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We investigate both analytically and numerically the ensemble of minimum-weight loops and paths
in the negative-weight percolation model on random graphs with fixed connectivity and bimodal
weight distribution. This allows us to study the mean-field behavior of this model. The analytical
study is based on a conjectured equivalence with the problem of self-avoiding walks in a random
medium. The numerical study is based on a mapping to a standard minimum-weight matching
problem for which fast algorithms exist. Both approaches yield results which are in agreement, on
the location of the phase transition, on the value of critical exponents, and on the absence of any
sizeable indications of a glass phase. By these results, the previously conjectured upper critical

dimension of d,, = 6 is confirmed.

PACS numbers:
I. INTRODUCTION

The statistical properties of lattice-path models on
graphs, equipped with quenched disorder, have experi-
enced much attention during the last decades. They
have proven to be useful in order to describe line-like
quantities as, e.g., linear polymers in disordered media
[1-4], vortices in high T, superconductivity [5, 6], cos-
mic strings in the early universe [7-9], and domain-wall
excitations in disordered systems such as 2d spin glasses
[10, 11] and the 2d solid-on-solid model [12]. The precise
computation of these paths can often be formulated in
terms of a combinatorial optimization problem and hence
might allow for the application of exact optimization al-
gorithms developed in computer science [13-15]. So as
to analyze the statistical properties of these lattice path
models, geometric observables and scaling concepts sim-
ilar to those used in percolation theory [16, 17] or other
“string”-bearing models [18, 19] are often applicable.

This paper studies the negative-weight percolation
(NWP) problem [20-22], wherein one considers a graph
where sites are joined by undirected edges. Weights
are assigned to the edges, representing quenched random
variables drawn from a distribution that allows for edge
weights of either sign. The details of the weight distri-
bution are further controlled by a tunable disorder pa-
rameter. We are interested in configurations consisting
of one path and a set of loops, i.e. closed paths on the
graph, such that the total sum of the weights assigned to
the edges that build up the path and the loops attains a
minimum. We will study here the mean-field behavior of
this model by means of numerical simulations and ana-
lytical studies on random regular graphs. For the numer-
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ical studies, one could use standard sampling approaches
like Monte Carlo simulations but they exhibit the usual
equilibration problems. Fortunately, one can map NWP
to the standard minimum-weight perfect matching opti-
mization problem, as outlined below in sect. II in more
detail. This mapping allows to apply exact polynomial-
time-running algorithms. Thus, large instances can be
solved. As an additional optimization constraint we im-
pose the condition that the string-like observables (re-
ferring to both, the loops and the path) are not allowed
to intersect. Consequently, since a string-like observable
does neither intersect with itself nor with other strings in
its neighborhood, it exhibits an “excluded volume” quite
similar to usual self avoiding walks (SAWs) [17]. We
shall develop in this paper the analogy between SAWSs
and NWP, and use some of the recently developed tools
in the studies of polymers on random graphs in order to
derive an analytical study of the NWP problem.

As presented here, the NWP problem is a theoretical
model of intrinsic interest. As an example that makes
use of the NWP problem statement one can imagine an
agent that travels on a graph. While traversing an edge,
the agent either needs to pay some resource (signified
by a positive edge weight) or he is able, once per edge,
to harvest some resource (signified by a negative edge
weight). Now, if the intention of the agent is to gain as
much resources as possible, the paths/loops obtained in
the context of the NWP problem can serve as a guide to
find routes along which the agent might move so as to
optimize his yield. Further, the 2d variant of the NWP
problem is interesting from a technical and algorithmic
point of view. As regards this, the problem of finding
ground-state spin configurations for the 2d random-bond
Ising model, including the canonical Ising spin glass, on a
planar triangular lattice can be mapped to the 2d NWP
problem on a honeycomb lattice [23, 24] (Analogous to
the approach presented in [25, 26], the basic idea of this



mapping is to compute a transition graph that mediates
the transformation from an initially chosen reference spin
configuration to a proper GS). Moreover, paths that in-
clude negative edge-weights also appear in the context of
domain wall excitations in 2d random bond Ising systems
[11, 27]. Thus, the NWP problem might serve to gain in-
sight concerning the behavior of more realistic disordered
systems.

Previous studies [20-22] of the NWP model consid-
ered regular lattice graphs in dimension d with periodic
boundary conditions. As a pivotal observation it was
found that, as a function of the disorder parameter, the
NWP model features a disorder-driven, geometric phase
transition. This transition leads from a phase character-
ized by only “small” loops to a phase that also features
“large” loops that span the entire lattice along at least
one direction. Regarding these two phases and in the
limit of large system sizes, there is a particular value of
the disorder parameter at which percolating (i.e. system
spanning) loops appear for the first time [20]. Previously,
we have investigated the NWP phenomenon for 2d lattice
graphs [20] using finite-size scaling (FSS) analyses, where
we characterized the underlying transition by means of a
whole set of critical exponents. Considering different dis-
order distributions and lattice geometries, the exponents
were found to be universal in 2d and clearly distinct from
those describing other percolation phenomena. In a sub-
sequent study, we performed further simulations for the
NWP model on hypercubic lattice graphs in dimensions
d=2 through 7 [22], where we aimed to assess the upper
critical dimeison d,, of the NWP model. As a fundamen-
tal observable that provides information on whether the
upper critical dimension d,, is reached, we monitored the
fractal dimension ds of the loops. The fractal dimension
can be defined from the scaling of the average length (¢)
of the percolating loops as a function of the linear exten-
sion L of the lattice graphs, according to (¢) ~ L. For
d>d, one might expect to observe ds =2, which signifies
the mean-field limit for self-avoiding lattice curves. This
means, the “excluded volume” effect mentioned earlier
becomes irrelevant and the loops exhibit the same scal-
ing as ordinary random walks. From that study, con-
sidering regular d-dimensional lattice graphs, we found
evidence for an upper critical dimension d,, = 6 for the
NWP phenomenon.

To resume, previous works have focused on the critical
properties of the NWP model on regular lattice graphs,
where the upper critical dimension can be defined as the
smallest dimension for which the critical exponents take
their mean field values. Here, we perform simulations
and analytical calculations for the NWP problem on ran-
dom graphs with fixed connectivity (see discussion be-
low), where one has direct access to the mean-field expo-
nents that describe the transition. These studies provide
further support for the result d, =6 obtained previously
[22]. Furthermore, we examine the structure of the en-
ergy landscape of this problem by studying the existence
of low-energy excitations involving a finite fraction of the

FIG. 1: Example of a r-regular random graph with N =16
nodes and fixed degree r =3. The depicted graph has a di-
ameter Ry, =4, where the diameter is the longest among all
shortest paths (measured in node-to-node hops). For a given
realization of the quenched disorder, the negative-weight per-
colation algorithm might yield the path+loop configuration
illustrated by means of the bold gray edges. Therein, a path
is forced to join two distinguished nodes (open circles) that
are maximally seperated, i.e. have distance Rn,.. The dashed
path corresponds to a shortest path joining the two distin-
guished nodes.

system. The numerical simulations presented here are
carried out on the ensemble of random regular graphs
with a fixed node degree. Due to the absence of, say, a
regular lattice geometry that allows for a clear cut defi-
nition of spanning lengths of loops (as it was possible in
previous studies), we found it more beneficial to focus on
the scaling properties of minimum weight paths instead.
In this regard, if we select two nodes on a random graph
we can compare the properties of the minimum weight
path to the shortest path that connect the two distin-
guished nodes. In the context of the presented study,
this will provide means to assess the scaling properties of
the paths. Further, note that in a previous study [20] we
verified that loops and paths in the NWP problem give
rise to identical scaling properties.

The remainder of the presented article is organized as
follows. In section II, we introduce the model in more
detail and we outline the algorithm used to compute the
minimum weight configurations of loops. In section III,
we present the results of our numerical simulations. In
section IV, we explain the analytical cavity approach
through a mapping to SAWs, and we show the corre-
sponding results. Finally, in section V we conclude with
a summary. Note that an extensive summary of this pa-
per is available at the papercore database [28].



II. MODEL AND ALGORITHM

In the remainder of this article we consider r-regular
random graphs (r-RRGs) G, =(V, E) N, wherein V is
a set of N nodes i € V, having fixed degree deg(i) =r.
Accordingly, E is a set of rN/2 edges e;;={i,5}, 4, 7€V,
randomly drawn from V(?) with the restriction that each
node has exactly r neighbors. Further, the distance d;;
between two nodes i,j €V is the number of steps in the
shortest (i.e. minimum-length) path joining both nodes.
If the respective nodes cannot be joined by a path, the
distance is taken as infinite. Then, the diameter Ry, of
an instance of G, is the largest finite distance within
the given graph. Further, two nodes i,j € V satisfying
di;; = Ry, are said to be maximally separated. Fig. 1
illustrates an istance of Gy, with N =16 and r=3. At
this point we would like to point out that there exists
an intricate relation between the number of nodes and
the diameter of r-RRGs. In this regard, early estimates
for fixed r > 3 yield the result that there is a ~-RRG of
diameter at most Ry, = [log,_;((2+ €)Nlog(N)/r)|+1
(where € > 0) [29, 30]. Later, it was indicated that the
diameter of 3-RRGs scales as Ry 3 =1.47221log(N)+O(1)
[31]. Further, for r =4 the relation Ry 4=0.9083log(N )+
O(1) was found [31]. These results also agree with the
expression Ry = clog(N)+O(log(N)) for the diameter
of sparse random graphs with specified degree sequence
[32]. Subsequently we fix r =3 and substitute Ry, = Ry
and Gy, =G.

We further assign a weight w;; to each edge contained
in F, representing quenched random variables that in-
troduce additional disorder to the random graph ensem-
ble. In the presented article we consider weights that are
drawn from the bimodal disorder distribution

P(w)=pd(w+1) + (1 - p)d(w —1). 1)

The disorder parameter p therein allows to adjust the
fraction of negative edge weights on the graph. Note
that this disorder distribution explicitly allows for loops
L with a negative total weight w, = Z{i’j}eﬁ w;j. To
support intuition: For any nonzero value of the disorder
parameter p, a sufficiently large graph will exhibit at least
“small” loops that have negative weight.

The NWP problem statement then reads as follows:
Given G together with a realization of the disorder, deter-
mine a set C of loops such that the configurational energy,
defined as the sum of all the loop-weights E=3_ . - w, is
minimized. As further optimization constraint, the loops
are not allowed to intersect and generally, the weight of
an individual loop is smaller than zero. Note that C may
also be empty (clearly this is the case for p=0). Clearly,
the configurational energy £ is the quantity subject to
optimization and the result of the optimization proce-
dure is a set of loops C, obtained using an appropriate
transformation of the original graph as detailed in [33].
So as to identify the edges that constitute the loops for
a particular instance of the disorder, we can benefit from
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FIG. 2: Tllustration of the algorithmic procedure: (a) orig-
inal lattice G with edge weights, (b) auxiliary graph Ga
with proper weight assignment. Black edges carry the same
weight as the respective edge in the original graph and grey
edges carry zero weight, (¢) minimum-weight perfect match-
ing (MWPM) M: bold edges are matched and dashed edges
are unmatched, and (d) loop configuration (bold edges) that
corresponds to the MWPM depicted in (c).

a relation between minimum-weight paths (and loops)
on G and minimum-weight perfect matchings (MWPM)
[23, 34, 35] on the transformed graph. Here, we give a
brief description of the algorithmic procedure that yields
a minimum-weight set of loops for a given realization of
the disorder. Fig. 2 illustrates the 3 basic steps, detailed
below:

(1) each edge, joining adjacent sites on the original
graph G, is replaced by a path of 3 edges. Therefore,
2 “additional” sites have to be introduced for each edge
in E. Therein, one of the two edges connecting an ad-
ditional site to an original site gets the same weight as
the corresponding edge in G. The remaining two edges
get zero weight. The original sites ¢ € V' are then “dupli-
cated”, i.e. i — 41,12, along with all their incident edges
and the corresponding weights. For each of these pairs
of duplicated sites, one additional edge {i1, 2} with zero
weight is added that connects the two sites ¢; and is.
The resulting auxiliary graph Ga = (Va, Ea) is shown in
Fig. 2(b), where additional sites appear as squares and
duplicated sites as circles. Fig. 2(b) also illustrates the
weight assignment on the transformed graph G. Note
that while the original graph (Fig. 2(a)) is symmetric,
the transformed graph (Fig. 2(b)) is not. This is due to
the details of the mapping procedure and the particu-
lar weight assignment we have chosen. A more extensive
description of the mapping can be found in [11].

(2) a MWPM on the auxiliary graph is determined



via exact combinatorial-optimization algorithms [36]. A
MWPM is a minimum-weighted subset M of Fa, such
that each site contained in Vj is met by precisely one
edge in M. This is illustrated in Fig. 2(c), where the
solid edges represent M for the given weight assignment.
The dashed edges are not matched. Due to construction
of the auxiliary graph,

(3) finally it is possible to find a relation between the
matched edges M on G and a configuration of negative-
weighted loops C on G by tracing back the steps of the
transformation (1). As regards this, note that each edge
contained in M that connects an additional site (square)
to a duplicated site (circle) corresponds to an edge on G
that is part of a loop, see Fig. 2(d). More precisely, there
are always two such edges in M that correspond to one
loop segment on G. All the edges in M that connect like
sites (i.e. duplicated-duplicated, or additional-additional)
carry zero weight and do not contribute to a loop on G.
Once the set C of loops is found, a depth-first search [33,
35] can be used to identify the loop set C and to determine
the geometric properties of the individual loops. For the
weight assignment illustrated in Fig. 2(a), there is only
one negative weighted loop with wy, = —2 and length
{=8.

Note that the result of the calculation is a collection C
of loops such that the total loop weight, and consequently
the configurational energy &, is minimized. Hence, one
obtains a global collective optimum of the system. Ob-
viously, all loops that contribute to C possess a negative
weight. Also note that the choice of the weight assign-
ment in step (1) is not unique, i.e. there are different
possibilities to choose a weight assignment that all result
in equivalent sets of matched edges on the transformed
lattice, corresponding to the minimum-weight collection
of loops on the original lattice. Some of these weight as-
signments result in a more symmetric transformed graph,
see e.g. [33]. However, this is only a technical issue that
does not affect the resulting loop configuration. Albeit
the transformed graph is not symmetric, the resulting
graph (Fig. 2(d)) is again symmetric.

Note that the above description explains how to obtain
a set of loops only. If one aims to compute an additional
minimum weight path that connects two nodes, say s and
t, on the graph, the transformation procedure for these
two particular nodes will look slightly different: the du-
plication step introduced in step (1) will be skipped for
nodes s and t, see Fig. 3(a). Computing a MWPM for
the resulting graph will then yield a minimum weight
path that connects nodes s and t together with a set of
loops (the set might be empty) as explained in steps (2)
and (3) above. This is illustrated in Fig. 3(b), where for
the same weight assignment as in Fig. 2(a), a minimum
weight path is computed. For this illustrational purpose,
a small 2d lattice graph with free BCs was chosen. The al-
gorithmic procedure extends to r-regular random graphs
in a straightforward manner.

In the following we will use the procedure outlined
above so as to investigate the NWP phenomenon on 3-
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FIG. 3: Tlustration of the algorithmic procedure to obtain a
minimum weight s-t-path: (a) auxiliary graph Ga, where the
mapping is modified to induce a minimum weight path that
connects nodes s and t. Black edges carry the same weight
as the respective edge in the original graph and grey edges
carry zero weight, (b) minimum weight path (bold edges) that
corresponds to a MWPM on Ga. For the particular example
illustrated here, the path has weight w, = —1 and there are
no loops in addition to the path.

regular random graphs.

IIT. RESULTS

In the following we will present the results obtained
from numerical simulations of negative weighted loops
and paths on 3-regular random graphs.

A. Minimum-weight paths (MWPs)

Once a particular instance of G is constructed and so
as to get a grip on the node-to-node distances d;; for
i,7 €V, we traverse the graph using a depth-first search
(DFS) [37]. Invoked to compute the distances from a
particular source node to all other nodes in the graph,
the DFS terminates in O(N) time. As soon as the DFS
is completed for each node in the graph, the diameter
of the particular random graph is easily obtained as the
largest finite distance in O(N?) time. Then we compute a
minimum weight path on the graph that joins two distin-
guished nodes s,t €V, satisfying ds; = Ry . For the range
of system sizes considered here, and in qualitative agree-
ment with the Ry — N-relation given above, we found
the approximate scaling Ry = 1.68(5)log(N) + 1.2(5),
see inset of Fig. 4. As regards this, note that for large
graph sizes the diameter does not change much. An in-
crease of N = 10> — 10* only leads to an increase of
Ry =13 — 16.5. For the scaling behavior of the average
length (¢) of the minimum-weight paths we can expect
that

Ry ~log(N) for p—0;
) ~ { N for p—1. (2)

This is based on the intuition that as p — 0, an increasing
path length will lead to an increasing path weight. As a
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FIG. 4: Scaling behavior of the minimum-weight path length
on RRGs respecting a bimodal distribution of the edge-
weights. The main plot shows the scaling of the average path
length (£) at the values p = 0.05 and 0.25 of the disorder
parameter, yielding the scaling behavior ~log(N) and ~ N,
respectively. The inset illustrates the scaling of the average
RRG diameter as (Ry) ~ 1.68(5) log(N) + 1.2(5) (note that
only the z-axis is scaled logarithmically).

result, a minimum weight path that connects two nodes
will most likely coincide with the shortest path, i.e. a
path using the minimum number of edges. In contrast, as
p — 1 it becomes feasible to take large detours (relative
to the shortest path) so as to traverse many edges with
negative weight. Consequently, an increasing path length
will result in a decreasing path weight.

Within our simulations we find (¢) NR}\}OE)(I) at p=0.04
and (£) ~ NO-998(2) at p=0.25, in agreement with Eq.
2, see Fig. 4. Here, investigating MWPs on RRGs allows
for a direct study of paths in the mean-field setup of
the negative-weight percolation model. Now, since Ry is
the distance spanned by the MWPs upon construction,
we can expect to find the asymptocic scaling behavior
(f) ~ R3% at the critical point p. of the setup. This
would indicate the same statistical properties as for usual
random walks, wherein the directions of consecutive steps
along the walk are completely uncorrelated.

B. Bimodal disorder — Path weight

First, we consider the probability Py = Pn(pw < 0)
that the path weight p,, is smaller/equal to zero. For each
realization of the bond disorder, Py is either 0/1. Hence,
for the average value (Py) we expect a scaling behavior
similar to the spanning probability in percolation theory,

ie. (PE) ~ fol(p — p=°)NY¥"], wherein fo[-] is a size-
independent scaling function. The value of p2° signifies
the location of the critical point, above which, in the
limit N — oo, a path with p, <0 appears for the first
time. From our simulations we find that with increasing
N this crossing point shifts towards smaller values of p.
This might be attributed to the finite-size of the studied
systems and signals corrections to the scaling behavior.
So as to account for these corrections to scaling, one may
consider an effective scaling expression of the form

(PX) ~ fillp = pr ()N, 3)

wherein p; (N)=p§ +aN~?1. The latter effective scaling
form implies 4 adjustable parameters and accounts for
a shift in the effective critical point p; (V). Considering
Eq. 3, a best data collapse of the curves for N > 1024
then yields the parameters

pi = 0.075(1)
é1 = 0.297(7)
vi =3.0(1)

with a=0(1), see Fig. 5(a).

As an alternative, we can estimate the critical point
from the location of the maxima of the related finite-size
suszeptibilities

O = N((P§ — (PN))?) = Nvar(Py). (4)

In this regard, if, for a given system size IV, the maximum
of var(Py) (or similary C%) is located at the effective
critical point po(N), we expect the sequence of po(N)
for increasing N to approach an asymptotic value of p§
according to

p2(N) = p5 +aN~%. ()

Here, ¢ signifies an effective exponent that accounts for
the corrections to scaling in a very basic manner. Note
that if there are no corrections to scaling, it holds that
¢ = 1/v*. The locations p(NN) were obtained by a fit
[38] of a gaussian function to the peak of var(Py), as
illustrated in Fig. 5(b). The analyisis of p2(/V) by means
of Eq. 5 for N >128, shown in the inset of Fig. 5(b), then
yields:

p5 = 0.0758(9)
¢ = 0.288(5)

x?/dof = 0.54
dof =3

Finally, note that the effective scaling form considered
here does not properly account for the corrections to the
scaling behavior. Actually, a more sophisticated analysis
should account for corrections to scaling via p.(N) =
P + a(l 4+ cN~“)N~Y/»". Unfortunately our data did
not allow for a more elaborate analysis involving 5 free
parameters. However, if we apply the latter scaling form
and fix the value of v* to the presumably correct value
v*=3 we find, again for N >128,

p2° = 0.077(6)
w = 0.06(50)

x?%/dof = 0.86
dof =2
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FIG. 5: Results for minimum weight paths on RRGs respect-
ing a bimodal distribution of the edge-weights. (a) Probabil-
ity Py = Pn(pw <0) that a path has negative/zero weight.
The main plot shows the rescaled data that also accounts
for a drift in the effective critical point p1(N). The inset il-
lustrates the crossing point of the data sets after correcting
for the drift. (b) Variance of Py, related to the finite-size
suszeptibility Cx via Cx% = Nvar(Py). The main plot shows
the approximation of the var(Py)-peaks by means of fits to a
gaussian function. The inset illustrates the the scaling of the
peak locations as p.(N) = p° + aN~°.

wherein a and ¢ are O(1), and where the values of p2°
and w are in agreement with the values found from the
analysis of Eq. 3. Note that the error associated with w
is rather large.
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FIG. 6: Scaling of the average path length as a function of
the distance to the critical point p. = 0.075(2) for different
system sizes N. Not too close to the critical point a power-
law behavior is visible. The dashed line shows an exemple
of a fit to a power law scaling form ~ (p — p.)?N, where
at N = 16384 we find Sy = 1.81(1). The inset shows the
obtained value 2 — Oy as a function of system size N. The
line shows a power law ~ N 94! Please note the double
logarithmic scales.

From the agreement among the extrapolated results
we conclude with a critical point p2°=0.075(2) and v* =
3.0(1) in agreement with the value v*=d.v =3, that one
could expect from the results for the finite-dimensional
regular graphs.

Next, we determine the critical exponent (3, describing
the behavior of the relative path length ¢ = (¢)/N as a
function on the distance from the critical point according
to

¢ ~ (p - pc)ﬂ . (6)

In Fig. 6, the scaling of N4 according to Eq. 6 is shown
for different values of N. The value of the exponent ob-
tained in the scaling region depends on N, i.e., 8 = On
(for the largest graph size considered, i.e. N = 16384, we
find Sy = 1.81(1)). The dependence is well compatible
with a finite-size scaling according to By = 8 + aN°
with f = 2, a = 10(1), b = —0.41(1), see inset of Fig.
6. Hence, this value of § agrees well with the numerical
value 8 = 1.92(6) found [22] for hypercubic lattices at the
presumed upper critical dimension d = 6. It also agrees
with the analytical computation developed in Sect.IV.
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FIG. 7: Scaling behavior of the minimum-weight path length
on RRGs respecting a bimodal distribution of the edge-
weights at the critcal point p. = 0.075(2). The main plot
shows the scaling of the average path length (£), where the
dashed line is a fit to the expression (£)~log?(N)(1+¢/N?).
The upper inset illustrates the scaling of (£) ~ R% and the
lower inset shows the scaling of the related finite-size suscep-
tibilty at pe.

C. Scaling at the critical point

We further performed simulations to characterize the
scaling behavior of the minimum-weight path length on
RRGs respecting a bimodal distribution of the edge-
weights at the critcal point p.=0.075(2), see Fig. 7.

For the average path length (¢), we found a good agree-
ment with the scaling expression (£) ~log® (N) +¢;. A
fit to the data belonging to N > 100 yields dy =
2.1(1) and ¢; = 5.2(5) Considering the scaling expres-
sion (£) ~log® (N)(1 + ¢1/N®?) (main plot of Fig. 7), and
taking into account the data belonging to N > 100 yields
dy =2.3(3), c1 =6(3) and ¢y =0.45(4). Fixing ¢ =0.5
improves the result to dy =2.1(1) and ¢; =6(1). Hence,
the data for the average path length at p. is in agreement
with a scaling exponent d;=2.

For the NWP problem in finite dimensions we intro-
duced the order parameter P,, = ¢/N. The respective
finite-size suszeptibilities Cy = Nvar(Py) = N~ 1var(¢)
exhibit the scaling Cny ~ NY/* at p.. Here, for the
mean-field setup, the latter scaling is modified to Cn ~
NY/¥" If we consider corrections to scaling according to
Cn~ (N + cl)"’/”* we yield the estimates ¢; =~ 180 and
v/v* = —0.34(2) (see lower inset of Fig. 7). The more
complicated scaling expression Cy ~ N7/¥" (1 4 ¢; /N¢2)
yields qualitative similar results, i.e. v/v* = —0.33(3),
c1/35 and c2=1.0(7).

D. Excitations

Next, we want to examine, wether the model exhibits
low-energy excitations, which are of order of system size.
This would be a numerical evidence that NWP exhibits a
complex energy landscape, thus shows “glassy” behavior.

Here, the “size” of an excitation is defined relative to
two ground state configurations of loops. I.e., for a given
instance of a r-regular random graph G we compute two
ground states (GSs) as follows:

(i) Draw a realization of the (bimodal) bond disorder

wg), {i,j} € E, where |wZ(J1)| = 1. Then compute a
minimum energy configuration of loops, i.e. GS 1,
as explained earlier. The number of loop segments
that build up the respective loops is refered to as

Ci.

(if) “Perturb” the realization of disorder according to
wz@ = wg) + €n;;, where n;; are independent and
identically distributed Gaussian random variables
of zero mean and unit variance, and ¢ = 1/100.
Compute the corresponding minimum energy con-
figuration, i.e. GS 2, of loops and let C5 denote the
respective number of loop segments.

Now, consider the number C' = |Cy — Cy| of bonds
that change by going from GS 1 to GS 2. The av-
erage value of C' exhibits a scaling of the form (C) =
Nef[(p—pe)N'/*"], where the choice p, =~ 0.077, v* = 3
and o = 0.5 yields the data collapse illustrated in Fig.
8. Further, the scaling behavior of (C) at p. = 0.077 is
not that clear. However, measurements at p = 0.08 = p.
yield the scaling (C) ~ N%6®) and at p = 0.32 they
yield (C) ~ NO®9()  as indicated in the inset of Fig.
8. This means that the scaling of the excitation size is
weaker than the size of the system. Hence, in the ther-
modynamic limit, (at least these) low-energy excitations
will not cover a finite fraction of the system. These re-
sults indicate that the energy landscape of NWP is rather
simple, i.e., dominate by one global minimum and close
local minima.

IV. ANALYTIC APPROACH: POLYMER IN
RANDOM MEDIA

The problem of negative-weight percolation has an in-
teresting correspondence with the problem of polymers in
random media. We shall show here that this correspon-
dence can be used to study analytically the percolation
threshold on a random graph with a fixed connectivity.

Consider first a closed polymer of length L described
by a self-avoiding walk = (z1,...,2) on the graph G,
where x; € V are L distinct vertices of G and each pair
(zi,xi11), as well as (z1,x1), belongs to the set of edges
E of G. The polymer is subject to a random potential w
on the edges of the graph, so the energy of the polymer is
Er(x) = ZiL:1 W, 24, (We use the notation xp1 = x1).
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FIG. 8: Scaling behavior of the average number (C) of bonds
that change upon perturbing the ground state configuration
of loops, as explained in the text. The main plot shows the
scaled data and the inset shows the scaling of (C') as a function
of the system size N.

We suppose that the values of w on the edges are iid
quenched random variables drawn from the distribution
P(w) given by Eq. (1).

We consider now a gas of such polymers, mutually
avoiding, and we denote by M the total number of poly-
mers present in the system. We study this problem at
equilibrium in a grand-canonical ensemble in which the
inverse temperature is equal to 8 and the chemical po-
tential is equal to p. Note that in the remainder of this
section, the inverse temperature is denoted by 5. In or-
der not to confuse it with the order parameter exponent
introduced previously in Eq. (6), the latter one will be
referred to as critical exponent 3 in the remainder of this
subsection. The partition function describing this system
is

Z = i eﬂ“MZe_BEM(I) , (7

M=0 {z}

where Eyy = ) Ep, is the total energy of the various
polymers of lengths Lq, Lo, .. ..

A similar description of polymers in a solvent has been
introduced already in [39]. The study of homopolymers
(without disorder), shows that, in order to describe free
polymers (in equilibrium with the solvent) the chemical
potential has to be adjusted to a critical value p.. This
critical value corresponds to a phase transition between
an infinitely diluted phase for y < . and a dense phase
with (M)/N > 0 (and a non-vanishing osmotic pressure)
for u > p.. From Eq. (7), one finds that u. is equal to
the canonical free energy density of a gas of polymers:

pe = —(1/(BM))log(3_(.y e~P#Em(®)) If the phase tran-
sition is continuous the density on the coexistence line
vanishes. Studies of interacting heteropolymers have con-
firmed this statement [40, 41]. We shall therefore develop
a formalism allowing to compute the average density of
monomers on a point, ¥, as function of the inverse tem-
perature (3, the chemical potential 4 and the amount of
disorder p. For fixed value of 3 and p, the critical chemi-
cal potential p is obtained as the largest value of u where
= 0.

We conjecture that this problem of polymer in random
medium is equivalent to the NWP problem in the follow-
ing sense. The set of polymers defines the loops of NWP.
Taking the zero temperature (8 — oo) limit, one can
study if the ground-state energy of the set of polymers is
negative (then the corresponding polymer configuration
is an admissible NWP), or not. The phase transition of
NWP then describes a transition between a ‘percolating’
phase where the density v of the ground state is positive,
and a non-percolating phase where it vanishes. Within
our conjecture, we can thus study the NWP phase tran-
sition as follows: we should find the ground state of the
polymer, at u = p. = 0: the condition p = p. allows to
study the polymer at equilibrium, the condition u. = 0
finds the critical point of NWP where the ground state
energy vanishes. We formulate this equivalence between
NWP and polymers as a conjecture for the following rea-
son. In the polymer approach we request that the energy
of the full set of polymers be negative, while NWP re-
quests that each individual polymer have negative energy.
considering the thermodynamic limit where the length of
the polymers is large, and the fact that on a random reg-
ular graph almost all loops are large since the typical size
of closed circuits on such a graph scale like log(V), it is
reasonable to assume that the distribution of energies of
each polymer will follow a large deviation principle, so
that the request of negative energy for the full set should
be equivalent to the request of negative energy for each
polymer.

We shall see below that the analytic solution of the
polymer problem with the cavity method is in good agree-
ment with the numerical results on the NWP. These re-
sults suggest that the conjecture is correct, and that the
NWP can be studied analytically through this correspon-
dence with polymers.

The polymer problem can be studied using the cav-
ity method as developed in [40, 41]. Here, we shall use
only the replica symmetric cavity method as we have not
found any evidence for sizeable replica symmetry break-
ing effects. This is justified also by the results for the
low-energy excitations presented in section IIID. We
consider a vertex i, we denote by 0i the set of vertices
which are connected to ¢ by an edge, and we study the
cavity graph in which one edge {i,j} (with j € 9¢) has
been removed. We consider the probabilities of the three
possible configurations of site ¢, as shown in Fig. 9.

e The probability that there is no polymer on ¢ is
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FIG. 9: In a cavity graph where the edge (ij) has been re-
moved, there are three possible conformations of a polymer
on site i. Left: no polymer. The probability of these configu-
rations is p(O) Center: The polymer arrives on i from some
other site k (and will be forced to continue on the edge (ij)
when this edge will be put back in the graph). The probabil-
ity of these configurations is piﬁ Right: The polymer goes
through i, connecting two sites k and ¢. The probability of

these configurations is pgﬂ e

(0)

denoted p; ;.
e The probability that there is a polymer arriving
on i from one edge connecting i to a vertex k €
0i \ j (meaning that it will be forced to use the

edge {4,j}). This probability is denoted pﬁﬂ I
e The probability that the polymer goes through i
and uses two edges connecting i to two vertices k, ¢

in 9i\ j. It is denoted pz(-Q_))j.
The random regular graph is locally tree-like, which
means that the environment up to any finite distance
from a generic point is a regular tree. Using this property,
which justifies the fact that random variables on different
branches of the cavity graph are independent (within the
replica symmetric hypothesis [42]), one can show that
these probabilities satisfy the following recursion rules:

0 0 2
pz('—)>j =C H pSn)—m gn)—n')

medi\j
1 1) B, 0 2
ply = o 7 ple o I el el
keoi\j medi\j,k
2 wrs (1) — B
pglj — CePH Z pk_)l -B Imp(_)}l Bwei
k<tedi\j
[T eoli+el- (®)
MmEdi\j, k¢

The constant C' is a normalization constant, it is fixed

by the condition pgolj + pgl_))j + pgi)j = 1. The knowl-

edge of the cavity probabilities pgi) i pgl ’” pga j allows to

obtain the various physical quantities. For instance, the
probability v); that site ¢ is visited by a polymer is given
by

’(/}i = ) (9)

SiE

where
N, = ePH Z pglie_ﬁw’”pggie_ﬂw“ (10)
k<tcdi
T e +p8) . (11)
medi\k,l
and
Di= T Wi +pal) + N . (12)
meodi

It is possible to simplify the equations by a change of
variables. Let us introduce

1
1 nY,

hij = hi_»_j = = (2) . (13)

One can write the cavity equations in terms only of the
fields h;_;:

ll o eBH Zk o0\ eB(hki—wi:) (
Ié; 1+ eBr Zk<£€az\] eB(hrki—wiithei—we;)

hi—>j = 14)

These equations can be solved by iteration, and their
solution gives access to various properties of the polymer.
The probability that a given site ¢ is occupied is given by

hii—writhe; —wei
e D k<tedi efUmimwnithe—wr)

14 eBr Zk<268i eB(hki—wiithei—wes)

Vi = (15)

and the probability that the edge (i7) is occupied is given
by

eﬁ(hij"’hji_wij)

1 4 eBhij+hji—wiy)

Vij) = (16)
The above equations allow for the study of one given in-
stance of the problem, i.e. one given realisation of the
random graph and of the potential. In the thermody-
namic limit, average properties like the average site den-
sity ¢ = % > ¥ are self-averaging (their fluctuations
from sample to sample go to zero in the large N limit).
These self-averaging properties can be studied using the
distribution of cavity fields Q(h), which is the probability
density that the field h;_,; on an edge (ij) € £ chosen at
random uniformly in a randomly chosen sample is equal
to h. The cavity Egs. (14) imply that Q(h) satisfies the
integral equation:

Q(h) = / H n)dhy P(wy)dwy,] (17)
B B(hp—wn)
5 (h="Liog LrY e |
ﬂ 1+ eBr Em<n eB(hm—wm+thn—wn)
where K = r — 1 is the number of neighbours of the

root site in the cavity graph, and the indices m and n
run from 1 to K. This integral equation can be solved



efficiently by the numerical approach of ‘population dy-
namics’ described in [43]. The average density is then
obtained as:

o= [ T 1@h)dn,P,)de,)

eﬁu Zk<€ eﬁ(hk—wk-i-hl—wZ)
1 + eﬁﬂf Zk<[ eﬁ(hk—wk-‘rhz—o-w) ’

(18)

We have used this approach to study the polymer at
zero temperature (using the infinite § limit of the Eqgs.
(17),(18)) which is are easily written. Fig. 10 shows the
average density computed by solving Eq. (17) for Q(h)
with the population dynamics, and using the resulting
probability density in Eq. (18). The data shows that, for
a given strength of disorder p, the average density ¥ van-
ishes at a critical value p.(p) of the chemical potential p,
with a quadratic behaviour:

b A — pe(p)? - (19)

According to our above conjecture, the critical value p,
of the disorder strength is obtained when the correspond-
ing chemical potential vanishes: p.(p.) = 0. With this
method one obtains the prediction p. = 0.072 £ 0.002.
One also sees from Fig. 10, by observing the shift of the
curves when changeing the value of p, that u.(p) has a
linear dependence on p when p — p.:

pe(p) = B(p — pe) - (20)

Combining Egs. (19) and (20) shows that the density of
the polymer at zero chemical potential grows quadrati-
cally when p > p.: (= 0) = AB%(p — p.)?. This can
also be seen directly by studying the 1 = 0 case explic-
itly, see the inset of Fig. 10. This gives according to Eq.
(6) the value of the orderparameter exponent 3 = 2.

These results show a good agreement between the an-
alytical and numerical approaches both for the value of
pe and for the value of the critical exponent .

V. CONCLUSIONS

We have presented an analytical and a numerical study
of the NWP problem in a mean-field case. The ana-
lytical study is based on a conjectured equivalence with
the problem of SAWs in random medium. The numer-
ical study is based on a mapping to a minimum-weight
matching problem for which fast algorithms exist. Both
approaches yield results which are in agreement, on the
location of the phase transition, on the value of critical
exponents, and on the absence of any sizeable indications
of a glass phase: this is seen analytically in the fact that
we do not find any spin glass instability, and in the nu-
merical study from the sub-extensive scaling of the size
of low-lying exitations. It is interesting to note that the
simulations of NWP using the minimum-weight match-
ing turn out to be a very efficient numerical approach to
the difficult problem of polymers in random media.
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FIG. 10: The average density of the polymer at # = oo has
been computed by solving Eq. (17) for Q(h) with the popula-
tion dynamics method, with a population size of 100000 fields,
and using the resulting probability density in Eq. (18). The
plot shows /%) as function of the chemical potential . The
various curves correspond to different values of the strength
of disorder p: from right to left, p = 0.06,0.065,...,0.080.
The inset shows /4 versus p for p = 0.

To conclude, we summarize the numerical results found
for the scaling exponents of NWP on regular random
graphs with fixed connectivity r=3:

RRGs : v* =3.0(1)

dy =2.1(1)

B =20(1)
v =—1.02(2).

These agree within error bars with the results found pre-
viously [22] for the NWP problem on 6d hypercubic lat-
tice graphs:

6d : dv = 3.00(1)
dy = 2.00(1)

B = 1.92(6)
v =—-0.99(3).

These results further support an upper critical dimen-
sion d,, =6 for the NWP problem.

Via these and previous results, the static behavior of
ordinary NWP is now rather well understood. Since the
NWP allows for a very efficient numerical treatment, it
would be quite rewarding to study NWP on directed
graphs or NWP on systems exhibiting correlated disor-
der. Also it could be interesting to study the dynamic
behavior using local stochastic algorithms while compar-
ing to the exact equilibrium behavior.
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