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The pivotal quality of proximity graphs is connectivity, i.e., all nodes in the graph are connected to one another
either directly or via intermediate nodes. These types of graphs are often robust, i.e., they are able to function well
even if they are subject to limited removal of elementary building blocks, as may occur for random failures or
targeted attacks. Here, we study how the structure of these graphs is affected when nodes get removed successively
until an extensive fraction is removed such that the graphs fragment. We study different types of proximity graphs
for various node-removal strategies. We use different types of observables to monitor the fragmentation process,
simple ones like the number and sizes of connected components and more complex ones like the hop diameter
and the backup capacity, which is needed to make a network N − 1 resilient. The actual fragmentation turns
out to be described by a second-order phase transition. Using finite-size scaling analyses we numerically assess
the threshold fraction of removed nodes, which is characteristic for the particular graph type and node deletion
scheme; this suffices to decompose the underlying graphs.

DOI: 10.1103/PhysRevE.94.062125

I. INTRODUCTION

Robustness describes the ability of networks to withstand
random failures and targeted attacks. This quantity is of
particular importance for many real-world networks, which
are crucial for the proper functioning of modern human
societies. This means that these networks must work well
even if some network components malfunction. Examples are
electrical power grids [1], urban road networks [2], airline
networks [3], and communication networks like the Internet
[4].

In the last decade, various studies have been published
that focus on networks which exhibit a scale-free degree
distribution. In particular, the fragmentation properties of
scale-free Barabási-Albert (BA) networks [5–10] and other
variants [11–15] have been subjected to scrutiny. In the
aforementioned articles, different node-removal strategies
have been considered to investigate the robustness of the
considered networks. It turns out that scale-free networks are
robust against random node removals but very vulnerable to
intentional attacks targeting particularly “important” nodes.
Note that there are many local and global measures to quantify
whether a node is important. Popular choices are, e.g., the
degree of a node, its betweenness centrality [16] (subject to
a particular metric used to measure the length of the shortest
paths between pairs of nodes), or, somewhat more specific
to the hyperlink structure of the Internet, the PageRank [17]
relevance measure for Web pages.

In the presented work we focus on types of networks which
are completely different from scale-free graphs. The networks
considered here are constructed from sets of points distributed
in the two-dimensional (2D) Euclidean plane. Therefore,
they are particularily suited to model networks which are
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physically embedded on the earth’s surface, like road net-
works, power grids, water pipelines, and grids of antennas for
mobile phones.

More precisely, we consider four types of networks. Three
of them belong to the class of proximity graphs, namely,
relative neighborhood graphs (RNGs) [18], Gabriel graphs
(GGs) [19], and Delaunay triangulations (DTs) [20]. These
are graphs where pairs of nodes are connected by undirected
edges if they are considered to be close in some sense;
see the definitions in Sec. II. Also, these graphs are planar
[21], i.e., the edges do not cross. The fourth network type
is a certain type of geometric random graph, termed a
minimum-radius (MR) graph, where each pair of nodes is
connected if their mutual distance does not exceed a particular
threshold value. Therefore, these graphs are also embedded
in a finite-dimensional space but they are usually not planar.
Thus, in contrast to the other three types, the MR graph is not
a proximity graph.

Proximity graphs extract the relevant structure of point
sets, thus they find application in fields where the structure
of an associated point set is important. Several applications
such as pattern recognition and computer vision are reviewed
in [18]. Furthermore, they have been studied in scientific
fields such as the simulation of epidemics [22], percolation
[23–26], and message routing and information dissemination
in ad hoc networking [27–30]. To elaborate on the latter point,
proximity graphs find application in the construction of planar
“virtual backbones” for ad hoc networks, i.e., collections of
radio devices without a fixed underlying infrastructure, along
which information can be efficiently transmitted [27,31–34].
Routing with guaranteed node-to-node connectivity (at least
in a multihop manner) is especially important to ensure a
complete broadcast of information in ad hoc networks [27].
Malfunction of some network components might lead to a
drastic decrease in its functionality, e.g., when node-to-node
connectivity gets lost, so we find it interesting to determine
the stability of those networks regarding different kind of
breakdowns.
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Here, we consider three types of node-removal strategies
with different levels of severity (see Sec. III), and we
numerically assess the threshold fraction of removed nodes
(characteristic for the particular graph type and node deletion
scheme), which suffices to decompose the underlying graphs
into “small” clusters.

The remaining article is organized as follows. In Sec. II
we introduce the four graph types that are considered in
the presented study. In Sec. III we describe the three node-
removal strategies that were used in order to characterize
the fragmentation process for each of these graph types. In
Sec. IV we introduce the observables that were recorded
during the fragmentation procedure and we list the results
of our numerical simulations. Finally, Sec. V concludes with
a summary.

II. GRAPH TYPES

Subsequently we introduce four types of graphs for a planar
set of, say, N points and we characterize the fragmentation
process in each of these graph types following three node-
removal strategies, detailed in Sec. III. Three of these graph
types, introduced in Secs. II A through II C, belong to the class
of proximity graphs [35]. The fourth graph type, detailed in
Sec. II D, is a particular type of random geometric graph.
Below, a graph is referred to as G = (V,E), where V

comprises its node set (N = |V |; where N is also referred
to as the “system size”) and where E (M = |E|) signifies
the respective edge set [21]. Each of the N nodes u ∈ V

represents a point in the 2D unit square for which the
coordinates ux and uy are drawn uniformly and independently
at random. So as to compute the distance dist(u,v) between two
nodes u,v ∈ V we consider the Euclidean metric under which
dist(u,v) = [(ux − vx)2 + (uy − vy)2]1/2. We further consider
open boundary conditions. Thus an increase in the system size
corresponds to an increase in the density of nodes on the unit
square. On the other hand, so as to maintain the density of
nodes while increasing N , the networks can be pictured as
having an effective side length L = √

N . A common feature
of these four types of graphs is that their edge set encodes
proximity information regarding the close neighbors of the
terminal nodes of a given edge. The different graph types can
be distinguished by the precise linking rule that is used to
construct the edge set for a given set of nodes. In this section
the linking rules that define the four types of proximity graphs
are detailed.

A. Relative neighborhood graphs

One particular proximity graph type that is considered
subsequently is the relative neighborhood graph [18]. In
order to determine whether, in the construction procedure
for an instance of an RNG, two nodes u,v ∈ V need to be
connected to each other, it is necessary to check whether
there is a third node w ∈ V \ {u,v} with dist(u,w) � dist(v,u)
and dist(v,w) � dist(v,u). If such a node w does not exist,
u and v will get linked. In geometrical terms, for each pair
u and v of points, the respective distance dist(u,v) can be
used to construct the lune lune(u,v). The lune is given by the
intersection of two circles of equal radius dist(u,v), centered

FIG. 1. Examples of the four graph types for a small set of N = 5
nodes (see text for details). (a) Instance of an RNG, where for all pairs
of nodes that will be connected under the respective linking rule, the
respective lune is depicted in gray. (b) Instance of a GG, where for all
pairs of nodes that will be connected under the respective linking rule,
the circle that helps in the decision-making process is depicted in gray.
(c) Instance of a DT, where the shaded gray circles are exemplary of
those that might aid in the decision-making process. (d) Instance of
an MR graph, where the linking range r is depicted (gray circle) for
a single node only (all other nodes exhibit the same linking range).

at u and v, respectively. If no other point w ∈ V \ {u,v} lies
within lune(u,v), i.e., if the lune is empty, both nodes are
connected by means of an edge. To facilitate intuition, an
example of an RNG for a small set of N = 5 nodes is sketched
in Fig. 1(a). A larger example that illustrates the principal
structure of a RNG is shown in Fig. 2(a).

(a) (b)

(c) (d)

FIG. 2. Examples of the four graph types for the same set of N =
100 nodes, distributed uniformly at random in the 2D unit square. (a)
RNG, (b) GG, (c) DT, and (d) MR.
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B. Gabriel graphs

Another proximity graph that is considered in this article
is the Gabriel graph [19,23]. To determine whether, in the
construction procedure for an instance of a GG, two nodes
u,v ∈ V need to be connected, circ(u,v), i.e., the smallest of all
possible circles which embeds both nodes is considered, which
has a diameter dist(u,v). These two nodes will be connected
unless there is another node w which is located within the
area enclosed by circ(u,v). To facilitate intuition, the linking
rule for the GG is illustrated in Fig. 1(b). A larger example that
illustrates the principal structure of a GG is shown in Fig. 2(b).
Further, note that the GG is a supergraph of the RNG. This
is due to the circumstance that circ(u,v), which is relevant in
the construction procedure of a GG instance for a given set of
nodes, encloses a subarea of lune(u,v), being relevant in the
construction procedure of the corresponding RNG instance
[compare the shaded gray surfaces in Figs. 1(a) and 1(b)].
Therefore, all edges contained in the RNG are also included in
the GG. Note that this canis also shown in Figs. 2(a) and 2(b).

C. Delaunay triangulations

The construction of the Delaunay triangulation (also a type
of proximity graph) [20] is quite similar. Two nodes u,v ∈ V

will be connected if any circle exists which embeds u as well
as v but no further nodes. To facilitate intuition, the result of
this linking rule is shown in Fig. 1(c). A larger example that
illustrates the principal structure of a DT is shown in Fig. 2(c).
From the definition of these linking rules, since the GG also
involves the construction of a circle, it is evident that an
instance of a DT for a given set of nodes must be a supergraph
of the corresponding GG instance. As a consequence, being a
subgraph of the GG, the RNG is also a subgraph of the DT.
This is shown in Figs. 1(a)–1(c) [Figs. 2(a)–2(c)], where the
RNG, GG, and DT are illustrated for the same set of N = 5
(100) nodes.

D. Minimum-radius graphs

The fourth network topology considered is the minimum-
radius graph, which is not a proximity graph, but a geometric
random graph. This means that two nodes u,v ∈ V will be
joined by an edge if dist(u,v) � r. Therein, the “connectivity
radius” r is equal to the length of the longest edge in the
minimum spanning tree [36]. By this means, it is guaranteed
that a finite path between each node pair exists, i.e., all nodes
are connected to each other in a multihop manner. It becomes
evident from Figs. 1(d) and 2(d) that, in contrast to the previous
graphs, the MR graph might feature crossing edges.

E. Graph construction

In order to construct the RNG and GG, we made use
of the subgraph hierarchy RNG ⊂ GG ⊂ DT. That is, for a
given set of nodes we first obtained the DT by means of the
Qhull computational geometry library [37] (the DT for a set
of N points can be computed in time O(N log(N )) [37,38])
and then pruned the resulting edge set E until the linking
requirements of GG or RNG are met. Here, we amend the naive
implementation of this two-step procedure [18], yielding an
algorithm with running time O(N2), by means of the “cell-list”

method [26], resulting in a subquadratic running time. In this
regard, note that Ref. [35] provides an overview of several
algorithmic approaches for the construction of RNGs and GGs.
Finally, note that RNGs and GGs can be found as the limiting
cases of a parameters family of proximity graphs, termed β

skeletons [39].
At this point, note that due to a yet unmentioned property of

minimum-weight spanning trees (MSTs; i.e., a spanning tree
in which the sum of Euclidean edge lengths is minimal; see
Ref. [36]), we can set the “connectivity radius” of MR graphs,
i.e., a geometric random graph, in the context of proximity
graphs. Bear in mind that the longest edge present in any
instance of an MR graph specifies the smallest possible edge
length which ensures that all nodes are connected to one
another. This edge length exactly characterizes the longest
edge in the MST of the corresponding node set. For a given set
of nodes, an MST is a spanning subgraph of the RNG [18,26].
Thus, considering MSTs, the previously mentioned subgraph
hierarchy can be extended to MST ⊂ RNG ⊂ GG ⊂ DT. This
allows for the fast construction of an MR instance for a given
set of points via a convenient three-step procedure: (i) compute
the DT for the given set of points, (ii) filter the edge set of the
DT to determine the corresponding MST, and, (iii) use the
length of the longest MST edge as the “connectivity radius”
to construct the respective MR graph. Therein, the overall
running time is dominated by step (iii), which, in its most
naive implementation has computational cost O(N2). Note
that during the latter step, the previously mentioned “cell list”
method can be used to achieve an improved running time.

Subsequently we introduce the node-removal strategies
considered in the numerical simulations carried out to charac-
terize the fragmentation process for the above graph types.

III. NODE-REMOVAL STRATEGIES

As pointed out above, in the presented article we aim
at characterizing the fragmentation processes for the graph
types introduced in Sec. II. Therefore we consider threet
types of node-removal strategies that are used throughout
the literature [5–9]. For convenience these are detailed
subsequently. Therefore, note that the basic procedure for
studying the fragmentation process for a single network
instance consists of successively removing nodes until the
network is decomposed into many small clusters of nodes,
thereby recording observables that provide information about
the current characteristics of the network (see Sec. IV).

The most simplistic node-removal strategy followed here
is termed random failure. According to this strategy, a node
is picked uniformly at random and deleted from the network
(along with all its incident edges).

Depending on the context into which the networks are set,
it might be useful to associate a measure of relevance to
each node. Then it is also intuitive to ask for node-removal
strategies that preferentially target the most relevant nodes.
Removal strategies that capitalize on the relevance of a node
are termed targeted attacks. Here, we consider two targeted
attack strategies:

(i) Degree-based attack (abbreviated “attack 1”), where the
relevance of a node is simply measured by its degree (i.e.,
the number of its incident edges). The higher the degree of a
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node, the more relevant it is assumed to be. Accordingly, at
each elementary node-removal step during the fragmentation
process, the node with the currently highest degree is selected
for deletion. If, at a given step, there are many nodes exhibiting
the currently highest degree, one of these nodes is chosen
uniformly at random. Note that the degree of a node is a
local property only, i.e., for a given node one only has to
determine the number of its nearest neighbors. Thus, from
a computational point of view the node degree is a very
inexpensive relevance measure.

(ii) Betweenness-based attack (abbreviated “attack 2”),
where the relevance of a node is measured by its betweenness
centrality [16]. The betweenness centrality of node u is
the number of shortest paths between all node pairs (v,w)
(v,w �= u) that pass through u. The larger the value of the
betweenness centrality, the more relevant a node is assumed
to be. In some applications, the Euclidean distance along
the edges is relevant for determining the shortest paths [36].
However, here we instead considered the hop metric, where
distances are simply measured in terms of node-to-node hops.
Consequently, the shortest path problem can be solved by
means of a breadth-first search [36]. During each elementary
node-removal step, the node exhibiting the currently highest
value of betweenness centrality gets removed. As before, if
several nodes have the same value, one of them is chosen
uniformly at random. Note that the betweenness centrality
is a global property deduced from the underlying network,
i.e., for the betweenness centrality of a particular node, the
configuration of shortest paths between all pairs of nodes is
of relevance. From a computational point of view this is, of
course, considerably more expensive than the computation of
the local node degree.

Subsequently, we use the above node-removal strategies in
order to characterize the fragmentation process for the graph
types described in Sec. II by means of numerical simulations.

IV. RESULTS

In Sec. II E it is illustrated how the subgraph hierarchy
RNG ⊂ GG ⊂ DT can be used to make the simulations
run faster. Additionally, the hierachy can also be used to
constrain topological properties such as the average degree
and percolation threshold, which is shown in this section.

We report on numerical simulations for the different graph
types for planar sets of N = 144 (= 122) up to 36 864 (= 1922)
points, where results are averaged over 2000 independent
graph instances. In Sec. IV A we first report on some
topological properties of the graphs; in Sec. IV B the analysis
of the fragmentation procedure is summarized. In Sec. IV C
further issues concerning the resilience of the networks seen as
transport networks (“N − 1 resilience”) are discussed. Finally,
in Sec. IV C, the networks are compared under the assumption
that they all exhibit the same summed-up edge length.

Subsequently, albeit we present results for all relevant
combinations of the four graph types and three node-removal
strategies, we so not show figures with results for all these
combinations. Instead, so as to illustrate the analyses per-
formed in the following section, we mainly present figures
for the RNG proximity graphs subject to a degree-based
node-removal strategy.
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FIG. 3. Finite-size scaling behavior of the average degree for the
four graph types. The scaling behavior found for the three types of
proximity graph, i.e., RNG, GG, and DT (see text for details). Inset:
The logarithmic scaling found in the case of the MR graphs (see text
for details).

A. Topological properties

To emphasize structural differences between the graph
types of the subgraph hierarchy RNG ⊂ GG ⊂ DT we first
consider the respective average node degree. Therefore, the
scaling behavior of the effective, i.e., system-size-dependent,
average degree deff(N ) is considered and analyzed using a
fit to the function deff(N ) = d − aN−b/2. For the three graph
types RNG, GG, and DT the fits yield asymptotic degrees d

and scaling exponents b, where dRNG = 2.557(1) and bRNG =
0.99(4) (with a reduced chi-square χ2

red = 0.87; note that
both the asymptotic average degree and the scaling exponent
compare well to the estimates reported in Ref. [26]), dGG =
3.999(1) and bGG = 1.00(1) (reduced chi-square χ2

red = 0.70),
dDT = 6.0001(1) and bDT = 1.76(1) (for a reduced chi-square
χ2

red = 1.87; note that the average degree of the DT is known
to be dDT = 6). In Fig. 3 the correction to scaling, i.e.,
d − deff(N ) ∝ N−b/2, is shown for the three types of proximity
graphs. It is interesting to note that the RNG and GG exhibit
a similar scaling, involving a correction of the form N−1/2,
whereas the scaling behavior for the average degree for the
DT graphs is governed by a significantly larger exponent. Also,
note that instances of the three types of proximity graphs are
planar, i.e., there are no crossing edges. While the bounding
cycles of the finite faces for the instances of RNGs and GGs
might consist of an even or odd number of edges, all inner
faces for instances of DTs are bounded by three edges.

Further, for the minimum-radius graph we found that the
effective average degree fits best to a logarithmic scaling
function of the form deff(N ) = log(aN ) (see inset in Fig. 3),
where a = 15.7(4) (reduced chi-square χ2

red = 1.42; however,
note that the data can also be fit by a scaling function with
a small power-law correction as above, where dMR ≈ 57 and
bMR ≈ 0.04).

Regarding MR graphs, consider that the longest edge
present in any instance of an MST (which specifies the
length of the longest edge in the respective MR instance; see
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discussion above) can by no means exceed the length of the
longest edge of any of its supergraphs. Due to the geometric
restrictions imposed by going from an instance of a DT to
an RNG, it is thus plausible that the maximal edge length
found for any MR instance is much shorter than, say, for the
corresponding DT instance. This holds in particular for the
case of open boundary conditions, where the outer faces of
the DT instances feature rather long edges [see Fig. 2(c)]. For
a set of 500 instances of point sets consisting of N = 16 384
nodes (i.e., for systems of effective side length L = 128) we
found that the highest edge length ratios rmax/L for the four
graph types read rDT

max/L = 0.714(6), rGG
max/L = 0.029 27(8),

rRNG
max /L = 0.023 35(8), and, rMR

max/L = 0.015 48(6). For the
first three graph types, these values should be more or less
independent of the system size. On the other hand, for the
minimum-radius graphs we found that the finite-size scaling
behavior of the connectivity radius rMR

max(L) as a function of
the effective system length L exhibits a logarithmic scaling
of the form rMR

max(L) = a + b log(L), where a = 1.334(8) and
b = 0.133(2) (reduced chi-square χ2

red = 0.59), supporting
the logarithmic scaling of the average degree. That is, the
respective “connectivity area” Ar = πr2

max, which, if centered
at the position of a given node, specifies the area in which
all its nearest neighbors can be found, should be almost equal
to the previously discussed average degree deff , because the
density of nodes is unity; e.g., at N = 2304 (i.e., L = 48) we
find Ar = 10.7(2) and deff = 10.52(5).

B. Fragmentation analysis

For the fragmentation analysis we consider instances of
the four dgraph types introduced in Sec. II and successively
remove nodes according to one of the node-removal strategies
presented in Sec. III until the initially connected graph
decomposes into small clusters. So as to determine the critical
fraction p of nodes that need to be removed until the graph
decomposes we perform a finite-size scaling (FSS) analysis
for different observables that are commonly used in studies of
percolation [40,41] in Sec. IV B 1. In addition, in Sec. IV B 2
we consider the scaling behavior of the hop diameter, i.e.,
the longest among all shortest paths measured in terms of
node-to-node hops, which, e.g., is relevant in the context of
broadcasting problems on networks [27].

1. Analysis of typical percolation observables

The observables we consider below can be rescaled follow-
ing a common scaling assumption. Below, this is formulated
for a general observable y(p,N ). This scaling assumption
states that if the observable obeys scaling, it might be
written as

y(p,L) = L−bf [(p − pc)N1/(2ν)], (1)

wherein ν and b represent dimensionless critical exponents (or
ratios thereof; see below) and f [·] denotes an unknown scaling
function [41,42]. The critical point pc marks the fraction
of removed nodes where the phase transition takes place in
the thermodynamic limit, i.e., N →∞. Following Eq. (1),
data curves of the observable y(p,N ) recorded at different
values of p and N collapse, i.e., fall on top of each other,
if y(p,N )Nb/2 is plotted against ε ≡ (p − pc)N1/(2ν) and if,

further, the scaling parameters pc, ν, and b that enter Eq. (1)
are chosen properly. The values of the scaling parameters that
yield the best data collapse determine the numerical values
of the critical exponents that govern the scaling behavior of
the underlying observable y(p,N ). In order to obtain a data
collapse for a given set of data curves we here perform a
computer-assisted scaling analysis (see Refs. [43] and [44]).

(a) Order parameter. As the first observable we consider
smax, i.e., the relative size of the largest cluster of connected
nodes. Averaged over different instances of, say, size N , at a
given value of p this yields the order parameter

〈P (p)〉 = 〈smax(p)〉. (2)

This observable scales according to Eq. (1), where b = β/ν

and β is the order-parameter exponent. The data curves for
the RNG proximity graphs for all three types of node-removal
strategies are shown in Fig. 4(a).

For the RNG and GG, the random failure node-removal
strategy simply corresponds to ordinary random percolation.
An extended study of site and bond percolation for the RNG-
type proximity graphs can be found in Ref. [26] and for the
GG-type proximity graphs in Ref. [45], respectively. However,
note that in these articles p signifies the fraction of occupied
bonds/nodes as opposed to the fraction of deleted nodes. The
respective values of pc are listed in Table I. It is apparent that,
in the order RNG, GG, DT, and MR, the graphs become less
and less susceptible to fragment under random node removal.
This correlates well with the average degree dRNG < dGG <

dDT < deff,MR(N ).
Regarding the degree-based attack strategy for the RNGs

we found that the best data collapse (obtained for the three sys-
tem sizes N = 2304, 4096, and 9126 in the range ε ∈ [−1,1])
yields pc = 0.120(1), ν = 1.33(2), and β = 0.148(8) with a
quality S = 3.63 [see Refs. [43] and [44]), and Fig. 4(b)]. Note
that the numerical values of the critical exponents match the
expected values for 2D percolation, i.e., ν = 4/3 ≈ 1.333 and
β = 5/36 ≈ 0.139, quite well. Restricting the data analysis
to the slightly smaller interval ε ∈ [−0.65,0.65], enclosing
the critical point on the rescaled p axis, the optimal scaling
parameters are found to be pc = 0.119(1), ν = 1.41(5), and
β = 0.14(1) with a quality S = 0.98. Further, fixing ν and
β to their exact values, thus leaving only one parameter
to adjust, yields pc = 0.119(1) with a data-collapse quality
S = 3.16. Hence, for RNGs subject to a degree-based attack
strategy, a fraction of pc = 0.119(1) seems to suffice in order
to decompose the graph instance into small clusters. Note that
this is already significantly smaller than the above value found
for the case of random node failures.

The analyses for the proximity graph types GG and DT
for the above two node-removal strategies (i.e., random failure
and degree-based attack) were carried out in a similar fashion.
For the DT ensemble, considering the degree-based node-
removal strategy, the scaling parameters obtained by the FSS
analysis read pc = 0.377(1), ν = 1.31(7), and 0.14(2) with a
data-collapse quality S = 0.89 (obtained for the three system
sizes N = 2304,4096,9126 in the range ε ∈ [−0.5,0.75]). For
comparison: the critical point for the random node-removal
strategy is known to be pc = 0.5; from our simulated data
we find pc = 0.500(2), ν = 1.35(13), and β = 0.13(2) with a
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FIG. 4. Finite-size scaling analysis for the RNG proximity
graphs. (a) Order parameter for RNGs subject to the three node-
removal strategies discussed in Sec. III. (b) The best data collapse
of the order parameter obtained for a degree-based node-removal
strategyInset: Scaling of the area under the curve for a centrality-based
node-removal strategy. The fact that the area seems to converge to 0
is compatible with a critical point pc = 0. (c) The best data collapse
for the average size of the finite clusters considering a degree-based
node-removal strategy. Inset: Scaling of the peak position.

quality S = 0.94 (similar system sizes as above, only in the
range ε ∈ [−0.25,0.25]).

For the case of the GG graphs, we found pc = 0.263(1),
ν = 1.33(4), and β = 1.4(2) with respect to the degree-based

TABLE I. Critical points pc, i.e., fractions of removed nodes
which indicate when the underlying network decomposes into “small”
clusters for the different graph types and node-removal strategies,
discussed in Secs. II and III (random failure, equivalent to random
percolation; attack 1, degree-based node-removal strategy; attack 2,
centrality-based node-removal strategy), respectively.

Strategy RNG GG DT MR

Random failure 0.205(1) 0.365(1) 0.500(2) 0.71(1)
Attack 1 0.120(1) 0.263(1) 0.377(1) 0.68(2)
Attack 2 0 0 0 0

node-removal strategy (obtained for the system sizes
N = 2304, 4096, and 9126 in the range ε ∈ [−0.2,0.7] with
quality S = 1.08).

However, note that for the geometric MR graphs, an
analysis of the order parameter following a scaling assumption
of the form of Eq. (1) did not lead to any conclusive results;
i.e., the data curves did not give a satisfactory data collapse.
Nevertheless, based on the analysis of the fluctuations of the
order parameter, we were able to obtain estimates for the
critical point (see below). In summary, as is obvious from
Table I, degree-based attacks are more severe than random
removals. Again, the resilience against attacks correlates well
with the average degree.

Considering the centrality-based attack strategy for the
RNGs, we start out with a more simplified initial analysis.
As is evident from Fig. 4(a), the data curves that describe the
scaling of the order parameter for this setup drop to 0 at rather
small values of p. Thus, an FSS analysis (as carried out above)
comes with several difficulties (related to the accessibility of
data points in the critical scaling window). Hence, we first
determine the area A(N ) under the order-parameter curves and
assess its scaling behavior with increasing system size N to
see whether it converges to a finite value at all. From a fit to the
function A(N ) = a(N + �N )−b we find a = 0.20(1), �N =
30(4), and b = 0.315(3) [reduced chi-square χ2

red = 0.34; see
inset in Fig. 4(b)], indicating that indeed A(N → ∞) → 0. If
we neglect the smallest system, we find that a pure power
law A(N ) = 0.270(3)N−0.302(2) fits the data well (reduced
chi-square χ2

red = 0.65). From this we conclude that for RNGs
subject to a centrality-based attack strategy one has pc = 0.
Following this procedure, we also found that under this attack
strategy pc = 0 holds true for GGs, DTs, and MR graphs. Thus,
due to its propensity to fragment graphs at negligible values of
p, this strategy is much more efficient than the degree-based
strategy, independent of the type of graph.

(b) Average size of finite clusters. As the second observable
we consider the average size 〈Sfin(p)〉 of all finite clusters
for a particular graph instance, averaged over different graph
instances. The definition of this observable reads [41]

Sfin(p) =
∑′

s s2 ns(p)
∑′

s s ns(p)
, (3)

where ns(p) signifies the probability mass function of cluster
sizes for a single graph instance at a given value of p.
The prime indicates that the sums run over all clusters
excluding the largest cluster for each graph instance. The
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average size of all finite clusters is expected to scale
according to Eq. (1), where b = −γ /ν. Therein, for 2D
percolation, the critical exponent γ assumes a value of
γ = 43/18 ≈ 2.389.

Again, a detailed analysis of this observable for random
percolation, which is equivalent to the random failure f
strategy, can be found in Ref. [26] regarding RNGs and in
Ref. [45] with respect to GGs.

Regarding the degree-based attack strategy for RNGs,
considering systems of size N = 1024, 2304, 4096, and 9216
and restricting the data analysis to the interval ε ∈ [−0.5,0.5]
on the rescaled p axis, the optimal scaling parameters are
found to be pc = 0.120(1), ν = 1.46(3), and γ = 2.35(4) with
a collapse quality S = 0.91 [see Fig. 4(c)]. Note that here the
estimated value of ν appears to overestimate the expected
value somewhat. Apart from that, the numerical values of the
extracted exponents are in reasonable agreement with their
expected values and the estimate of the critical threshold pc is
consistent with the numerical value found from an analysis of
the order parameter.

In addition to the full FSS analysis, we also performed a
scaling analysis for the effective critical points ppeak(N ) at
which the curves of Sfin assume their maximum. Therefore,
polynomials of fifth order were fitted to the data curves
at different system sizes N in order to obtain an estimate
ppeak,i(N ) of the peak position. Thereby, the index i labels
independent estimates of the peak position as obtained by
bootstrap resampling. For the analysis, we considered 20
bootstrap data sets, e.g., resulting in the estimate ppeak(N =
9216) = 0.1057(4) for the RNG regarding the degree-based
attack strategy. Considering systems of size N > 500 and
assuming the scaling form

ppeak(N ) = pc,peak − aN−b (4)

yields the fit parameters pc,peak = 0.111(1), b = 0.50(3), and
a = O(1) for a reduced chi-square χ2

red = 0.08 [see inset in
Fig. 4(c)]. This result indicates that the peak seems to be
positioned off criticality at a value slightly below pc [cf.
Fig. 4(c)]. However, including also very small systems we yield
pc,peak = 0.119(5), b = 0.29(6), and a = O(1) for a reduced
chi-square χ2

red = 3.89, in good agreement with the value of pc

obtained from an analysis of the order parameter. Following
this procedure by considering RNGs subject to a random node
failure we yield pc = 0.196(8), which compares well to the
estimate obtained from an analysis of the order parameter (see
Table I). An analysis of the peak positions for all other types
of proximity graphs led to qualitatively similar results. Hence,
we do not elaborate on them here.

Whenever we analyzed the order parameter, we also ana-
lyzed the respective fluctuations, giving rise to the finite-size
susceptibility χ (p)

χ (p) = N
[〈
s2

max(p)
〉 − 〈smax(p)〉2

]
. (5)

These curves also feature a pronounced peak and exhibit the
same scaling behavior as the average size of the finite clusters
discussed above. Here, we also performed a scaling analysis of
the peak positions of the χ (p) curves, similar to that performed
for the peaks of the previous observable. Although this did
not lead to new insight into the various types of proximity
graphs, it was a valuable method to estimate critical points

 0

 50

 100

 150

 200

 250

 300

 350

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

χ(
p)

p

MR random failure
(a)

N= 1024
2304
3096
9216

16384

 0.4

 0.5

 0.6

 0  5000  10000 15000

p c
,p

ea
k-
p p

ea
k(
N
)

N

pc,peak=0.71(2)

 0

 100

 200

 300

 400

 500

 600

 700

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

χ(
p)

p

MR attack 1
(b)

N= 1024
2304
3096
9216

16384

 0.3

 0.4

 0.5

 0  5000  10000 15000

p c
,p

ea
k-
p p

ea
k(
N
)

N

pc,peak=0.68(2)

FIG. 5. Finite-size scaling analysis for the peak position of the
finite-size susceptibility curves for the MR geometric graphs. (a)
Data curves for the random node-removal strategy. Inset: Finite-size
scaling of the respective peak positions (see text for details). (b)
Data curves for the degree-based node-removal strategy: Finite-size
scaling of the respective peak positions (see text for details).

for the MR geometric graphs. In this regard, for MR graphs
subject to random node removal we find pc = 0.71(2) [see
Fig. 5(a)]. Further, for MR graphs subject to the degree-based
node-removal strategy we obtain pc = 0.68(2) [see Fig. 5(b)].
Hence, for the MR graphs we cannot rule out that the estimates
for both critical points actually agree within error bars. This
might be attributed to the rather high degree of the individual
nodes and, from a statistical point of view, the extensive
overlap of the individual node neighborhoods within the range
of the underlying “connectivity radius.” Hence, due to the
high number of redundant node-to-node paths which easily
allow compensation for deleted nodes, the effect caused by the
removal of a randomly chosen node does not differ much from
the effect caused by the removal of a node with a particularly
high degree.

2. Analysis of the hop diameter

The last observable, studied in the context of the fragmenta-
tion analysis, is related to the diameter R(p) of the graphs as a
function of the fraction p of removed nodes. Here, the diameter
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FIG. 6. Finite-size scaling analysis for the peak position of the
diameter curves for the RNG proximity graphs subject to a degree-
based attack strategy. The diameter of the graphs as a function of the
removed fraction of nodes following the attack strategy “attack 1”
(discussed in Sec. III). Inset: Scaling behavior of the effective peak
position ppeak(N ) as a function of the system size N .

of a graph indicates the longest among all finite shortest paths.
In Fig. 6, the data curves of the diameter for the particular
choice of RNG proximity graphs subject to a degree-based
node-removal strategy are shown. For the particular case of
nonfragmented RNGs, i.e., at p = 0, the diameter (averaged
over different realizations of point sets) was previously found
to scale as 〈R〉 ∝ N1/2 [26]. In view of these prior results, the
data curves in Fig. 6 are scaled so as to assume a fixed value
at p = 0. As is evident from the figure the data curves assume
a peak value when a certain fraction of nodes is removed.
This appears to be quite intuitive: if nodes are removed from
one of the graph instances introduced in Sec. II, redundant
edges will disappear (on average), resulting in an increasing
node-to-node distance. As soon as the value of p exceeds the
percolation threshold of the respective setup (i.e., graph type
and node-removal strategy), the graph instance decomposes
into several “small” clusters accompanied by a decreasing
node-to-node distance. With increasing system size N , the
position ppeak(N ) of the peak shifts towards larger values
of p. For RNGs subject to degree-based node removal, a fit
function of the form similar to Eq. (4) yields the fit parameters
pc = 0.120(2), a = O(10−1), and b = 0.30(2) (χ2

red = 0.90).
Similarly, for DTs we find pc = 0.378(4), a = O(10−2),
and b = 0.3(2) (χ2

red = 0.14). The resulting asymptotic peak
positions are in good agreement with the value obtained from
an FSS analysis of the order parameter (cf. Table I). For the case
of a random node failure, the results obtained from the scaling
of the peak position fit the results from the order parameter
analysis similarly well; e.g., for the case of RNGs we find
pc = 0.199(2) (cf. Table I). Although we performed similar
analyses for GGs and DTs, resulting in qualitatively similar
results, we do not elaborate on them here. No analyses were
performed for the centrality-based node-removal strategy.

C. N − 1 resilience

The actual most important application example regarding
proximity graphs is wireless ad hoc networks. Nevertheless,

there might be some other fields of application for them.
Proximity graphs ensure connectivity and the total length
of all involved edges is small in comparison to many other
networks that feature this quality. For applications where edges
are expensive and connectivity is crucial, the topology of
proximity graphs might be a good candidate to install. To
this point, we have assumed that the capacities of the edges
and nodes are infinitely large, so the network components
do not overload, regardless of how intensively they get
strained. In real scenarios, if some nodes or edges malfunction,
network components which are hardly used under normal
circumstances might become essential at once. Consequently,
since the hardly used components are not designed to handle
such a burden, this might trigger a cascading breakdown of the
whole network [46–49]. Therefore, it is reasonable to equip
all network components with sufficient capacity.

To ensure that the network operates in an orderly fashion
under all circumstances when one component drops out,
referred to as “N − 1 resilience” (or N − 1 stability or the
N − 1 criterion), it is necessary to know the most adverse
scenario that can occur. With a transport model in mind,
where some quantities have to be transported between all
pairs of nodes [46,48,49], the betweenness centrality [50] is
a measure of the capacity each node or edge has to provide
in a well-functioning situation. When one node or edge fails,
given that the network is still connected, the loads have to be
redistributed, visible from a recalculation of the betweenness
centrality. In some nodes or edges the centrality will increase
[51,52], corresponding to the higher capacity these nodes
or edges have to provide a priori. The value of the highest
increment, which is called the backup capacity [52] �bnode or
�bedge, provides an estimate of the additional costs of each
node or edge that must be invested to protect the network
against cascading failures upon such an incident.

The betweenness centrality has been calculated based on
Dijkstra’s algorithm [36], i.e., the edge lengths have been taken
into account in calculating the shortest path. The resulting
probability mass functions of �bnode and �bedge are illustrated
in Figs. 7 and 8, respectively, for different network ensembles.

For the case of �bedge, but using a breadth-first search,
i.e., without taking the actual edge lengths into account, the
probability mass functions look qualitatively almost identical
to the case of �bnode, without notable distinctions. From the
statistics mediated by the figures it is evident that the typical
backup capacity of DT networks is the lowest, while that of
RNG networks is the highest. This means that the structure of
the network of RNG networks is more vulnerable, such that
one has to invest more in the capacity of the edges in order to
ensure N − 1 resilience. This is not surprising, since the RNG
is a subgraph of the GG and DT and includes fewer edges. On
the other hand, due to the lack of the additional edges of the
RNG in comparison to the others, the investment to provide the
backup capacity must be applied to fewer edges. Thus, it makes
sense to ask for the total backup capacity either per edge, if the
investment costs are dominated by the number of connections,
or per unit length, if the investments are dominated by the
length of the edges. It becomes evident from Fig. 9(a) that
for the former case, the typical total investment (M · �b) is,
relatively speaking, still the same for all three ensembles. For
the second case, i.e., also taking edge lengths into account
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FIG. 7. Probability mass function of the backup capacity, which
is needed to ensure an N − 1 resilience (see text) �bnode for different
network topologies (initial system size: N =1024). The probability
mass function concerning this measure was determined by analyzing
40 000 realizations of the disorder. The data were fitted by a log-
normal distribution of moderate quality (reduced χ 2

red between 0.65
and 4.46).

[Fig. 9(b)], it turns out that the investment of the DT is at
about the same level as that of the RNG. The GG appears to
be the most cost-efficient graph under this scenario.

D. Networks of the same total length

To compensate for the simple resilience effect created by
simply exhibiting more edges, we also compared the different
topologies of the proximity graphs featuring the same total
edge length 	tot. Therefore, we measured the scaling behavior
of this quantity for the different proximity graph types (see
Fig. 10). The figure provides the number of nodes which have
to be added to the RNG and GG in order to get same total edge
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FIG. 8. Probability mass function of �bedge for different net-
work topologies (initial system size: N =1024). Removing the
edge featuring the largest betweenness centrality value, the largest
increment of the betweenness centrality of the other edges �bedge was
monitored. The probability mass function concerning this measure
was determined by analyzing 40 000 realizations of the disorder. The
data were fitted by a log-normal distribution of good quality for GG
(reduced χ 2

red = 0.26) and RNG (reduced χ 2
red = 2.71 but poor quality

for MR (reduced χ 2
red = 5.2) and DT (reduced χ 2

red = 12.2) graphs.
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FIG. 9. Probability mass functions of (a) M · �bedge and (b)
〈	〉 · M · �bedge for different network topologies at N =1024. M

describes the number of edges in the respective graph and 〈	〉 denotes
their respective edge-length mean value. The data were fitted by
a log-normal distribution of predominantly low quality: (a) reduced
χ 2

red =6.5 for GG data, reduced χ 2
red =4.99 for RNG, data and reduced

χ 2
red =12.75 for DT; (b) reduced χ 2

red =2.9 for GG data, reduced
χ 2

red =5.34 for RNG data, and reduced χ 2
red =20.09 for DT.

length as the respective DT. For example, it is evident from
the figure that a DT with N = 718 nodes has the same total
edge length 	tot = 100 on average as a GG with N = 2625
and an RNG with N = 9783 nodes. Since the fragmentation
thresholds for the different node-removal strategies are known
(Table I), it can be calculated easily (N · pc) for each topology
how many nodes must be removed until the respective network
decomposes into small clusters; for example, if 	tot = 100,
the RNG will tolerate 2005 randomly removed nodes. In
contrast, the GG tolerates 958 and the DT tolerates merely 359
nodes that fail randomly. As a consequence, implementing the
topology of the RNG will be the most reasonable, if installing
edges is much more expensive than adding further nodes.
Certainly, the additional edges of the DT and GG increase

101
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103

102 103 104

to
t

N

DT
GG

RNG

FIG. 10. Scaling behavior of the total edge length 	tot of the RNG,
GG, and DT. Each data point was created by averaging over 2000
instances. In each case the total edge length seems to scale according
to 	tot ∼ N 0.5 for large systems. We used the fit function 	tot = a(N +
b)c. By taking the system sizes N = 2304, 4096, 9216, and 16 384
into account, we found a = 4.02(2), b = 19(5), c = 0.4868(4) for
the DT (χ 2

red = 2.44), a = 1.91(1), b = −47(5), c = 0.5039(5) for
the GG (χ 2

red = 1.31), and a = 0.99(1), b = −20(3), c = 0.5024(3)
for the RNG (χ 2

red = 0.46).
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the stability, but the benefit of these is small in comparison to
that of the edges which are contained in the RNG anyway.

V. CONCLUSION

In this article, the robustness of three types of proximity
graphs and a particular geometric random graph (see Sec. II),
i.e., their ability to function well even if they are subject to
random failures and targeted attacks, was put under scrutiny.
For this purpose we generated instances of the considered
graph types and successively removed nodes according to
three node-removal strategies (see Sec. III). Once the fraction
of removed nodes exceeds a certain threshold (characteristic
of the particular graph type and node deletion scheme),
the underlying graph instance decomposes into many small
clusters. Using standard observables from percolation theory
(see Sec. IV B), the critical node-removal thresholds were
determined for the different graph types and deletion strategies
(see Table I). Therein, so as to yield maximally justifiable
results through numerical redundancy, we considered various
observables to estimate the critical points and exponents.
In order of increasing severity, these strategies have an
intuitive order: a random node-removal mechanism, equiv-
alent to ordinary random percolation, is less severe than a
degree-based node-removal strategy which takes into account
particular node-related local details (i.e., the node degrees) to
optimize the order of node removals during the fragmentation
procedure. As is evident from Table I, both removal schemes
result in finite critical points. The latter strategy is again less
severe than the centrality-based node-removal mechanism,
which takes into account global information (i.e., the set
of shortest paths that connect all pairs of nodes) that is
used to impose a maximally efficient structural damage by
preferentially removing nodes with maximal betweenness
centrality (i.e., the most relevant nodes). As is evident from
Table I and the discussion in Sec. IV B, the latter node-removal
scheme requires the deletion of only a negligible number
of nodes until the graph decomposes into small clusters. A
peculiar result is the fragmentation thresholds related to the
random failure and degree-based node removal for the MR
geometric graph. As discussed in Sec. IV B we cannot rule
out that the estimates for both critical points agree within the
error bars. This might be attributed to the extensive overlap
of the individual node neighborhoods within the range of
the underlying “connectivity radius.” Hence, due to the high
number of redundant node-to-node paths which easily allow

compensation for deleted nodes, the effect caused by the
removal of a randomly chosen node does not differ much from
the effect caused by the removal of a node of a particularly
high degree.

For a given node-removal strategy, the sequence of critical
points for the subgraph hierarchy RNG ⊂ GG ⊂ DT follows
the commonly accepted belief that the percolation threshold
(or, here, the fragmentation threshold) is a nondecreasing
function of the average degree. This is in full accord with
the containment principle due to Fisher [53], stating that if G′
is a subgraph of G, then it holds that pG′

c � pG
c for both bond

and site percolation.
Finally, we considered the backup capacity, which is the

largest betweenness-centrality increment of the nodes (or
edges) after removing the most important node (or edge)
beforehand, for the different graph types. Thus, via sufficient
backup a graph is made N − 1 resilient. Regarding the three
studied proximity graph ensembles, it turned out that the DT is
the most cost-efficient assuming that the backup investments
are dominated by improvement of the nodes. On the other
hand, if one has to back up the edges, the more cost-efficient
one will be either the DT or the GG, depending on whether the
investment depends mainly on the number or on the length of
the edges.

For further studies, it would be very interesting to evaluate
these simple spatial planar ensembles in the context of more
complex transportation networks, as for steady-state power
grids in the power-flow approximation [54], or for networks of
truly dynamically coupled oscillators, as for Kurmatoto-like
models [55–57].
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