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Abstract. Stochastic resetting is a rapidly developing topic in the field of stochastic processes and
their applications. It denotes the occasional reset of a diffusing particle to its starting point and effects,
inter alia, optimal first-passage times to a target. Recently the concept of partial resetting, in which
the particle is reset to a given fraction of the current value of the process, has been established and the
associated search behaviour analysed. Here we go one step further and we develop a general technique
to determine the time-dependent probability density function (PDF) for Markov processes with partial
resetting. We obtain an exact representation of the PDF in the case of general symmetric Lévy flights
with stable index 0 < α ≤ 2. For Cauchy and Brownian motions (i.e., α = 1, 2), this PDF can be
expressed in terms of elementary functions in position space. We also determine the stationary PDF.
Our numerical analysis of the PDF demonstrates intricate crossover behaviours as function of time.

1. Introduction

Stochastic processes represent a core field in non-equilibrium statistical physics and
physical chemistry [1, 2]. They are used as "schematisations" [3] for systems, that are
too complex to describe in microscopic detail [4], and in which the dynamic of an
observable is apparently random. Stochastic processes are quite ubiquitous in nature.
Examples include, inter alia, archetypical Brownian motion [5], the passive diffusion of
molecules in biological cells [6], animal motion [7], the motion of active particles beyond
their persistence time [8], tracer motion in geophysical systems [9], charge carrier motion
in semiconductors [10], stock prices on financial markets [11], or disease spreading [12].

One central question in the study of stochastic processes is their ability to locate a
specific target in space [13]. In an unlimited space a diffusing particle may significantly
stray away from its starting point and may not be able to locate a small target in
a finite interval of time. Even in a finite domain the diffusive search may have very
broad distributions of search times, and the typical search time may be significantly
different from the mean [14–16]. Speedup of the diffusive search may, e.g., be achieved
by "facilitated diffusion", in which the diffusion intermittently occurs in the embedding
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space and on a surface with reduced dimension—a prominent example is the search of
binding proteins for a site on a long DNA chain [17, 18]. The central idea in facilitated
diffusion is the combination of thorough local search and decorrelations by bulk diffusion
[19,20]. Similar principles in random search are processes with long-tailed jump length
distributions (Lévy flights and walks) [21–30] and intermittent search [13,31–33].

Another way to optimise the search for a target at a finite distance away from where
the searching particle is released, is stochastic resetting (SR) [34, 35]. In its simplest
version, SR considers a Brownian particle, that experiences repeated restarts, i.e., resets
to its starting position, either at fixed periods or stochastically with a fixed rate [34–38].
A central feature of SR is that the stochastic search of a diffusing particle for a target
at a given distance from its starting point can be optimised for a specific resetting
frequency [34–36]. The idea is that SR prevents long departures of the particle away
from its target. Overly frequent resetting, in contrast, keeps the particle always close
to the starting point, such that it cannot reach the target. At intermediate resetting
frequencies, therefore, the mean search time is minimised [34–36]. For mean search times
a unified approach allows to determine the optimal SR-rate [39] and, at optimality, first-
passage time fluctuations have a universal coefficient of variation [40], see also recent
results on extremes in SR [41]. SR leads to a non-equilibrium steady state with a
well-defined limiting displacement distribution [34–36]. A renewal approach to resetting
was established and exploited to show that constant pace resetting minimises the mean
hitting time [42]. Moreover, linear response and fluctuation-dissipation relations for SR
were discussed [43]. Aspects of SR in quantum walks have also been addressed [44].
A recent review of SR and applications in different disciplines can be found in [45].
Importantly, we mention that the effect of SR was demonstrated experimentally [46–48].

Various aspects beyond Brownian SR have been discussed. Inter alia, non-
instantaneous returns [49] and soft resetting by switching harmonic potentials [50] were
studied. SR of anomalous diffusion processes include heterogeneous diffusion processes
with distance-dependent diffusion coefficient [51,52], scaled Brownian motion with time-
dependent diffusivity in renewal and non-renewal settings [53, 54], and continuous time
random walk processes with complete and incomplete [55] as well as with power-law [56]
resetting. Reset rotational motion was studied in terms of a time-fractional Fokker-
Planck equation [57]. Different effects due to resetting were demonstrated for geometric
Brownian motion without [58] and with drift [59], and effects on income dynamics
explored [60]. Aspects of ergodicity restoration in anomalous diffusion processes were
also analysed [61]. For SR on networks [62–64], the minimisation of global mean first
passage times for specific centrality-based SR mechanisms were reported [65]. We note
that results similar to SR for a single absorbing target were obtained for multiple as well
as partially absorbing targets [66,67]. Moreover, a concept similar to SR is preferential
relocations, which take the walker back to any previously visited site [68, 69].

Here we address the question as to what happens when the particle is not reset to
its origin, but to some value in between the instantaneous co-ordinate and the initial
value. Such partial stochastic resetting (PSR) has been studied in mathematical [70,71],
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financial and actuarial [72–76] literature, and in queueing theory [77] for piecewise
deterministic processes. The basic idea behind many models in these fields is that
there is a growing observable (like the income of an insurance company or the amount
of traffic over the internet), subjected to random unexpected events leading to a
substantial decrease of this quantity (claims in an insurance company or failures in
internet connections). PSR has also been recently considered in physics literature [78],
where the authors studied the two distinct cases of independent and dependent random
resetting amplitudes: for independent resetting, the amplitude is arbitrary, so that the
particle can also be reset to negative values, while for dependent resetting amplitudes
the current value of the particle is multiplied by a number between zero and unity,
thus guaranteeing positivity of the value after reset. In [78] the authors discussed PSR
for both scenarios in terms of moments and the particle probability density function
(PDF). The case of dependent resetting was recently also analysed further [79, 80].
PSR finds its motivation in different settings. One is stratigraphy, studying sediment
layering in geology [78]: deposits by a gradual sedimentation, e.g., in a river delta, can
be partially washed away by sudden events such as extreme rainfall. A similar model
is used in population dynamics, when the gradual growth dynamic is interrupted by
sudden, catastrophic population decimation [81–85].

Going significantly beyond recent work [79,80] reporting the Fokker-Planck equation
and the stationary PDF for Brownian PSR [79] and the time-dependent PDF in Fourier-
Laplace space when the initial condition is at the origin, we here develop a general
technique to determine the time-dependent PDF for homogeneous Markov processes
with Poissonian resetting, in which the process is partially reset by multiplication with
the constant factor 0 < c < 1 at random times T1, T1 + T2, . . .. The limiting cases
c → 0 and c → 1 of this model correspond to total resetting [34] and a stochastic
process without resetting, respectively. An exact representation of the PDF in the real
space-time domain is derived for the case of general symmetric Lévy flights with stable
index 0 < α ≤ 2, including Brownian motion and Cauchy flights as particular cases
for α = 2 and 1, respectively. We also determine the stationary PDF for symmetric
Lévy flights in terms of Fox H-functions and present the particular cases α = 2 and 1

in terms of elementary functions. For the case of non-zero initial conditions, we report
highly asymmetric non-stationary PDFs for α = 2 and the emergence of non-trivial
inhomogeneous multimodal regimes with α 6= 2.

2. Propagator for partial resetting

We consider a stochastic process Xt with initial condition X0 = x0 whose PDF is
p0(x, t|x0, t0). We assume homogeneity in both space and time, such that p0(x, t|x0, t0) =

p0(x − x0, t − t0|0, 0). Without limitation of generality, we set t0 = 0 and use the
simplified notation p0(x, t), keeping the initial condition x0 implicit. At random times
T1, T1 +T2, T1 +T2 +T3, . . ., the position of the particle is partially reset, i.e., multiplied
by 0 < c < 1. Thus Ti represents the time between the (i − 1)st and ith partial reset.
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Figure 1: Plot of two possible trajectories of the system in the specific cases of Brownian
motion (left panel) and symmetric Cauchy random walk (right panel). The process
without PSR (Xt) is depicted in blue on both panels, while the process with PSR (Yt,
with rate r = 1.0 and amplitude factor c = 0.5) is displayed in green. We highlighted
partial resetting events with red segments. The processes Xt and Yt in either panel were
generated from the same random seed.

We assume that the Ti are independent, identically distributed (i.i.d.) random variables
with PDF ψ(t) = Pr{t ≤ T1 ≤ t+ dt}. Clearly, c = 0 represents the full resetting case,
while setting c = 1 we retrieve the unperturbed stochastic process. Let Yt denote the
PSR process. We then have

Yt = x0 + [((XT1 · c+XT2) · c+XT3) · c+ . . . ] · c+Xt−TNt

= x0 + cNtXT1 + cNt−1XT2 + . . . cXTNt
+Xt−TNt , (1)

where Nt denotes the number of partial resetting events in the time interval [0, t]. The
meaning of this expression is quite intuitive: the process is unperturbed until the time T1,
moving from x0 to x0+XT1 ; then the process is multiplied by c, and it stays unperturbed
again between times T1 and T1 + T2, and so on. Some possible trajectories of Yt are
depicted in figure for Brownian and Cauchy random walks (see below) in absence and
presence of PSR 1. Generally we notice that in the presence of PSR the resulting
trajectories tend to be closer to the origin, while they experience long excursions in the
unperturbed case. This hints at the existence of a stationary state, that we will examine
more closely below.

We are interested in finding the PDF pr(x, t|x0) of the PSR process Yt. Since we
choose Xt to be time-homogeneous, it follows that Yt is also homogeneous in time.
However, partial resetting according to equation (1) leads to an inhomogeneity in space.
Thus, in the PDF pr(x, t|x0) we removed the dependence on the initial time t0 (taken
as t0 = 0) but we retain the dependence on x0. The reason for the loss of spatial
homogeneity is quite intuitive: consider the first partial resetting event, occurring at
time T1. The position YT+

1
depends on YT−1 , and YT−1 in turn depends on x0. Due to

partial resetting the shape of the resulting time-dependent PDF due to this effect attains
more complicated shapes, as we will discuss in the next sections.
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For the specific case of Poissonian resetting times, i.e., ψ(t) = re−rt for all i, the
expression of pr can be found through the last renewal equation, which reads

pr(x, t|x0) = e−rtp0(x, t|x0) +

∫ t

0

dt′re−rt
′
∫ ∞
−∞

dypr(y, t− t′|x0)p0(x, t′|cy). (2)

The meaning of this relation is quite simple: the first term on the right hand side takes
into consideration all realisations in which no partial resetting occurred, while the second
term considers all realisations in which the last resetting event occurred at time t− t′.
During the time interval [0, t − t′] the particle diffuses to position y with propagator
pr(y, t − t′|x0), while during [t − t′, t] it diffuses without PSR, hence with p0(x, t

′|cy).
This term must be integrated over all possible realisations of t′ and y. The solution of
the integral equation (2) can be obtained via the series expansion

pr(x, t|x0) = e−rt
∞∑
n=0

rnqn(x, t|x0), (3)

where the set of functions {qn}∞n=0 can be found through the recursion relation

q0(x, t|x0) = p0(x, t|x0), qn(x, t|x0) =

∫ t

0

dt′
∫ ∞
−∞

dyqn−1(y, t
′|x0)p0(x, t− t′|cy). (4)

We proof this result in Appendix A. In the recursion relation (4) we now perform a
Laplace transform to obtain‡

q̃n(x, s|x0) =

∫ ∞
−∞

dyq̃n−1(y, s|x0)p̃0(x− cy, s). (5)

Note that the explicit dependence on x0 is also inherent in these transformed functions.
Applying an additional Fourier transform,§

ˆ̃qn(k, s|x0) = ˆ̃qn−1(kc, s|x0)ˆ̃p0(k, s). (6)

Thus we can find the general expression by simply iterating

ˆ̃qn(k, s|x0) =

(
n−1∏
l=0

ˆ̃p0(kc
l, s)

)
ˆ̃p0(kc

n, s|x0). (7)

‡ We use the notation

L {f(t)}(s) =
∫ ∞
0

e−stf(t)dt = f̃(s).

§ The Fourier transform is defined as

F{g(x)}(k) =
∫ ∞
−∞

eikxg(x)dx = ĝ(k).
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Since p0 is spatial homogeneous we can use the relation ˆ̃p0(kc
n, s|x0) = eikc

nx0 ˆ̃p0(kc
n, s)

to obtain
ˆ̃qn(k, s|x0) = eikc

nx0

n∏
l=0

ˆ̃p0(kc
l, s). (8)

Hence, combining (3) and (8) we may write the full PDF in Fourier-Laplace space as

ˆ̃pr(k, s|x0) =
∞∑
n=0

rneikc
nx0

n∏
l=0

ˆ̃p0(kc
l, r + s). (9)

Equation (9) is the first main result of the paper, generalising previous results [78–80]. In
[78] the authors considered the case of deterministic ballistic motion with constant speed
and PSR. The propagator for this process which was not reported in [78] can be found
from result (9) by setting p0(x, t) = δ(x−vt), where v is the speed. Moreover, the results
in [79, 80] follow from (9) by setting x0 = 0 and p0(x, t) = (4πDt)−1/2 exp(−x2/(4Dt)).

For consistency, we check the limit of c→ 1, for which we find

ˆ̃pr(k, s|x0) = eikx0 ˆ̃p0(k, r + s)
∞∑
n=0

(
r ˆ̃p0(k, r + s)

)n
= eikx0 ˆ̃p0(k, r + s)

1

1− r ˆ̃p0(k, r + s)

= eikx0 ˆ̃p0(k, s), (10)

where in the last step we used an identity for Markov processes proved in Appendix B.
As expected, we retrieve the PDF for the stochastic process without resetting. In the
case c→ 0, we obtain

ˆ̃pr(k, s|x0) = ˆ̃p0(k, r + s)
∞∑
n=0

(
r

r + s

)n
=
r + s

s
ˆ̃p0(k, r + s), (11)

which is the same result as the one for total resetting [45].

3. Lévy flights

Let us consider now the general case in which the underlying process Xt is a symmetric
Lévy flight [11, 88]. The associated characteristic function p̂0(k, t) of a symmetric Lévy
stable PDF is then given by [88–92]

p̂0(k, t) = e−D|k|
αt, (12)

which in Fourier-Laplace space reads (see also [93])

ˆ̃p0(k, s) =
1

s+D|k|α
. (13)

In real space this PDF becomes

p0(x, t) =

∫ ∞
0

dk

π
cos (kx) e−D|k|

αt, (14)
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with α ∈ (0, 2]. The case α = 2 corresponds to a Gaussian PDF, while for α ∈ (0, 2)

the asymptotic scaling of the PDF has the power-law tails p0(x, t) ' |x|−1−α [88–92].
The inverse Fourier transform in (14) can be performed by use of Fox H-functions (see
below), while in the special cases α = 1, 2 simple, explicit forms for the PDF p0(x, t)

can be found in terms of a Cauchy PDF and a normal Gaussian, respectively. We will
treat these two special cases in detail in the next sections.

In Fourier-Laplace space, using equations (8) and (13) we obtain the functions

ˆ̃qn(k, s|x0) = eikc
nx0

n∏
l=0

1

s+Dcαl|k|α
, (15)

and with equation (9) we find

ˆ̃pr(k, s|x0) =
∞∑
n=0

rneikc
nx0

n∏
l=0

1

r + s+Dcαl|k|α
. (16)

This PDF solves the fractional Fokker-Planck equation‖ (as shown in Appendix C)

∂pr(x, t|x0)
∂t

= D
∂α

∂|x|α
pr(x, t|x0)− rpr(x, t|x0) +

r

c
pr

(x
c
, t|x0

)
, (17)

where the space-fractional operator is defined in terms of its Fourier transform,
F{∂αg(x)/∂|x|α} = −|k|αg(k) [94]. Setting α = 2 and x0 = 0 we retrieve the dynamic
equation obtained in [80] corresponding to Brownian motion with PSR, see also below.
For 0 < c < 1 we can simplify equation (15) by using the partial fraction decomposition¶

ˆ̃qn(k, s|x0) =
eikc

nx0

sn

n∑
m=0

1

(c−α; c−α)m(cα; cα)n−m

1

s+Dcαm|k|α
, (18)

where the symbols in the parentheses denote the q-Pochhammer symbol defined as [95]

(a; q)n =
n−1∏
l=0

(1− aql). (19)

After inverse Laplace transform of ˆ̃qn we obtain

q̂0(k, t|x0) = eikc
nx0−D|k|αt, (20)

‖ This differential equation is sometimes called "pantograph" form, where this term means that there
are multiple points as arguments of the functions, in this case x and x

c , compare [97].
¶ Suppose having a function f : z ∈ C→ C having n poles z1, z2, . . . , zn of order 1. Then it holds that

f(z) = 2πi

n∑
i=1

1

z − zi
Res (f, zi) ,

where Res(f, zi) denotes the residue of the function at the pole zi [96].
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for n = 0 and, by use of the convolution theorem,

q̂n(k, t|x0) = eikc
nx0

n∑
m=0

1

(c−α; c−α)m(cα; cα)n−m

∫ t

0

dt′
(t− t′)n−1

(n− 1)!
e−Dc

αm|k|αt′ (21)

for n ≥ 1. We now perform an inverse Fourier transform,

qn(x, t|x0) =
n∑

m=0

1

(c−α; c−α)m(cα; cα)n−m

∫ t

0

dt′
(t− t′)n−1

(n− 1)!
p0(x− cnx0, cαmt′), (22)

for n ≥ 1. Then the formula for the propagator may be written in the compact form

pr(x, t|x0) = e−rt
∞∑
n=0

rn
n∑

m=0

1

(c−α; c−α)m(cα; cα)n−m

×
∫ t

0

dt′
(

(1− δn0)
(t− t′)n−1

(n− 1)!
+ δn0δ(t− t′)

)
p0(x− cnx0, cαmt′), (23)

where δij denotes the Kronecker delta and δ(t) denotes the Dirac δ-function. The formula
above is the second main result of the paper.

Let us show that expression (23) is indeed normalised. To this end we integrate
over x. Since p0 is normalised, we get∫ ∞

−∞
dxpr(x, t|x0) = e−rt

∞∑
n=0

(rt)n

n!

n∑
m=0

1

(c−α; c−α)m(cα; cα)n−m
. (24)

We prove in Appendix D that

n∑
m=0

1

(c−α; c−α)m(cα; cα)n−m
= 1, (25)

and therefore pr(x, t|x0) in (23) is normalised, as it should be.

3.1. Stationary distribution

The stationary distribution for Lévy flight-PSR can be obtained by setting the time
derivative in (17) to 0 and applying an inverse Fourier transform,

−D|k|αp̂(s)r (k)− rp̂(s)r (k) + rp̂(s)r (kc) = 0, (26)

which after iteration produces

p̂(s)r (k) =
∞∏
l=0

r

r +Dcαl|k|α
. (27)

In the limiting case α = 2 we obtain the same result as in [79,80]. We may ask whether
by taking the limit t→∞ in the general expression (16) for the propagator we get the
same formula (27). This agreement can indeed be demonstrated, compare the use of
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Cesaro’s and final value theorems for the specific case α = 2 as shown in one of the
appendices of [80]. The derivation can be directly extended for the generic α. Equation
(27) can be transformed by using partial fraction decomposition, yielding

p̂(s)r (k) =
∞∑
n=0

r

r +Dcαn|k|α
∞∏

l=0,l 6=n

1

1− cα(l−n)
=

1

(cα; cα)∞

∞∑
n=0

1

(c−α; c−α)n

r

r +Dcαn|k|α
,

(28)
which is the third main result of the paper. We note that for k = 0, by using a well-
known identity for q-Pochhammer symbols first discovered by Euler [95],

1

(cα; cα)∞

∞∑
n=0

1

(c−α; c−α)n
= 1, (29)

we see that the PDF is normalised. After inverse Fourier transform in equation (28) we
obtain the stationary PDF in position space,

p(s)r (x) =
1

(cα; cα)∞

∞∑
n=0

1

(c−α; c−α)n

∫ ∞
0

dk

π
cos(kx)

r

r +Dcαn|k|α
. (30)

This is another central result of this paper.
In the last expression the Fourier cosine integral can be solved analytically in terms

of Fox H-functions [98]. To this end we note first that the image function can be
identified with the H-function

1

1 + D
r
cαn|k|α

= H1,1
1,1

[
D

r
cαn|k|α

∣∣∣∣∣ (0, 1)

(0, 1)

]
=

1

α
H1,1

1,1

[(
D

r

)1/α

cn|k|

∣∣∣∣∣ (0, 1/α)

(0, 1/α)

]
, (31)

where in the second step we made use of a well known theorem of H-functions [98]. The
cosine transform then is merely a manipulation of indices [99], and we find

p(s)r (x) =
1

(cα; cα)∞

∞∑
n=0

1

(c−α; c−α)n

1

α|x|
H2,1

2,3

[
λ1/α|x|
cn

∣∣∣∣∣ (1, 1/α), (1, 1/2)

(1, 1), (1, 1/α), (1, 1/2)

]
, (32)

another main result of this work. Here we defined λ = r/D. We will consider in detail
the cases α = 1, 2 in the following sections.

4. Brownian motion with PSR

In the Gaussian case α = 2 the PDF p0 reads

p0(x, t) =
1√

4πDt
exp

(
− x2

4Dt

)
, (33)

hence the propagator (23) becomes

pr(x, t|x0) = e−rt
1√

4πDt
exp

(
−(x− x0)2

4Dt

)
+ re−rt

∞∑
n=1

∫ t

0

dt′
[r(t− t′)]n−1

(n− 1)!

×
n∑

m=0

C(2)n,m

1√
4πDc2mt′

exp

(
−(x− cnx0)2

4Dc2mt′

)
. (34)
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(a) (b)

(c) (d)

Figure 2: Propagator for Brownian motion with partial resetting. Solid lines represent
the analytical distribution (36), while symbols represent the simulations results. In (a)
the starting position is x0 = 0, while in (b)-(d) it is x0 = 5. The resetting factor c was
chosen as c = 0.5 in (a), c = 0.1 in (b), c = 0.5 in (c), and c = 0.9 in (d).

with time.

Here we used the abbreviation

C(α)n,m =
1

(c−α; c−α)m (cα; cα)n−m
. (35)

The integral over time can be performed analytically, yielding

pr(x, t|x0) = e−rt
1√

4πDt
exp

(
−(x− x0)2

4Dt

)
+ re−rt

∞∑
n=1

(rt)n−1

2D(n− 1)! Γ
(
n+ 1

2

)
×

n∑
m=0

C(2)n,mc
−2m
[
(n− 1)! cm

√
Dt 1F1

(
−n+

1

2
;
1

2
;−(x− cnx0)2

4Dc2mt

)
+

− Γ

(
n+

1

2

)
|x− cnx0| 1F1

(
1− n;

3

2
;−(x− cnx0)2

4Dc2mt

)]
, (36)

where 1F1 denotes the Kummer confluent hypergeometric function. We note that in [80],
the authors derived the Fourier-Laplace transform of the propagator for the special initial
condition x0 = 0. Our results above extend this result to an arbitrary initial condition
and we invert this general form to real space.

The PDF (36) is shown in figures 2 and 3 for different choices of the parameters.
The agreement between theory and simulations is excellent. The simulated PDF was
obtained with the algorithm described in Appendix E. We note that while the PDF
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Figure 3: Propagator for Brownian motion with PSR with starting position x0 = 5, and
for different values of the resetting factor c. The time is chosen as (a) t = 1 and (b)
t = 10.

stays symmetric around the origin when the process is initiated in x = 0, when the
initial condition is away from the origin, strong asymmetries of the PDF are observed.
These asymmetries relax as function of time, and eventually convergence to a stationary,
symmetric form. As seen in figure 2 the relaxation to stationarity requires more time
when the resetting factor c is closer to the value c = 1 in absence of any resetting.

To obtain a concrete form for the stationary distribution, we set α = 2 in equation
(32) to get

p(s)r (x) =
1

2(c2; c2)∞

√
r

D

∞∑
n=0

c−n

(c−2; c−2)n
e−
√
r/D c−n|x|, (37)

which is in agreement with [79].

5. PSR for the Cauchy case

In the case α = 1, for which the Lévy stable density is given by the Cauchy (Lorentz)
distribution, the function p0 reads

p0(x, t) =
1

π

Dt

x2 +D2t2
. (38)

With equation (23) we therefore find

pr(x, t|x0) =
Dt

x2 +D2t2
+re−rt

∞∑
n=1

∫ t

0

dt′
[r(t− t′)n−1]
π(n− 1)!

n∑
m=0

C(1)n,m

1

π

Dcmt′

(x− cnx0)2 + (Dcmt′)2
.

(39)
The integral can be performed analytically, yielding

pr(x, t|x0) =
1

π

Dt

x2 +D2t2
+

1

π
e−rt

∞∑
n=1

(rt)n

(n+ 1)!

n∑
m=0

C(1)n,m

Dcmt

(x− cnx0)2

× 3F2

(
1, 1,

3

2
;
n

2
+ 1,

n

2
+

3

2
;
−D2c2mt2

(x− cnx0)2

)
, (40)
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(a) (b)

(c) (d)

Figure 4: Propagator for Brownian motion and Lévy flight with PSR for (a) α = 2

(Brown), (b) α = 1.5, (c) α = 1.0 (Cauchy), and (d) α = 0.5. Parameters: x0 = 5,
D = 1, r = 1, t = 1, and c = 0.5.

where pFq(a1, . . . , ap; b1, . . . , bp; z) is the generalised hypergeometric function [95]. The
stationary PDF follows from equation (30)+. The integral for α = 1 is computed
explicitly in reference [87], and we find

p(s)r (x) =
1

π(cα; cα)∞

∞∑
n=0

1

(c−α; c−α)n

λ

cn

×
[(

π

2
− Si

(
λ|x|
cn

))
sin

(
λ|x|
cn

)
− cos

(
λx

cn

)
Ci
(
λ|x|
cn

)]
, (41)

where we again used λ = r/D, and where the sine/cosine integrals Si(x) and Ci(x) are
defined as

Si(x) =

∫ x

0

sin(t)

t
dt, Ci(x) =

∫ ∞
x

cos(t)

t
dt. (42)

In the case of total resetting with c = 0, this result coincides with the one obtained
in [87].

In figure 4 we plot the PDF (40) and the associated stationary PDF (41) along
with examples for Gaussian and other Lévy flight processes with α = 2.0, α = 1.5, and
α = 0.5. For the latter cases expression (23) was evaluated numerically. The agreement
with numerical simulations is excellent in all cases. A distinct feature are the strong
+ We may alternatively set α = 1 in equation (32)
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asymmetries in the PDF due to the initial condition. For lower α, i.e., longer-tailed
stable densities, the multimodal structure becomes more spiky. The multimodality of
the PDF can be anticipated from equation (3), according to which the PDF is a sum of
single-peaked functions centred on different positions.

6. Conclusions

We established a framework to calculate the time-dependent PDF in the presence of
partial resetting effects for homogeneous Markov processes with Poissonian resetting, in
which the process is partially reset by multiplication with a constant factor 0 < c < 1

at random times. We showed that, consistently, the limiting cases c → 0 and c → 1 of
this model correspond to total resetting [34] and a stochastic process without resetting,
respectively. We derived an exact representation of the PDF in the real space-time
domain for the case of general symmetric Lévy flights with stable index 0 < α ≤ 2,
including Brownian motion and Cauchy flights as particular cases for α = 2 and 1. As
our approach is valid for generic Markov processes, in the future other densities such as
asymmetric Lévy stable forms can be studied. For the case of non-zero initial conditions,
we reported highly asymmetric non-stationary PDFs for α = 2 and the emergence of
non-trivial inhomogeneous multimodal regimes with α 6= 2. We also determined the
stationary PDF for symmetric Lévy flights in terms of Fox H-functions and presented
the particular cases α = 2 and 1 in terms of elementary functions. Moreover, we also
showed how the resetting factor c influences the relaxation speed towards stationarity.

We expect that our results will find applications in systems ranging from the generic
theory of search processes over financial mathematics to population dynamics and
geophysics. In the future it will be relevant to work out the precise relaxation dynamics
towards the steady state and the tails of the PDFs under PSR dynamics. Moreover,
it will be important to determine the associated first-passage behaviour. Finally, as
another challenge we mention the description of non-Markov PSR-processes.
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Appendix A. Solution of last renewal equation

As stated in the main text, the solution of the last renewal equation (2) is given by
expressions (3) and (4). We now check this by inserting (3) and (4) into (2),

e−rt
∞∑
n=0

rnqn(x, t|x0) =

= e−rtq0(x, t|x0) + r

∫ t

0

dt′e−rt
′
∫ ∞
−∞

dye−r(t−t
′)
∞∑
n=0

rnqn(y, t− t′|x0)p0(x, t′|cy)

= e−rtq0(x, t|x0) + re−rt
∞∑
n=0

rn
∫ t

0

dt′
∫ ∞
−∞

dyqn(y, t− t′|x0)p0(x, t′|cy)

= e−rtq0(x, t|x0) + e−rt
∞∑
n=0

rn+1qn+1(x, t|x0)

= e−rt
∞∑
n=0

rnqn(x, t|x0) (A.1)

which completes the proof.

Appendix B. Fourier-Laplace identity

At the end of section 2, we used the following identity when we were checking the limit
c→ 1,

ˆ̃p0(k, r + s)

1− r ˆ̃p0(k, r + s)
= ˆ̃p0(k, s), (B.1)

which is valid for time and space-homogeneous propagators. First we point out that the
right hand side does not depend on r. This should not be surprising: we are considering
the limit in which PSR does not affect the motion, hence the rate r should not play any
role in this case. Nevertheless, this identity is indeed valid for general Lévy processes.
It can be proved by using the Lévy-Khinchine theorem [91] which gives an analytical
general expression for the characteristic function of Lévy process,

p̂0(k, t) = exp

(
t

(
aik − 1

2
σ2k2 +

∫
R\{0}

(
eikx − 1− ikx1|x|<1

)
Π(dx)

))
, (B.2)

where a ∈ R, σ ≥ 0, and Π is the Lévy measure of the process. Hence, the Laplace
transform of this expression has the following form

ˆ̃p0(k, s) =
1

s+ f(k)
, (B.3)

for some function f(k). Let us substitute this expression into the left hand side of (B.1),

1

r + s+ f(k)

(
1− r

r + s+ f(k)

)−1
=

1

s+ f(k)
, (B.4)

so that we showed that the left and right hand sides are identical.
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Appendix C. Equivalence between first renewal and Fokker-Planck equation

We stated in the main text that the system may be equivalently described via the
fractional Fokker-Planck equation (FPE) (17). We show here that the solution (16) we
obtained for Lévy flights is indeed a solution of the FPE. The FPE in Fourier-Laplace
space reads

− eikx0 + s ˆ̃pr(k, s|x0) = −(r +D|k|α)ˆ̃pr(k, s|x0) + r ˆ̃pr(kc, s|x0), (C.1)

which can be rearranged in the form

(r + s+D|k|α)ˆ̃pr(k, s|x0) = eikx0 + r ˆ̃pr(kc, s|x0). (C.2)

Substituting (16) in the last equation we get

∞∑
n=0

rneikc
nx0

n∏
l=1

1

r + s+Dcαl|k|α
= eikx0 + r

∞∑
n=1

rneikc
nx0

n∏
l=1

1

r + s+Dcαl|k|α
, (C.3)

where we changed the summation index and use the convention that the empty product∏0
l=1 = 1. Alternatively, we could have derived equation (16) from (C.2). Nevertheless,

we preferred adopting the more general equation (9) for the specific case of symmetric
Lévy flights.

Appendix D. Normalisation identity

When we discussed normalisation we encountered the identity (25). This identity is an
immediate consequence of the q-binomial theorem and may be proved by using corollary
(c) in section 10.2.2 of [95]. Indeed, we know from this reference that the following result
holds for |x|< 1 and |q|< 1,

n∑
m=0

(q; q)n
(q; q)m(q; q)n−m

(−1)mq
1
2
m(m−1)xm = (x; q)n. (D.1)

If we set x = q in the previous formula we get

n∑
m=0

(q; q)n
(q; q)m(q; q)n−m

(−1)mq
1
2
m(m+1) = (q; q)n. (D.2)

The factor (q; q)n can now be simplified on both sides, and the general term of the
summation can be rewritten as

n∑
m=0

1

(q; q)m(q; q)n−m
(−1)mq

1
2
m(m+1) =

n∑
m=0

1

(q; q)n−m

(
m∏
l=1

1

1− ql

)
(−1)m

q−
1
2
m(m+1)

= 1,

(D.3)
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where we used the definition of the q-Pochhammer symbol to rewrite the term (q; q)m.
We now notice that(

m∏
l=1

1

1− ql

)
(−1)m

q−
1
2
m(m+1)

=
m∏
l=1

1

1− q−l
=

1

(q−1; q−1)m
. (D.4)

Therefore,
n∑

m=0

1

(q−1; q−1)m(q; q)n−m
= 1, (D.5)

which completes the proof.

Appendix E. Numerical simulations

To confirm our analytical results, we simulated the stochastic process and compared the
results with the analytical distributions given in equations (23) and (30). Numerical
simulations are pretty straightforward and simple. Nevertheless, for the sake of clarity,
we include a brief summary of the simulations strategy. The algorithm to generate the
random variable Yt is

(i) sample the total number of partial resetting eventsNt from a Poissonian distribution
with rate r;

(ii) sample T1, T2, . . . , TNt uniformly on the interval [0, t]. This is equivalent to sampling
all random variables {Ti}Nti=1 until saturation of the total time t;

(iii) sample displacements between partial resetting events XT1 , . . . , XTNt
from a sym-

metric α-stable distribution by using the library AlphaStableDistributions.jl
available in the Julia language package;

(iv) use equation (1) to compute Yt.

In all cases we sampled 5 · 107 values of the random variable Yt and we computed a
histogram. Therefore, our naive algorithm only allows the sampling of typical values of
the random variable Yt.

Concerning the analytical distribution, we directly implemented equations (23) and
(30) computing the integral with adaptive Gauss-Kronrod integration as implemented
in the GNU Scientific Library (GSL). Since the integrand value of p0 is often very
small, we instead calculated the integral for exp(κ)p0(x− cnx0, cαmt) with suitable shift,
e.g., κ = (x− cnx0)2/(4cαmt) for a Gaussian, and multiplied the integral with exp(−κ)

afterwards. For this purpose and for performing the sums, also because the summation
terms often have alternating sign and strongly varying magnitudes, we used the high
precision library mpfr with 200 bits precision for these operations. We also point out
that, concerning the Brownian and the Cauchy cases, the explicit formulas (36) (40) are
not easy to compute due to the poor implementation of hypergeometric functions. To
the authors’ knowledge, this issue is common in many programming languages.
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