61)

In fact, as in the 0 ≤ a < 1 case, this result for small |a| can also be derived directly from the differential equation
(26), as shown in Appendix A. Indeed, the result in Eq. (61) is identical to Eq. (48) with a replaced by −|a| and
hence this small a expansion for the whole range −1 < a < 1 reads the same as (48). Consequently the analysis
presented in (49) and (50) also holds for small negative a as well.

IV. NUMERICAL SIMULATIONS

To verify the analytical results for the MFPT discussed above, we use numerical simulations (for a pedagogical
account see Ref. [26]). For the sake of simplicity we set the diffusion constant to D = 1. The naive way to simulate the
rescaling random walker is by just numerically iterating Eq. (1) with an appropriate time step dt. To begin with, we
apply a relatively large step size of dt = 1. For this purpose, we start the walk at position x(t = 0) = x0 (in our case
either x0 = 0 or x0 = −L/|a|). Also, we draw the first duration tr until rescaling from the exponential distribution
with rate r. This means [26], we draw a random number q uniformly distributed in [0, 1] and set tr = − log(1− q)/r.
Then we simulate our walker by always using the step size of dt, except for the case the rescaling event will happen
after the current time t but before the next considered time t + dt. In this case, the time step is t + dt − tr. For a
scaling event, we multiply the position x with a after said motion step was performed and draw a new duration until
rescaling.

This process is continued until the target, located at x = L, is reached. This means, for the given time resolution,
the target is crossed between two consecutive positions. Thus, it is tested whether the walker changes its relative
position with respect to x = L, i.e., (L − x(t))(L − x(t + dt)) < 0 holds, but only for the case no rescaling happens
between the times t and t+ dt. The first-passage time (FPT) obtained this way could be averaged over independent
runs. However, this will systematically overestimate the MFPT, since for any two consecutive points of the sequence,
i.e., [x(t), x(t + dt)], there is a finite chance that the walker reached the target in between, even if both points are
below or both are above L. In fact, this probability is given by (see Appendix B)

ppass(x(t+ dt), x(t),dt, L) = min

(
1, exp

(
−(L− x(t))(L− x(t+ dt))

dt

))
. (62)

This systematic error can be reduced by using smaller step sizes dt, but this quickly becomes unfeasible due to the
increase in required computational effort. Instead we can apply an approach which is based on iteratively refining parts
of the walk which might involve a first passage [27]. The main idea is to successively refine intervals [x(t), x(t+ dt)]
by sampling an intermediary point x

(
t+ dt

2

)
with the correct statistics. This can be done via so-called generalized

Brownian bridges, which are, for the discrete-time case, random walks x̂(t) between two specified points, initially
x̂(ti) = xi and finally x̂(tf ) = xf . Such a Brownian bridge with discrete steps can be obtained by first generating a
standard random walk x̃(t) with initial condition x̃(ti) = 0 and then setting [28]

x̂(t) = xi + x̃(t)− t− ti
tf − ti

(x̃(tf )− (xf − xi)) (ti ≤ t ≤ tf ) . (63)

Clearly, x̂(ti) = xi and x̂(tf ) = xf as required, and one can show that x̂(t) has the correct statistics. Here, we are
interested in a Brownian bridge for the case ti ≡ t, tf ≡ t + dt, xi ≡ x(t), xf ≡ x(t + dt) and obtaining just the
position for time t+ 1

2dt. Thus, to generate the desired bridge, we need an auxiliary two-step random walk x̂(t) with

step size 1
2dt, which we write as

x̂ (dt/2) = η1
√
dt ≡ m1 (64)

x̂ (dt) = m1 + η2
√
dt ≡ m2 , (65)

where η1 and η2 are independent centered unit-variance Gaussian random variables. By inserting Eqs. (64) and (65)
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into Eq. (63) one obtains

x

(
t+

dt

2

)
= x(t) +m1 −

1

2
(m2 − (x(t+ dt)− x(t))) . (66)

The main idea of the algorithm is now to first sample the rescaling random walker with a rather large step size,
e.g., dt = 1, and then refine the obtained walk by applying (66) in intervals where the probability that the target was
reached in between, given by (62), is larger than some threshold θ ≪ 1. Here we typically used a value of θ = 10−10,
only for few test cases smaller values down to θ = 10−30. In Appendix C, we present the approach with a higher level
of detail by stating two algorithms. The first algorithm is used to generate the initial walk and setting up a queue with
tentative time-and-space intervals which are possibly refined. The second algorithm then iteratively takes intervals
from the queue, refines them if needed, resulting in new smaller intervals, and removes from the queue intervals which
are beyond the so-far detected FPT.

V. CONCLUSION

In this paper, we have studied a simple model of a diffusive particle on a line, undergoing a stochastic resetting with
rate r, via rescaling its current position by a factor a. For the case |a| < 1, the system approaches a nonequilibrium
stationary state at long times where the position distribution becomes stationary. We have computed this position
distribution analytically and verified it numerically for all |a| < 1. The stationary position distribution in this case is
symmetric with an exponential tail for large argument |x|, while having a Gaussian shape near its peak at x = 0. We
also studied the mean first-passage time (MFPT) T (0) to a target located at a distance L from the initial position (the
origin) of the particle. While it is easy to write a backward differential equation for T (x) (denoting the MFPT starting
from the initial position x), this equation is hard to solve since it is nonlocal in space. Nevertheless, for 0 ≤ a < 1, we
managed to obtain an exact analytical expression for T (0) and showed that, while it has a minimum at an optimal
value r∗, the corresponding optimal MFPT increases with a for a ∈ [0, 1), indicating that a positive rescaling (a > 0)
is not beneficial for the search of the target, compared to the standard resetting to the origin (a = 0). In contrast, for
a ∈ (−1, 0], we have shown that the optimal MFPT decreases as a decreases compared to a = 0, demonstrating that
rescaling by a negative factor, i.e., a rescaling followed by a reflection around the origin, is a better search strategy
than the standard resetting to the origin.

There are several interesting directions in which one can extend this work. For instance, it would be interesting to
study the position distribution and the MFPT for this rescaling-diffusive process in two or higher dimensions. Another
interesting question is what happens to the position distribution when one switches on an external confining potential
U(x)? Furthermore, this rescaling-resetting process may also be studied for non-diffusive stochastic processes, such
as Lévy walks [13] and for active run-and-tumble particles [31–33].
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Appendix A: Expansion for small a

We start from Eq. (26). For small a, we expand the nonlocal term T (a x) up to linear order in a, giving

T (a x) ≈ T (0) + a xT ′(0) +O(a2) , (A1)

where T (0) and T ′(0) are yet to be determined. Substituting this expansion in Eq. (26) reduces the nonlocal equation
to an ordinary local second order differential equation but with inhomogeneous unknown terms that need to be
determined self-consistently. This equation reads

DT ′′(x)− r T (x) = −1− r T (0)− a r T ′(0)x . (A2)



15

x1

x2
L

T
FIG. 8. A schematic trajectory of a Brownian motion propagating from x1 to x2 in time T . We calculate below the conditional
probability that the walker passes through the level L given that it has reached x2 at time T .

This equation needs to be solved in the region x ̸= L, with the boundary conditions T (L) = 0 and that T (x) does
not grow faster than ∼ x2 as x → −∞. Performing the shift

T (x) =
1 + r T (0) + a r T ′(0)x

r
+W (x) , (A3)

gives a homogenous differential equation for W (x)

DW ′′(x)− rW (x) = 0 . (A4)

The only acceptable solution that does not grow faster than ∼ x2 as x → −∞ is given by W (x) = Ae
√

r/D x where
A is yet to be determined. Thus one has the full solution

T (x) =
1 + r T (0) + a r T ′(0)x

r
+Ae

√
r/D x . (A5)

The boundary condition T (L) = 0 fixes the constant A and we get

T (x) =
1 + r T (0) + a r T ′(0)x

r
− 1 + r T (0) + a r T ′(0)L

r
e
√

r/D (x−L) . (A6)

Taking a derivative with respect to x gives

T ′(x) = a T ′(0)−
√

r

D

1 + r T (0) + a r T ′(0)L

r
e
√

r/D (x−L) . (A7)

Setting x = 0 in Eqs. (A6) and (A7) gives two self-consistent linear equations for the two unknowns T (0) and T ′(0).

Solving this, trivially, we get, for the dimensionless MFPT defined as T̃ (0) = DT (0)/L2

T̃ (0) ≃ 1

β2

[
eβ − 1 + aβ +O(a2)

]
, as a → 0 , (A8)

which clearly holds for both positive and negative a.

Appendix B: Crossing probability

We consider a one-dimensional Brownian motion propagating from x1 to x2 in time T . The Brownian propagator,
i.e., the probability density to reach x2 at time T , starting from x1, is given by

G0(x2, T |x1, 0) =
1√

4πD T
exp

{(
− (x2 − x1)

2

4DT

)}
. (B1)
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We want to calculate the probability that the walker passes through x = L, given that it has reached x2 at time T .
We assume x1 ≤ L. Clearly, if x2 ≥ L, this conditional probability is just one, since the particle has to cross the
level x = L in order to reach x2 ≥ L. Now consider the complementary case where x2 < L. To compute the passing
probability in this case, it is convenient instead to compute the conditional survival probability, i.e., the probability
S(x2, T |x1, 0) that the particle does not cross (survive) the level L, given that it reached x2 < L at time T . For
this purpose, we consider unconditioned survival probability S0(x2, T |x1, 0), i.e. that the walker survives and reaches
position x2 at time T . It can be computed by solving the diffusing equation for x < L with an absorbing boundary
condition at x = L [29, 30]. The solution can be easily obtained by the method of images [29, 30] and it reads

S0(x2, T |x1, 0) =
1√

4πDT

(
e−(x2−x1)

2/(4DT ) − e−(2L−x2−x1)
2/(4DT )

)
. (B2)

The conditional survival probability is then given by the ratio

S(x2, T |x1, 0) =
S0(x2, T |x1, 0)

G0(x2, T |x1, 0)
= 1− e−(L−x1)(L−x2)/(DT ) . (B3)

Hence the passing probability ppass(x2, x1, T, L) is given by the complement

ppass(x2, x1, T, L) = 1− S(x2, T |x1, 0) = e−(L−x1)(L−x2)/(DT ) , for x2 < L . (B4)

Hence, considering both cases x2 ≥ L and x2 < L, the passing probability can be written in a compact form

ppass(x2, x1, T, L) = min

(
1, exp

(
− (L− x1)(L− x2)

DT

))
. (B5)

Setting x2 = x(t+ dt), x1 = x(t), T = dt and D = 1 gives Eq. (62) in the main text.

Appendix C: Detailed algorithm

The algorithms we applied work in detail as follows.
The algorithms maintain a queue of time-and-space intervals. Only those intervals are stored which with high-enough

probability contain a crossing of the target x = L. The elements of the queue are stored as [x(t), x(t+dt), t, dt, depth],
ordered by increasing times t. The time span of the interval for the initial queue is usually given by the global value
dt, here dt = 1. But the initial queue will also contain some intervals with smaller time spans which appear just
before the rescaling events. Furthermore, for the queue of initial intervals, the depth is always 0. During bisection,
i.e., whenever an interval is split into two sub intervals later on, the depth is increased by one.

The algorithms have two global parameters. First, θ states the probability threshold of missing a crossing of the
target, actually at least a double crossing. We also use a parameter ω which is the maximum number of splits allowed
on any of the initial intervals, i.e., the maximum depth. This is needed because for the interval which contains our
target L, (62) will yield 1 and thus the algorithm would never finish without the criterion based on the number of
splits.

The pseudo code of the algorithms can be found below. First, the initial queue is calculated via algorithm 1. Its
main loop, which runs until the target at x = L is found at the given time resolution dt, contains of two parts. In the
first part, steps of size dt are performed and intervals containing a passage with high enough probability are added
to the queue. This part runs until a rescaling occurs. Next, the second part of the loop advances the walk one step
until the actual rescaling time, i.e. for a smaller time than dt. Next, the rescaling is performed and the main loop
continues.

The interval in which the estimated first passage occurs, depending on the threshold probability θ, is obtained by
algorithm 2. Here, iteratively intervals are taken from the queue and split. Note that whenever an interval contains a
crossing of the target x = L, all intervals with higher time in the queue can be removed. The two halves are treated.
If the first half contains x = L, this half will be put in the queue for later consideration, if the depth is not too large,
the second half can be discarded. If only the second half contains x = L, it will be put into the queue. Technically,
this happens in the last part of the loop by checking pcross, because pcross = 1 holds in this case. Here, also the first
halve of the interval is added to the queue if the probability pcross > θ, because it still might contain the first passage
with high enough probability. If for none of the two halves a crossing of x = L is detected so far, each half will be
further considered only if pcross is large enough, respectively.
After algorithm 2 is finished, the actual FPT can now either be interpolated from the interval containing the passage

event, or one can just take the stored time value directly, since dt will usually be very very small. This is the case at
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least for the parameters ω = 100 and θ = 10−10 we usually applied.
To calculate the MFPT we can now average over an appropriate number of samples.

Algorithm 1: Initialize queue for bisection

input : x0, r, a, L, θ
output: queue, fpt interval estimate
begin

t = 0;
dt = 1; // you can use other step sizes here
tr = draw random number from exponential distribution with rate r;
current x = x0;
Initialize queue; // Creates a variable for a yet empty queue
Initialize fpt interval estimate; // stores interval of the first passage
while true do

while t+ dt < tr; // advance walk without rescaling
do

η = draw zero-mean unit-variance Gaussian random variable;

next x = current x + η
√
2 dt;

if pcross(current x, next x, dt, L) > θ ; // see Equation 62
then

put [current x, next x, t, dt, 0] at the end of queue;
if [current x, next x] contains L then

fpt interval estimate = [current x, next x, t, dt];
return queue, fpt interval estimate

end

end
t += dt;
current x = next x;

end
rest time = tr − t; // advance walk to next rescaling
η = draw zero-mean unit-variance Gaussian random variable;

next x = current x + η
√
2 rest time;

if pcross(current x, next x, dt, L) > θ; // see Equation 62
then

put [current x, next x, t, rest time, 0] at the end of queue;
if [current x, next x] contains L then

fpt interval estimate = [current x, next x, t, rest time];
return queue, fpt interval estimate

end

end
t += rest time;
current x = a ∗ next x;
tr = draw random number from exponential distribution with rate r;
tr += t;

end

end
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Algorithm 2: Refine first passage time by bisections

input : L, θ, ω, queue, fpt interval estimate
output: fpt interval
begin

fpt interval = fpt interval estimate;
while queue not empty do

[x1, x2, t, dt, depth] = queue.pop(); // take front element from queue
η1 = draw zero-mean unit-variance Gaussian random variable;
η2 = draw zero-mean unit-variance Gaussian random variable;

m1 = η1
√
dt;

m2 = m1 + η2
√
dt;

mid = x1 +m1 − 0.5(m2 − (x2 − x1));
if [x1, mid] contains L then

clear queue; // all later intervals discarded
fpt interval = [x1, mid, t, dt/2];
if depth + 1 < ω then

put [x1, mid, t, dt/2, depth+1] in queue
end
continue; // jump to beginning of while loop

end
if [mid, x2] contains L then

clear queue; // all later intervals discarded
fpt interval = [mid, x2, t+ dt/2, dt/2]; // is put in queue below

end
if depth + 1 < ω then

/* Note: If L ∈ [mid, x2] then p(mid, x2, dt/2, L)=1 */
if pcross(mid, x2, dt/2, L)> θ; // see Equation 62
then

put [mid, x2, t+dt/2, dt/2, depth+1] at front of queue;
end
if pcross(x1, mid, dt/2, L)> θ then

put [x1, mid, t, dt/2, depth+1] at front of queue;
end

end

end
return fpt interval

end
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