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The Higgs RNA-Model [1] is studied in regard to finite-time driving protocols with minimal-
work requirement. In this paper, RNA sequences which at low temperature exhibits hairpins are
considered, which are often cited as typical template systems in stochastic thermodynamics. The
optimized work protocols for this glassy many-particle system are determined numerically using the
parallel tempering method. The protocols show distinct jumps at the beginning and end, which have
been observed previously already for single-particle systems [2H4]. Counter intuitively, optimality
seems to be achieved by staying close to the equilibrium unfolding transition point. The change of
work distributions, compared to those resulting from a naive linear driving protocol, are discussed
generally and in terms of free energy estimation as well as the effect of optimized protocols on rare

work process starting conditions.

I. INTRODUCTION

Moving a system from an initial state at time ty to
some final state at ¢y by varying an external control pa-
rameter A(t) in a finite period of time ¢ € [0, 7] requires an
amount of work W [A(¢)] that is in general a functional of
the driving. In classical thermodynamics for macroscopic
systems, a lower bound for the required work is given by
the difference in free energy AF between the equilibrium
states at the initial and final control parameters

WAW)] = AF = F(M7)) = F(M0)), (1)

where equality holds for quasi-static, infinitely slow driv-
ing (i.e. 7 — 00). For mesoscopic systems, thermal fluc-
tuations are a relevant contribution to the path the sys-
tem takes when subjected to the driving protocol A(t).
Hence, the work W is not a simple scalar value anymore
but a stochastic quantity that fluctuates each time the
work process is repeated and therefore follows a distribu-
tion Py (7). Note that the distribution for small systems
often have signifcant contributions even for W < AF,
i.e., energy might be taken from the bath. These work
distributions and their moments usually fulfill various re-
lations, like Crook’s theorem [5] or the Jarzynki equality
[6]

(e77W) =727, (2)

with the inverse temperature 8 = where the scale

1
kpT>
kg = 1 is used in the following. The average (...) is
over the initial equilibrium at A = A(0) and all non-
equilibrium trajectories A(0) — A(7). Applying Jensens
inequality to Eq. gives (W) > AF, showing that
Eq. (1)) still holds merit but now in a statistical sense.
It is worth asking whether there are optimal protocols
which meet the lower bound on the work W given by
the equilibrium free energy difference AF, and, if they
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exist, how they look like. For once this is useful because
they can improve the estimation of said free energy dif-
ference via Eq. (2) [7]. Also, they could be an alternative
or supplementary approach to large-deviation methods,
e.g. optimizing the protocol instead of employing a more
complicated large-deviation algorithm [8 [@]. The design
of biological nanoscale machines is another aspect, where
evolution might have designed them to be energy efficient
and hence follow an optimized protocol.

With respect to optimal protocols, in past works
mostly systems with few degrees of freedom, like single
one-dimensional colloidal particles, have been considered
so far [2H4] [TOHI2Z]. Some of the work includes numeri-
cal optimization, e.g., using threshold accepting [I3] ap-
plied to a Brownian particle [3], or genetic algorithms
[14, [15] applied to cyclic protocols for microscopic heat
engines[IT]. With respect to controlling systems, which
exhibit many degrees of freedom and collective behavior,
the Ising-model has also been studied, with temperature
as an additional control parameter and the aim to in-
vert the magnetization of a given system. Where notable
contributions are restricted to the linear response regime
[16], or are in the context of parametrized protocol en-
sembles [17].

With respect to the shape of optimal protocols, dis-
continuous jumps of the control-parameter value at the
beginning and end are a reoccurring observation. Still,
even moderate changes to simple systems can result in
new and surprising features in the space of optimized
protocols, e.g.: delta peaks for the underdamped langevin
particle in a harmonic trap [4], regions with single or mul-
tiple jumps for a dipole potential [3], and the existence
of phase transitions between optimal-work and optimal-
work-fluctuations protocols [I0].

In the present work the Higgs RNA-model[l] is studied
with numerical simulations [I8]. To the authors knowl-
edge, it has not been investigated with regard to optimal
protocols, despite its computational accessibility [T9H21],
see below, its many degrees of freedom, and its rich be-
havior like the occurrence of phase transitions [21H23] or
finite-size glassy phases [24] [25].

Further, it is conceptually close to experimental setups
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of single DNA hairpin experiments that try to implement
optimized protocols [26]. This makes the model, beyond
its importance for molecular biology, an ideal playground
to investigate various fundamental questions concerning
optimized protocols, e.g.: How are specific system state
trajectories affected? What role do phase transitions play
when it comes to optimality of protocols? Are there gen-
eral rules on how work distributions change, especially in
the large-deviation regime? How do optimized protocols
change with regard to the energy landscape, which is de-
termined by the primary structure of the RNA molecule?
Given the space and time constrains, this paper addresses
only some of these questions but it is clear that the RNA
model is useful also for further investigations beyond this
proof of principle study.

The structure of this paper is as follows: First, the
Higgs RNA-model is described, followed by the algo-
rithms used to implement the work process as controlled
by a given work protocol. Next, the parallel tempering
scheme is described, used to find optimized protocols. In
the main part, findings are presented, which include the
shape of the optimized protocols, mean trajectories of
system observables and resulting work distributions.

II. MODEL

The primary structure of a RNA molecule is given
by a linear sequence R = (r;);=1,..., of L bases r; €
{A,C, G, U}, where the four letters correspond to the
bases Adenine, Cytosine, Guanine and Uracil. Two bases
r;, 7; at positions ¢ and j (with 1 < ¢ < j < L) can pair
to each other with energy e(r;,r;) < 0, where the set of
all pairs (i,7) then forms the so called secondary struc-
ture S. It has four constraints:

(1) A base can pair to at most one other base.

(2) Only complementary (Watson-Crick) A-U and C-G
pairs are allowed.

(3) Pseudoknots are excluded, i.e., two arbitrary pairs
(i,7),(#,7") € S with ¢ < ¢’ must either fulfill ¢ < j <
< ori<i <j <j.

(4) There is a minimum distance |j —i| > s between two
paired bases (here s = 2).

For bases r, 1/, the pairing energy is set to e(r,r’) = —1
when r and 1/ are complementary and e(r,r’) = +oo
otherwise. To allow for manipulation of the system, the
protocol A(t), which takes the role of an external force
parameter, couples to the free length n = n(S) of the
secondary structure S, yielding an additional energy of
—A(t) X n. The free length n(S) is defined as the number
of bases with an sequence index that does not lie between
those of any base-pair currently a part of the secondary

structure S:

L
n(S) =Y ¢ (3)
=1

0 if3(jk)eS:j<i<k
C; = .
1 else

The total energy is finally given by the contributions from
all base pairs and the external manipulation:

E(S,\) = Z e(ri,rj) —n(S)A, 4)

(i,9)€S

where the explicit dependence on the primary structure
is omitted. This model has been used previously in
other statistical mechanics frameworks [0, 2I] and is a
strong simplification compared to those when describing
real RNA. Dedicated software packages like ViennaRNA
[27] exist that incorporate interactions of natural RNA
more comprehensively. But using such a sophisticated
model would add details related to RNA’s biological func-
tion wich is outside the scope of the more fundamental
statistical-mechanics questions that are of interest here.

In the following, secondary structures in equilibrium
are drawn from a canonical ensemble at temperature
T, ie., they occur with the Boltzmann probability
P(S) ~ exp(—E(S,A)/T). In equilibrium, typical RNA
sequences exhibit an folding-unfolding transition at a se-
quence and slightly temperature-dependent critical value
A(T).

IIT. ALGORITHMS
A. RNA work process

The work process is realized as a non-equilibrium
Monte-Carlo simulation, where the duration 7 of the pro-
cess is proportional to the total number of MC-Sweeps
nuve, i.e. 7 ~ nyco. One MC-step is the insertion or
removal of a single base-pair in the secondary structure
S and one MC-sweep consists of L/2 MC-steps.

A major advantage, at this point, of the described
RNA-model is that the equilibrium behaviors, i.e., the
canonical partition function is calculable via dynamic
programming in O(L?). With this comes the ability
to efficiently sample the initial equilibrium states follow-
ing the Gibbs-Boltzmann distribution directly in O(L?)
[0, 19]. This allows to start every work process with a
secondary structure sampled in equilibrium. For details
on the sampling see appendix [A]

Given a protocol A\; = A(t;) at discrete points in time
t; = jAT with j = 0,...,n,, A7 = 7/n,, the work
process then goes as displayed in Fig.

Note that the work process allows for explicit incor-
poration of jumps at, e.g., the beginning and end of the
protocol, since these are believed to be a generic fea-
ture of optimal protocols [2]. This was done in other



algorithm W [\())]
begin
draw for R an equilibrium structure S at
initial protocol value Ag and RNA temperature T'

W=0

forj=1,--- ,n,

begin
AX= XN — A1

W =W —n(S)AX
perform Lnyc/(2n.) MC-steps over S
end
return(W)
end

FIG. 1. Algorithm to perform an unfolding process resulting
in a work W.

numerical studies on the topic, too [I0]. For compari-
son, also a naive linear protocols is studied with A\ =
(Ar — Xo)/n, = const. as presented below.

B. Optimization Algorithm

Following [3], the work protocol A(t) is discretized by
n = 42 control points that are varied by the optimiza-
tion scheme to approximate the optimal protocol. For a
representation of the protocol at finer resolution these n
points are interpolated linearly in between, except for the
possible explicit jumps at start and end, to yield a total
of n, = 200 + 2 points, including the fixed start A\g = 0
and end which is chosen to be A\, = 2.

The objective function of the optimization process for

the protocol A(t) is the average work W = 4 vazl Wi,
determined by a finite number N of work process execu-
tions, yielding N work values W;.
The optimization occurs in two stages. For both
stages, Markov-chain Monte Carlo simulations with the
Metropolis-Hasting algorithm are performed in the space
of protocols. For any given protocol, exhibiting mean
work W, trial protocols are constructed by randomly se-
lecting one of the n variable protocol points A; and chang-
ing it by a random amount according to A; < |\; +2ed |
(mod 2)\;), which are periodic boundary conditons for
A; that could assist to find ceratin features, especially
delta peakes, when sampling the protocol space. Where
e € (0,1] is a uniformly distributed random number and
O\ is a magnitude chosen as described below. The fi-
nal optimization result is not expected to change when
alternatively using more commonly employed reflective
boundary conditions, i.e., moves are rejected when mov-
ing outside the allowed interval.

For the trial protocol, N work processes are performed

and a corresponding mean work W' is obtained. The
trial protocols are accepted for the Markov chain with
an Metropolis probability min{l,exp[f(Wl - W)/0]},
which corresponds to a Boltzmann distribution of the

TABLE 1. Overview of investigated primary structure se-
quences R

hairpin (AC)'°(GU)!® = ACAC...GUGU
continuous (ACGU)10
asymmetric (AC)®(GU)3(ACGU)®

mean work values for a given artificial “temperature” 6.
For the first stage, the parallel tempering method [28§]
at 100 artificial temperatures 6; with logistic spacing is
used, i.e., 0; = 0y(660)?, ranging from y = 8-107% to g9 =
50. The control parameter d\ is chosen for each value 6;
such that the empirical acceptance rate is around 0.5 for
this move, respectively. Here, N = 1000 independent
work processes are generated to calculate the mean work
of every protocol. The tempering is run until all replicas
could visit a sufficient fraction of all temperature sites.

The second stage is given by an annealing simulation
at & = 0 with an increased number N = 10° of work
processes, starting from the best protocol found in the
previous stage. For 0\, the same value is used as it was
at 0y in the first stage.

One caveat with this approach, in order to work, is
to fix the random numbers used to generate the work
processes, i.e. resetting the random number generator
to the same initial state before starting sampling, which
is conceptually similar to what is done in [3] with the
noise history. This is necessary, because two independent
evaluations of the mean work, performed for the same
work protocol, must yield exactly the same value of W

The numerical optimization does not necessarily yield
an exact optimal protocol due to the finite work sample
size and the random nature of the algorithm itself, i.e.
maybe the optimum gets never selected within protocol
space. But even close to optimal protocols, as discussed
in [I7], will likely poses the distinct features, e.g. jumps,
that are responsible for achieving optimality.

IV. RESULTS

Three primary structure sequences of length L = 40
are investigated (see Tab. . Note that calculation of
partitions functions and sampling can be achieved for
much larger system length L, but here we optimize over
the protocols, such that every single optimization step
consists of a full simulation according to the algorithm
shown in Fig. [I] Still, the system investigated here con-
sist of several interacting particles, in contrast to most
work in the literature.

The first considered sequence can fold into a perfect
hairpin secondary structure at low temperature 7" and
small force A\. The second sequence is constructed by
repeating the four bases over and over again, i.e., it is
a continuous sequence. The third sequence represents
a combination of the hairpin and continuous sequence,
which is called asymmetric here. Sequences like these,
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FIG. 2. Optimized protocols A as a function of time ¢, which
display distinct jumps at the beginning and end. The linear
protocol is also shown for reference. The arrow on the vertical
axis indicates the critical value A. of the folding-unfolding
transition . Left: T'= 0.3. Right: 7' = 1.0.

which all can fold into secondary structures with one ore
more hairpins, are relevant due their abundant occur-
rence in nature and treatment in previous studies [29H36].
The work simulations are performed at two temperatures
T € {0.3,1.0} which are representative for the sequences
being in or close to the ground state, or where several rel-
evant secondary structures contribute, respectively. The
three considere sequences exhibit folding-unfolding tran-
sitions at critical values near A\, = 0.5 for 7" = 0.3 and
near A\, = 0.7 for T = 1.

A. Optimized Protocols

Fig. [2| shows the optimized protocols as a function of
time and the naive linear protocol for comparison. The
rugged structure likely stems from the finite number of
work processes, which contribute to the average work W,
and the optimization scheme itself, identifying only one
of the exponentially many close to optimal protocols [17].
Here, the most striking feature is the existence of distinct
jumps at the beginning and end, present for all sequences
at both temperatures. The jump heights at beginning
and end are always different from each other and are
lower at the higher temperature T' = 1.0 compared to
T = 0.3. Further, the continuous and asymmetric se-
quences have rather similar optimal protocols, despite
the later one also having partially a primary structure
like the hairpin sequence. Jumps are also observed for
simpler systems like brownian-particles [2H4], giving fur-
ther indication that they are indeed a generic feature of
optimized protocols as was already speculated in Ref. [2].
Fitting an 5th order polynomial to the protocol to obtain
a smoothed version does not change the qualitative result
presented below, i.e. the work distributions in Fig. |5 are
effectively unaltered by using the smoothed protocols.

A more refined analysis is obtained here by record-
ing secondary structure trajectories, while the system is
subject to the corresponding protocol. This is used to
measure the mean free length. The force A as a function
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FIG. 3. Protocols A as a function of mean free length 7.
The equilibrium curves are also shown for reference. Top:
Optimized protocols. The initial jumps are close to the equi-
librium unfolding transition point. Bottom: Linear protocols
for comparison. Left: "= 0.3. Right: 7" = 1.0.

of mean free length 7, i.e. W(\) with switched axes, is
depicted in Fig. [3| together with the equilibrium curves,
which are obtained by utilizing the partition function.
Here, it becomes apparent how optimality is achieved:
The first jump at the beginning is into the regime of
the force unfolding equilibrium phase transition. Stay-
ing close to the transition point in the flowing, the free
length of the system increases due to interaction with the
heat bath, where energy is taken from. This allows the
second jump at the end to happen with on average higher
free length and therefore resulting in a lower overall work
performed. On the other hand, the vicinity to the critical
equilibrium protocol value may appear surprising, since
one expect the system dynamics to slow down, which gen-
erates more lag to equilibrium and therefore increases dis-
sipation [37]. Indeed, opposite behavior, i.e. the avoid-
ance of critical points, has been observed for example
in the reorientation of spins in an Ising-system [16 [17],
where temperature was an additional protocol parameter
that allows the protocol to circumvent the systems crit-
ical line. Another major difference is that for the Ising
system the process is between to opposite ordered states,
while here the system is driven from folded to unfolded
structures. Also, the protocol in the present study can
not avoid the force unfolding transition anyway. As a re-
sult, varying the protocol only slightly while crossing the
critical point, gives the system more time to equilibrate
or staying close to equilibrium, i.e., reducing the lag be-
tween the system current and equilibrium distribution.
For this reason, the optimized protocols also tend to ap-
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FIG. 4. Mean system observables as a function of time ¢ for
T = 0.3. The trajectories for the optimized protocols have
an almost linear behavior. Left: Mean free length 7. Right:
Mean number of paired bases |S|.

proximate the equilibrium curves (Fig. |3|top), especially
when compared to the naive linear protocol behaviour
(Fig. [3] bottom).

B. Trajectories

How does the optimal protocol change the system tra-
jectories compared to a naive linear protocol? In Fig.
the mean free length @ and the mean number of paired
bases |S| is plotted as a function of time for both pro-
tocols and T = 0.3. The T = 1.0 case looks similar.
Remarkably, the behavior for the optimized protocols is
in all cases almost linear, while the linear protocol results
in more sigmoidal trajectories. The free length for opti-
mized protocol is higher in the beginning than for the
linear protocol, indicating that the unfolding of the sec-
ondary structure is quicker. In the same train of thought,
the number of base pairs decreases for the optimized pro-
tocol faster than for the naive linear protocol.

C. Work Distributions

The resulting work distributions for the linear and op-
timized protocols are depicted in Fig. The general
trend is, as expected since the optimized protocols aim
at minizing the work, that the probability is shifted to
lower values of W. For T = 1.0, the peak of the dis-
tributions for the optimized protocols, compared to the
linear ones, generally move only slightly but increase in
height, while the tails towards high work values lose sta-
tistical weight. In case of T' = 0.3, not only the peak
moves but the distribution shape undergoes significant
change. The hairpin sequence work distribution shows
an prominent oscillatory peak structure as well as the
right distribution tail for the continues sequence. This
structure is a result of the discrete free length values, the
slow system dynamics and that the highest contribution
to the final work comes from the initial and final jump,
since the protocol changes only slightly in between them.
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FIG. 5. Work distributions for the linear and optimized proto-
cols. Top: Hairpin sequence. Middle: Continuous sequence.
Bottom: Asymmetric sequence. 10° work processes are used
to estimate the histograms, except for the optimized protocol
at T = 0.3 for the hairpin sequence, where 4 x 10% processes
are generated. Lines are a guide to the eye only.

Work distributions with such erratic behavior have been
observed before, e.g. for the simple model system in [5],
and are therefore not limited or specific to optimized pro-
tocols.

Also shown are the exact free energy differences AF, di-
rectly obtained from the partition function. Even a qual-
itative inspection of the distributions reveals that there is
no substantial improvement compared to the linear pro-
tocol case, judging from the intersection of P(W) with
AF, which is relevant for its estimation when using, e.g.,
Crooks theorem [5]. This underlines the importance of
large-deviation algorithms [8] [9] for such purposes, and
that mere protocol optimization is not equivalent or even
superior.

For further investigation of the work distributions, a
sampling of the initial secondary structures with fixed
free length values n(Sy) was performed. The subsequence
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FIG. 6. Shade coded work distributions conditioned to the ini-
tial free length n(So) at T'= 0.3. A darker shade corresponds
to a higher probability. For each initial free length 5500 work
processes are sampled. Left: Linear protocol. Right: Opti-
mized protocol. Top: Hairpin sequence. Bottom: Continuous
sequence.

work processes yielded distributions P(W|n(Sp)) condi-
tioned to said initial free length. The results are dis-
played in Fig. @ In comparison to the linear protocol,
the optimized protocols especially affect the work of pro-
cesses with rare high initial free lengths. Since the op-
timized protocol immediately increases the force A, the
resulting structures are less likely to fold towards a more
probable state with lower free length during the work
process. This ultimately leads to consistently lower work
values for such cases. For the linear protocol the opposite
is true: The low initial force allows the structure to fold
before being unfolded again, resulting in a wide spread of
work values. For the continuous sequence and linear pro-
tocol, the weight is more concentrated at smaller values
of W as compared to the hairpin sequence, most clear
for values near n(Sp) ~ 26. It is due to secondary struc-
tures predominantly consisting of multiple small hairpins
next to each other at the beginning of the work process.
Under an external force, these unfold all individually, i.e.
the free length increases more rapidly than for a single
hairpin, because there are more base pairs that would
increase the free length when removed. This leads on av-
erage to an overall lower work compared to the hairpin
sequence.

V. DISCUSSION

Numerically optimized protocols for simple hairpin se-
quences were presented for the Higgs-RNA model, which
is a model exhibiting many interacting degrees of free-
dom. These optimized protocols show similar distinct

jumps as observed before for systems with only one de-
gree of freedom. As discussed, the optimized protocols
have a connection to the unfolding equilibrium phase
transition and allow the system to better approximate
equilibrium behavior in order to reduce dissipation. The
corresponding work distributions, although shifted to
lower work values, revealed qualitatively that a priori
no substantial improvement to free-energy estimations
can be expected from mere protocol optimization. In-
vestigating work distributions conditioned to the initial
free length of the process has shown that especially very
unlikely starting values are affected by optimized pro-
tocols. Due to this last aspect, the employment of a
large-deviation algorithm in combination with optimized
protocols, to sample the work distributions in the rele-
vant rare event regime, could be a promising perspective.
Also it would be interesting to see whether the results ob-
tained here can be found for work processes performed
for other complex interacting systems.

ACKNOWLEDGMENTS

This work used the Scientific Compute Cluster at
GWDG, the joint data center of Max Planck Society for
the Advancement of Science (MPG) and University of
Gottingen.

Appendix A: Equilibrium Sampling of Secondary
Structures with Fixed Free Length

For a system given by Eq. with force parameter
A =0 and any primary structure R, the canonical parti-
tion function Z; ; can be calculated for all possible sub-
sequences 7, ...,7; (1 < j) via

j—s—1

Zij="Zijoa+ Y Zigae PRI Z0 50, (A
k=i

using appropriate starting conditions. In a similar fash-
ion, the partition function @1 ;, at fixed free length n
for all subsequences 71,...,7r; (1 < j) is obtained using

j—s—1
—Be(rk,r;
Q1jn = Q1 j—1,n—1+ E Quk—1nne Prrid gy oy

k=n—1
(A2)
again with compatible starting values. All of this can
be done using dynamical programming in O(L?) runtime
[19]. By diving Eq. by Q1,j,n, the individual terms
can be identified as pairing probabilities. First, the prob-
ability of base j being unpaired:

B Q1j-1,n—1

U= A3
Py Qo (A3)



The remaining terms are the probabilities that base j is
paired to any base k withn —1<k<j—s—1:

- Ql,k—l,n—Qeiﬁe(rk’”)Zk+1,j—1
j ko :
am Q1jn

The sampling is then done via the recursive scheme de-

scribed in [9] and roughly goes as follows: For a given
subsequence from base 7 to j with so far no pair, begin-

(A4)

ning with ¢ = 1 and j = L, base j is randomly paired to
another base k in the subsequence using the correspondig
pairing probabilities. If base j remains unpaired, the
scheme is continued by setting j° = j — 1. Should base j
be paired to base k, the recursive procedure is indepen-
dently continued for the two created subsequence from
=itoj=k—1landi =k+1toj =j—1.
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