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Abstract

We study the distributions of the resilience of power flow models against transmission line failures via
aso-called backup capacity. We consider three ensembles of random networks, and in addition, the
topology of the British transmission power grid. The three ensembles are Erd6s—Rényi random
graphs, Erd6s—Rényi random graphs with a fixed number of links, and spatial networks where the
nodes are embedded in a two-dimensional plane. We numerically investigate the probability density
functions (pdfs) down to the tails to gain insight into very resilient and very vulnerable networks. This
is achieved via large-deviation techniques, which allow us to study very rare values that occur with
probability densities below 10~'°°. We find that the right tail of the pdfs towards larger backup capa-
cities follows an exponential with a strong curvature. This is confirmed by the rate function, which
approaches alimiting curve for increasing network sizes. Very resilient networks are basically char-
acterized by a small diameter and a large power sign ratio. In addition, networks can be made typically
more resilient by adding more links.

1. Introduction

Stability and control of power grids have not only been investigated by engineers [1, 2], for whom rotor angle
and voltage stability play an important role, but they have also attracted attention in the physics community. By
generalizing the swing equation [ 1, 2] of a synchronous machine to small networks using the well-studied
Kuramoto model [3, 4], Filatrella, Nielsen, and Pedersen [5] stimulated many studies in this field. In [6], the
synchronization of this dynamical model on the topology of the power grid of the United Kingdom (UK) is
investigated. While [7, 8], analyzed this Kuramoto-like model with respect to its application for power grids, in
[9, 10], synchrony-optimized networks with Kuramoto oscillators were constructed. More generally,
synchronization of oscillators with spectral methods was put under scrutinyin [11-13].

In addition, many studies [ 14—22] deal with load models and analyze the vulnerability of networks due to
node failures and the resulting cascading failures that might occur.

Here, we are not interested in the stability of dynamical systems, but rather in the resilience of networks. In
[23], the resilience of a very basic model for transportation networks was investigated by introducing a ‘backup
capacity’ (see below) and using large-deviation techniques. The model in [23] assumes that one unit of some
‘quantity’ is transported between all pairs of nodes along the shortest paths. In the present work, we study a very
different model, which is still quite simple but designed for modelling power grids based on the laws of
electricity. Specifically, we introduce a power flow model on networks based on the fixed points of a Kuramoto-
like model [5, 6] and a linearized direct current (dc) power flow model (see, e.g., [24]) as used in electrical
engineering, respectively.

The resilience is defined by the backup capacity. This quantity measures the overcapacity of the transmission
lines, which is needed to ensure stable operation when the most-loaded link in the network exhibits a failure. We
obtain the probability density functions (pdfs) of the resilience for three different random network ensembles
and the topology of the power grid of the UK.

We are interested in obtaining the pdfs of these ensembles over a large range of the support, because a
probability distribution contains the full information of a stochastic system in contrast to a finite number of
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moments (e.g., mean or variance). Therefore, to make statements about the different ensembles concerning the
resilience, we need the whole pdf, including the low-probability tails. By obtaining these tails, we are also able to
obtain the properties of very vulnerable (high backup capacity) and very resilient (low backup capacity)
networks. The analysis of these very resilient networks allows us to derive design principles for a resilient future
power grid.

Furthermore, given the backup capacity of an existing network, one can compare it with a suitable network
ensemble. The cumulative probability of finding a more resilient network (with smaller backup capacity) in the
ensemble yields a quality measure for the investigated network. This is the so-called p-value, which is a standard
quantity in statistics that estimates the significance of a result. Sometimes, one needs to access the low probability
tails of a pdf, as in the present approach, where we want to study optimized, high-resilience power grids. This is
analogous to the calculation of significance of protein alignments, where one also needs to access the tails of the
pdf, since proteins are optimized by evolution [25]. For an example of the p-value calculation, see section 6.1.

The paper is organized as follows. In section 2, the studied model and its simplification to static flow
equations are described. Section 3 deals with the determination of the backup capacity, and hence the resilience
of anetwork against transmission line failures. Next, section 4 presents the investigated random network
ensembles and the topology of an existing power grid. After this, the simulation and reweighting techniques are
explained in section 5. Section 6 provides the numerical results of the simulations. Last, a conclusion is drawn
and a short outlook is given.

2.Model

2.1. Kuramoto-like model

We use a simplified model of interconnected synchronous machines, derived from the dynamics of the rotor, to
model a power grid. The classic constant-voltage behind transient-reactance model then gives the swing
equations (see, e.g., [1, 8]) which are derived from energy conservation. The Kuramoto-like model used in

[5, 6, 8] is directly related to this swing equation. On each node, , of the network, either a synchronous generator
or a synchronous motor are placed. The generators exhibit power plants and therefore produce power

(PP > 0), whereas the motors consume power (P°""° < 0).

Note that only active power is considered here, and all transmission lines are regarded as lossless. These
simplifications appear justified to us, since for the first time, the resilience properties of models for electric power
grids are studied over the almost-complete ensemble, even in the regime of extreme networks. Thus, our work
lays a solid foundation for later comparisons to more sophisticated models. For example, in [1, 8], an extension
of the model studied here applies to transmission lines with losses (using the admittance matrix) and nodal
voltages are explained. A further expansion of the model with reactive power is given in [7].

Each synchronous machine i can be described [5, 6] by its mechanical phase 8; = Qt + ¢, where 2is the
angular frequency of the power grid (27:50 or 2760 rad s ') and ¢, is the phase deviation. Note that the
mechanical phase deviation ¢, is the same as the electrical angle §, except for a constant factor, namely the
number of poles 71p of the synchronous machine [1]: 8. = (np/2) ¢;. To derive the equation of motion for ¢;, one
needs to consider energy (or power) conservation [5, 6], so that for each synchronous machine i

Pisource — Pidiss + Piacc + Piﬂow’ (1)

where 2 0, depending on whether the machine is a generator or a motor. P2 and PA° are the dissipated
and accumulated power, respectively. The power flow between two units i and j is given by [5, 6]

source
P i

Piov =~ sin (0, - 6;), (2)

where E}‘/IAX is the maximum capacity of the power line, which connects the nodes i and j. The power flow of
node i is therefore given by the sum of the flow to all its neighbors

Pl = Y P sin (4, - 4, (3)
j

where we haveused6; — 6; = ¢; — ¢; andPi}VIAX

= 0 if the edge between i and j does not exist.
From (1) follows the equation of motion (for details see [5, 6]) for the phase deviation of unit i

¢i:B—K¢5i+ZK}Y{AX sin ((15]'_451')’ (4)
j
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where k is a damping parameter. We apply uniform links (i.e., Ki;-\AAX = KMAX) ifalink exists between nodes i

K,-;\/IAX = 0 otherwise. The powers P; are directly related to P;°"*° (cf, [5, 6]). Note that (4) is a version
of the famous Kuramoto model [3, 4].

andj,and

2.2. Simplifications leading to a power flow model _
Here, we use a static approach, so we are only interested in the fixed points of (4). Hence, setting ), = ¢, = 0
yields

B=-Y KM sin (¢j - (l%)- (5)
j

As we are not interested in the region close to the phase transition (where global synchronization sets in), as
seen, for example, in [6, 26], we choose quite a large value for the maximum capacity of the power lines. In fact,
we choose KMAX = 5 . N, Therefore, the argument of the sine in (5) needs to be small to fulfill the equation, as
we choose the consumed and produced power P; uniformly from the interval[—1, 1], respectively. Hence, we
expand the sine and obtain

Pi=—zK}>4AX (¢j_¢i)> (6)
i

which is a linear equation. It is independent of initial conditions and represents the power flow balance for each
machine i. It is equivalent to the linearized DC (LDC) power flow model (for an overview, see [24]) used in
electrical engineering. The most popular variant of the LDC model uses the following simplifications [27] to
derive the equations from the alternating current model. Please note that all approximations mentioned here
also apply to the model studied in this work. First, the (absolute value of the) conductance of the transmission
lines needs to be small in comparison with the susceptance (i.e., lossless lines corresponding to zero resistance).
Second, the phase angle difference is small, so thatsin (¢; — ¢;) & ¢; — ¢; holds. Third, the nodal voltages are

|E;| & 1and are constant over time.

3. Resilience

The observable that quantifies the resilience of a network is based on the power flows between the synchronous
machines in the power grid. These flows between two nodes i and j are basically given by (2), where only the
variables have been changed. Thus, we define

Ko = [k sin (0, - 01)), (7)

where we use the absolute value to be independent of the direction of the flow. To calculate this power flow for all
nodes, the investigated network needs to be connected (i.e., no isolated nodes exist). In the sampling described
in section 5, it is ensured that only connected networks are used.

To determine the power flows, (6) is solved numerically [28] with given uniformly distributed B, € [—1, 1]
and fixed KMAX = 5.N. The solutions for the phase deviations ¢, are then used in (7) to calculate the power
flows for all links in the network.

i ]-}Ki]ﬂ‘)w with the highest load (power flow) in the network is
removed, mimicking a failure in the transmission line. Selecting the highest-load line results in a good estimate
of the worst-case single-line failures [23]. Afterwards, equation (6) is solved again, and the power flows (7) of the

Next, the transmission line e, = argmax;

network are recalculated, resulting in flow values {K-Jﬂow } of the modified network. Now, the backup capacity is
defined as the highest increase of the power flow over all edges

By = max (K™ - K["). (8)
{i.j}

If the removal of ey, disconnects the network By = oo so these networks are neglected in the sampling. Due
to the reorganization of the flow pattern, in some links a decrease of the power flow is also possible, so that some
R < Kfov,

These backup capacities represent the resilience of a network against the failure of a transmission line. Note
that the ability of a system to get back to stable operation after a single outage of a component (e.g., a
transmission line) of a power grid is called the N — 1 criterion in electrical engineering. It is used in the planning
and maintenance of power grids. Here, the backup capacities give an estimate of how much additional capacity
of the transmission lines needs to be maintained to keep them stable, even if one line breaks down. For small
values of B the network structures are quite resilient, so little additional (over)capacity for the lines is needed. In
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Figure 1. Topology of the power grid of the UK [6, 21, 29] with N = 120 synchronous machines and M = 165 transmission lines.
Generators (P, > 0) are labeled O and motors (B, < 0) are denoted by [ll. Half of the synchronous machines were chosen as generators
and the other half as motors. The dashed line in the southeast denotes the transmission line ey, with the highest power flow

|K flow | = 1.294 which connects machines with powers B;; = —0.76 and B15 = 0.95. After the removal of this edge, the power flow in
the transmission line depicted in bold (a bit to the west of the highest-flow line, ey,,x) increases most. Actually, it takes all the flow from
emay, and it therefore defines the backup capacity B; = 1.294. Map of the UK from [30], changed.

cases where there is large backup capacity, the network structure does not allow for the compensation of a single-
line failure so easily, and therefore it is less resilient.

4. Networks

In this work, we investigate one existing network and different network ensembles. We used the topology
[6,21,29] of the British power grid (see figure 1) to determine the resilience of this grid when generators and
motors are randomly placed on the nodes.

In addition, we obtained the pdf by means of a histogram of this resilience when one starts with the British
grid with the same distribution of synchronous machines and uses the procedure for Erd6s—Rényi graphs with a
fixed number of edges (see section 5). A more detailed discussion about figure 1 and the pdf of the resilience is
given in section 6.

The studied network ensembles are the Erd6s—Rényi (ER) graph ensemble [31] and a spatial network
ensemble [32]. The different parameters in these network models are chosen such that each node has, on
average, three neighbors. This should take into account that real transmission grids are sparse, with an average
number of neighbors per node of (k) = 3. For the North American power grid, Kinney et al [19] report about
N = 14 000 substations and M = 20 000 transmission lines, resulting in (k) ~ 2.9. Watts and Strogatz [33]
found(k) = 2.67 for the the electrical power grid of the western US For the European transmission grid, Solé
etal [22] state avalue of (k) = 2.70.

The simplest type of random network is an ER random graph. In this ER network ensemble [31], no
assumptions on the topological structure of the network are made. It is therefore an ideal ensemble to be
compared with, for example, spatial networks to see the effects of the topological structure. The creation of an
ER network works as follows. One starts with an empty network of N nodes. Then, each pair of 7, jnodes is
connected with the probability
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p;" = c/N. (9)

Thus,c = (k) = 3 is the connectivity of the network ensemble.

Next, we consider spatial networks [32] that are embedded in a two-dimensional plane. Each of the N nodes
is distributed uniformly at randomina[0, 1] X [0, 1] plane, so to each node an x- and a y-position are assigned.
Alink is added between nodes i and j with probability

pl.]sN =f (1 + Nz dij/a)_a, (10)

whered;; = [(x; — x;)* + (v — )’j)zlm

is the Euclidean distance between the two nodes. The parameters fand
have been chosen such that an average number of neighbors, (k) ~ 3, is achieved. For all considered system
sizes, N,we useda = 3 and f € [0.54, 1.9] (in decreasing order for increasing system size, N).

In addition, we also used the ER ensemble with a fixed number of links.

5.Simulation and reweighting method

To determine the pdfs over alarge range of backup capacities for the different graph ensembles, we use a
reweighting technique. For details on the derivation of this technique, we refer to [23, 25, 34] and state only the
main ideas and results that are important for the determination of the pdf.

The main method of reaching very small probabilities or probability densities of the order 10" is the use of
an additional Boltzmann factorexp (—B; (G)/T) in a Markov-chain Monte Carlo (MC) simulation generating
network instances. This is different from simple sampling, where the network realizations are drawn directly and
independently with their natural ensemble weights. The parameter T'is an artificial temperature, which makes it
possible to sample different regions of the pdf of B. The argument G is the investigated network in the current
MCstep t.

This MC simulation works as follows. In each step ¢ of the simulation, a candidate network G* from the
current network G(#) is created in the following way: First, a node i is chosen uniformly at random. For the
different network ensembles, diverse techniques are now used. In the case of ER graphs, all adjacent edges to i are
removed, and with probability pi]}.:‘R = ¢/N, alinkis added for each other node j. For an ER with a fixed number
of edges, all adjacent edges to i are also removed. Next, node i is connected with an equal number of randomly
chosen feasible nodes and removed edges. Hence, the number of edges is preserved. For spatial networks, the
procedure is the same as for ER graphs, but the probability to add alink is now pl.jSN (see (10)).

Next, we check whether the graph G* is connected. If this is not the case, the above procedure is repeated on
G until a feasible network G* is found. Note that the initial networks also need to be connected. Therefore, ring-
type or complete (all N (N — 1)/2 edges present) networks are created in the beginning, and the MC simulations
with the above-described procedure run until the desired connectivity is reached. For ER networks with a fixed
number oflinks, the procedure for ER graphs with a flexible number of links is used for this purpose.

After the candidate graph G* is created, its backup capacity B is calculated. The candidate graph is then

accepted (G (t + 1) = G*) with the Metropolis probability
e = min {1, (| B(6Y - mGn ] 7) | (1)

otherwise the current graph is kept, (G (t + 1) = G (1)).
From [23, 25, 34]

p(B) = exp (B/T)Z(T)p, (B) (12)

one can determine the full pdf p (B; ) with pdfs p,. (B; ) measured at different finite temperatures Tup to a
normalization constant Z(T). This constant can be determined by choosing two histograms of neighboring
temperatures. In the overlapping region, the pdfs need to agree, which makes it possible to calculate Z(T) via
(12).Inan iterative procedure, the histograms are ‘glued’ together until the full pdfis obtained. A more detailed
explanation with examples about the merging of the different histograms is given in [35].

In order to check whether the MC simulations are equilibrated, two different initial networks are used: a ring
graph, where all nodes have two neighbors, and a complete (fully connected) graph. Equilibration is reached
when both values of B; agree within the range of fluctuations. For the ensemble with a fixed number of links, we
studied the average of B; over MC sweeps to determine the equilibration time. The longest equilibration time we
observed was 2-10° sweeps for ER networks with N = 50 nodes.
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Figure 2. (a) Probability density function np (Bs) of the backup capacity B; for ER networks with N=120 and M =165 (ﬁxed) starting
from the UK grid (see figure 1). About 10” samples are used to generate this pdf. (b) Scatter plot of the power flow K,/ oW before the
removal of the highest-load link through the edge that exhibits the highest flow increase (i.e., later defines the backup capac1ty) against
the backup capacity B; for N=100, an ER ensemble, and 10° samples. Dashed line represents K [ flow — p,.

6. Results

We performed simulations for the UK grid, ER networks, spatial networks, and ER graphs with a fixed number
of links. For all networks except the UK grid, we used networks of size N = 10 up to N =400. For ER and spatial
graphs, the determination of the (possibly) full pdf of the resilience for N = 400 was not possible, as a large gap in
this pdf appeared. The histograms for different temperatures have their peak either below or above this gap,
which made it almost impossible to sample in this gap. One way to overcome this is Wang-Landau sampling
[36], which we did not try. Nevertheless, we also took data for these two ensembles for N =400 to analyze other
quantities (see section 6.3).

After leaving out the data before equilibration time and taking samples only in intervals such that the Markov
chain is roughly decorrelated, our final data sets contain between about 5 - 103 samples for N = 400, up to almost
10” samples for N =

The consumed and produced powers P; are drawn from a uniform distribution b, € [—1, 1]and sum up to
zero Y, B = 0. Furthermore, a combination of{B } is chosen such that the same number of generators (B > 0)
and motors (P, < 0) are drawn. Most simply, sets of random numbers from the interval[—1, 1]were drawn until
all above criteria can be fulfilled by assigning the last node. This is a bit time consuming, but has to be performed
only once during a simulation: the power values attached to the nodes are not changed during the Markov chain
MG, since all possible networks can be accessed via changing the edges.

6.1. Probability density functions of the backup capacity
First, we analyze the probability density functions of the backup capacity for the different network ensembles, as
well as for the UK power grid.

Figure 2(a) shows the pdf of the resilience for ER networks with a fixed number of links and N = 120 nodes,
based on the UK grid (see figure 1). The procedure for creating a candidate graph in the large-deviation scheme
is the same as for ER graphs with a fixed number of edges (see section 5). Note that we only used one histogram
with simple sampling corresponding to the temperature T = +o0. Nevertheless, backup capacities from smaller
than 0.4 up to 2.8 could be measured. In figure 2(a), we can see an interesting double-peak structure in the pdf,
where the right peak is higher than the left. In these peaks, the networks with typical values of the backup
capacity are represented like the initial network of the simulation. When taking a closer look at the two peaks,
consider the power flow Kef}fgw before the removal of the highest-load link through the edge e, which later

defines the backup capacity (i.e., exhibits the highest flow increase). In figure 2(b), where K, ﬂ°w is plotted against
the backup capacity, two clusters become visible. One cluster is represented by a very small ﬂow throughep,
before removal of e, and quite high values of By (cluster below the dashed line). This cluster corresponds to the
right (higher) peak of the pdf. An explanation for the left peak is that it belongs to the cluster, where a
considerable flow through ep, is already present in the network, and thus the flow increase B; is rather small (the
cigar-shaped cluster at small B;, many points above the dashed line).

6
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Figure 3. (a) Probability density functions p (B ) of the backup capacity B; for ER networks with sizes N =10 up to N = 200. Inset:
Region close to the peaks of the pdf for N'= 10 and N = 200. Lines are guides for the eyes only. (b) Peak positions Pf™* of the left peak in
the pdfs for ER networks as a function of network size, N. Dashed line is a logarithmic fit (N = 50 excluded) P 2k (N)=q-In(b-N),
with parametersa = 0.146(8) andb = 0.44(6). Inset: the same as for the left peak. The dashed line is a logarithmic fit (N = 50
excluded) Pﬁ’eak (N) =c-In(d - N)with parametersc = 0.216(17) andd = 0.79(26).

The UK grid (see figure 1) has a backup capacity of P; = 1.294, which is in this region of typical networks.
Nevertheless, in principle much more resilient networks exist. This is confirmed by the p-value of the UK grid
shown in figure 1. To obtain the p-value, we calculate the cumulative probability that networks with smaller (or
equal) backup capacity exist in the ensemble: P (B; < Pg) = 0.67. This value tells us that the probability of
finding a more resilient network than the UK grid in the ER ensemble with fixed edges (N =120, M = 165) is
higher than 2/3. This means the UK grid, as depicted in figure 1, has a low significance in terms of resilience
because of the large p-value. The right tail of the pdf follows an exponential, resulting in a line in a logarithmic

plot, whereas the left tail is much more curved.

Next, we compare the results for ER networks, spatial networks, and ER graphs with a fixed number of links.
For all these ensembles, we obtained the pdf over the possibly full support of Bs. For many of the pdfs, it was quite
difficult to obtain the far-left or far-right tail. For very small values of the backup capacity (corresponding to
small positive temperatures in the large-deviation approach), the histograms tend to become delta shaped,
meaning the observable B; becomes almost constant over MC time. The large values of the backup capacity (i.e.,
small negative temperatures) are even more difficult to obtain. In the simulations, one could see that the
maximum value of B; could hardly be reached in the pdfs, as sampling in this region results in a delta
distribution. This is also visible in the finally obtained pdf (see e.g., figure 3(a)), because as the values of B get

closer to the maximum, a strong curvature appears.

Figure 3(a) shows the pdfs of the backup capacity for ER networks on almost the full support for different
graph sizes N. In the inset of 3(a), the double-peaked structure of the pdfs for the smallest and the largest
obtained networks are shown. For increasing graph size N the double peaks shift toward larger backup
capacities. We found that this shift is logarithmic in N (see figure 3(b)). Interestingly, the right peak becomes
more pronounced for N =200 in comparison to N = 10.

With the large deviation approach described in section 5, one can access typical, very resilient, and very
vulnerable networks. Typical networks close to the double peaks of the pdfs show a rather small backup capacity.

In figure 3(a), very vulnerable networks with a large backup capacity of B ~ 45 for N= 200 are very rare and
appear only with a probability density of about 10~°°. Note that such small probabilities (densities) are
impossible to reach with ordinary MC simulations. These vulnerable networks are located at the right tail of the
pdf. Although this tail is compatible with an exponential, a strong curvature occurs when the maximum possible
value of the backup capacity is approached. For transportation networks [23], the right tail of the pdf does not
show any curvature. The very resilient networks can be found in the left tail, close to the peaks of the density
function.

In figure 4(a), the pdf for the ER graphs with a fixed number of edges is shown. Again, the peaks move
logarithmically to the right with increasing N. As for ER networks with a variable number of links, the right peak
is almost twice as high as the left peak for N=200. In contrast, for N = 10, the peaks have almost the same height.
The curvature of the right tail is not as strong as for ER or spatial networks.

Figure 4(b) shows the results for the spatial network model, where the nodes of the network are placed in a
two-dimensional plane. As found for the other network ensembles, the peaks in the inset of figure 4(b) shift

7
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Figure 4. Probability density functions p (B ) of the backup capacity B; for given networks. Inset: region close to the peaks of the pdf
for N=10 and N =200. Lines are guides for the eyes only.

logarithmically towards the right with a growing number of nodes. The two peaks differ less in height for N=200
than for N = 10. The curvature of the right tail is stronger than for the ER ensemble with a fixed number of links.

Next we compare the resiliences of typical, very vulnerable, and very resilient networks for the different
ensembles. For the typical networks, we investigate the right (usually higher) peak of the pdf for N=200. For the
ER network ensemble, the typical networks exhibit quite a small backup capacity of By ~ 1.065, followed by the
ER ensemble with a fixed number of links (B; & 1.115). The typical spatial networks are almost as resilient, with
B ~ 1.163. A similar order of peak positions has been found for the left peak.

Very vulnerable networks at By &~ 44 for N =200 are most unlikely for the ER ensemble with a fixed number
oflinks (p (B; &~ 44) ~ 1071%). For the ER ensemble, this probability density at B; &~ 44 is about 10~5,
Networks from the spatial network ensemble have densities of about 10 %% at By ~ 44. These results support the
findings for the typical networks, because for the two ER ensembles, it is unlikely that one would find very
vulnerable networks (i.e., with a large backup capacity). The graphs from the spatial network ensemble exhibit
the highest densities at large backup capacities, and thus favor less resilient networks.

Very resilient networks at B & 0.024 for N = 200 are most unlikely for the ER network ensemble with a fixed
number of links, where p (B ~ 0.024) ~ 1072, For the spatial (p (B ~ 0.024) ~ 1077) and ER
(p (B ~ 0.024) =~ 107**) network ensembles, the densities to find a network with By & 0.024 are almost equal.
In contradiction to what has been found previously, the ER ensemble with a fixed number of links exhibits quite
low densities around B ~ 0.024. Both spatial and ER network ensembles favor very resilient graphs, which have
small backup capacities.

These results need to be taken with care, because as for the ensemble with a fixed number of edges, arbitrarily
small backup capacities cannot be reached. In contrast, for the two ensembles with a flexible number of links,
many edges are allowed to be present in the networks, and specifically, the complete graph (each node is
connected to all other nodes) is included in these ensembles. Therefore, the probability densities at low B; for the
ensembles with a flexible number of links are a factor of 10'® higher than for the ER ensemble with a fixed
number of links.

To sum up, the most promising network ensemble in terms of resilience is the ER ensemble, although it is
high dimensional (i.e., quite unrealistic). The ER ensemble with a fixed number of links is also quite resilient
against transmission line failure. The more realistic (it is embedded in a two-dimensional plane) spatial network
ensemble is also a good candidate for choosing resilient networks, although vulnerable networks are quite likely.
These findings are compatible with [23], although a much simpler, very general transport model was studied in
that reference.

6.2. The rate function
Next, we investigate the behavior of the so-called rate function [37, 38]

@:—%logp(ﬂg), (13)
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which is based on the fact that the leading behavior (away from the typical instances) of the pdfis an exponential
decay, p (B;) ~ e ™3, Figure 5(a) shows the rate function as a function of the rescaled backup capacityr = B/N
for the ER ensemble with a fixed number of links. This rescaling is motivated by the following observation.
Consider a network that consists of two large @ (N) subnetworks, which are connected via a core (e.g., a triangle,
cf, [23]) with generators on one side and motors on the other. In this setup, the most power has to flow through a
single link in the core. After the removal of this high-loaded link, the power flows through the other two core
links of the triangle. Hence, the backup capacity increases by an amount of ~ N, as the power flows of N/2 nodes
run through these two links.

In figure 5(a) one sees that the rate function approaches a limiting curve as Nincreases. Below a certain value

r = r* this curve is approached from below, whereas above ¥, the curve is approached from larger values of @.
The point r* moves toward smaller values of ras N increases. For N = 400, deviations from this behavior for large
rcan be observed. Although the limiting curve is not compatible with a straight line as in [23], an exponential
behavior with strong curvature for p (B ) is still possible.

Note that the rate functions for the other graph ensembles look similar, with basically the same limiting
behavior. This apparent convergence of the empirical rate function indicates that it might be promising to apply
analytical large-deviation techniques [37, 38] to study the resilience of power grids for these graph ensembles.

6.3. Characterization of very resilient and very vulnerable networks

Next, we investigate the relationship between the backup capacity (i.e., resilience) and the number of edges in
the graph for the ER and spatial network ensembles. Hence, we used our simulation results to bin data jointly for
all different temperatures T with respect to the number of edges N.. In each of these bins, the average backup
capacity is calculated and the result is shown in figure 5(b). For a small number of edges in the network, the
backup capacity is very large. However, for many edges, B assumes very small values. This means that in general,
anetwork with more edges is more resilient than a network with fewer edges. Note that addingalink toa
network can sometimes destabilize it, according to Braess’s paradox [39]. With our data, it is not possible to
determine whether the steep decrease of the backup capacity appears at smaller N, for the ER or the spatial
network ensemble. In [23], the decrease appears at a smaller number of edges for the ER ensemble. Thus, in
contrast to general transportation networks, it is possible to obtain very resilient power grids embedded in a two-
dimensional plane with the same effort (i.e., number of edges) as for an infinite-dimensional (i.e., less restricted)
ER ensemble.

Figure 6(a) shows the average diameter for all studied network ensembles and N = 400. The diameter of a
network is defined as the longest of the shortest paths between all possible node pairs. First, abinning of the data
with respect to the backup capacity is performed, and then the diameters are averaged within each bin. In the
inset of figure 6(a), one can see that with increasing backup capacity, the diameter also increases, at least for small
values of B;. Networks from the ER ensemble have the smallest diameter, followed by networks from the ER
ensemble with a fixed number of links in this small B region. Networks from the spatial network ensemble also
reveal the largest diameters for large backup capacities. Interestingly, graphs from the ER ensemble have rather
large diameters for larger backup capacities, whereas for smaller B the diameters are the smallest of all the
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ensembles. These results are somehow the opposite of what was found in [23], where networks from the spatial
network ensemble reveal the smallest diameter for small backup capacities.

Networks from the ER ensemble with a fixed number of edges show a decrease in the average diameter above
B ~ 45, and a small increase for very large backup capacities. This shows that the diameter only serves as a good
observable to determine the resilience of a power flow network if the edge number is flexible. Clearly, for real-
world situations where the number of links is an economic factor, one aims for a minimal, or at least constant,
edge number. Thus, for network ensembles with a fixed number of edges, other quantities may be considered.

One quantity is, for example, what we call a power sign ratio (cf, [9, 10], where a frequency sign ratio is used to
characterize synchrony-optimized networks). This quantity measures the fraction of links that connect
synchronous machines whose power P; has an opposite sign compared to the total number of edges in the
network. In figure 6(b), the average of this quantity is shown for the studied network ensembles. The averagingis
performed in the same way as for the graph diameter. For small B; the power sign ratio is close to 0.5 for all
network types. This means that on average, from any two edges in the graph, one of them connects machines
with opposite signs of the power. This corresponds to the purely random case, since half of the nodes exhibit
positive power and half exhibit negative power. Clearly, for increasing backup capacity (i.e., decreasing
resilience), p_also decreases. For networks from the spatial network ensemble, this decrease is the most shallow.

Similarly to [9, 10], where a increasing value of the frequency sign ratio p_indicates enhancement of
synchrony, here p (with the powers P;) serves as a good indicator for the resilience of power flow networks.

7.Summary and outlook

We studied the resilience of power-flow models on networks against the failure of a transmission line. We
analyzed three different random network ensembles, namely ER, spatial, and ER networks with a fixed
number of edges and in addition the topology of the UK power grid. The key quantity for determining the
resilience of a network is the backup capacity, which is defined by the additional capacity of the links that needs
to be provided to ensure stable operation in case of a failure of the link with the highest power flow. This
quantity is a realistic measure of resilience, since a power-grid blackout is very costly and should be avoided at
all costs. With a specific reweighting procedure, the tails of the pdfs with densities as small as 10~"%° were
investigated. This procedure enabled us to study very resilient, very vulnerable, and typical networks. In
addition, the p-value allows for the comparison of a given network with a network ensemble by providing a
quality measure for the investigated network.

For the UK power grid, we found a typical backup capacity B = 1.3 which islocated in the right peak of the
corresponding pdf generated for an ER ensemble with a fixed number of links. A p-value of 0.67 of the UK grid
indicates that it is of low significance regarding the resilience, and that many networks exist in the ER ensemble
with a fixed number of links that are more resilient. The position of the two peaks in the pdfincreases
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logarithmically with growing N for the three ensembles of random networks. The right tail of the pdfs for these
three ensembles toward larger backup capacities is an exponential in about the left half of its support, followed
by a strong curvature in the right half of its support. This is confirmed by the rate function, which converges to a
corresponding limiting curve for increasing N.

Adding more links to a network makes it typically more resilient, which is not surprising. Also, in the
nonspatial ER ensembles, which allow for more freedom when placing the edges, it is easier to find resilient
networks. Nevertheless, for real applications, the two-dimensional model is more appropriate, particularly since
itis almost as likely as for the ER ensembles to find very resilient networks. Interestingly, in this case, resilient
networks are characterized by small diameters and large power sign ratios, even for the ER ensemble with a fixed
number of links. The latter observation is quite interesting, because it means that power producers should be
placed close to power consumers. This is convenient, since this strategy reduces the costs for creating the
network that transports the electric power, as it is classically done anyway. Thus, minimizing the transportation
costs and making the networks resilient are, to a large extent, not conflicting goals.

When using the p-value calculation, one should choose a suitable network ensemble for comparison. The
ensemble should match the constraints of the investigated real-world network. Here, we used an ER ensemble
with a fixed number of edges for comparison with the UK grid, as an illustrating example. For practical
evaluations of existing or planned power grids, one would include, for example, geographical constraints or cost
minimization. Within such a constrained ensemble, the backup capacity of an existing grid would be located in
the low-probability tail of the pdf. Thus, a large-deviation approach, like the one presented here, is necessary to
evaluate such a power grid.

In the future, it would be interesting to more thoroughly investigate where the double-peaked structure of
the pdf comes from. It might also be useful to consider more realistic (i.e., dynamic) networks for electric power
grids, as mentioned previously. In addition, one could use a spatial network ensemble, which takes the costs of
adding a transmission line into account, to get a more realistic economical model.
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